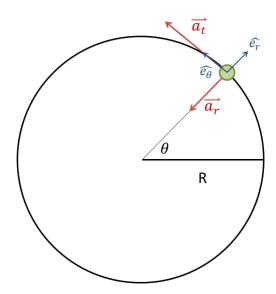
Nr. 3 vom 30.09.2024

Lösungen 3: Rotationen

Üb.1 Diskuswerfer

a)



b) Durch Integration der Winkelbeschleunigung findet sich die Winkelgeschwindigkeit und nach erneuter Integration der Winkel als Funktion der Zeit:

$$\alpha(t) = \alpha$$

$$\Rightarrow \omega(t) = \int_0^t \alpha(t') dt' = \alpha \cdot t$$

$$\Rightarrow \theta(t) = \int_0^t \omega(t') dt' = \frac{\alpha \cdot t^2}{2}.$$

Nach 3 Umdrehungen ist die lineare Geschwindigkeit des Diskus \emph{v}_f :

$$\begin{cases} \omega(T) = \alpha \cdot T = \frac{v_f}{R} \\ \theta(T) = \frac{\alpha \cdot T^2}{2} = 3 \cdot 2\pi \end{cases}$$

und somit $\alpha = \frac{v_f^2}{12 \cdot \pi \cdot R^2} = 4.1 \left[\frac{1}{s^2} \right]$.

- c) Siehe a).
- d) Die Normen der 3 Beschleunigungen sind

$$a_t(t) = \alpha(t) \cdot R = \frac{v_f^2}{12 \cdot \pi \cdot R}$$

$$a_r(t) = \omega^2(t) \cdot R = \frac{v_f^4}{144 \cdot \pi^2 \cdot R^3} \cdot t^2$$

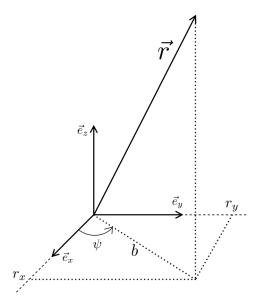
$$a(t) = \sqrt{a_t(t)^2 + a_r(t)^2} = \frac{v_f^2}{12 \cdot \pi \cdot R} \cdot \left(1 + \frac{v_f^4}{144 \cdot \pi^2 \cdot R^4} \cdot t^4\right)^{\frac{1}{2}}.$$

Somit ist die tangentielle Beschleunigung immer konstant. Die Radiale hingegen nicht, woraus folgt, dass die totale Beschleunigung des Diskus während des Durchlaufens seiner Trajektorie steigt.

Nr. 3 vom 30.09.2024

Üb.2 Verktorielle Geschwindigkeit und Beschleunigung

a) Nach Annahme gilt $\vec{r}^2 = r_x^2(t) + r_y^2(t) + r_z^2 =$ konst. Somit lautet die Gleichung eines Kreisbodens in der x-y-Ebene mit Radius $b: r_x^2(t) + r_y^2(t) = \vec{r}^2 - r_z^2 =$ kste $= b^2$ und $\psi(t)$ repräsentiert den Winkel zwischen $\overrightarrow{e_x}$ und dem Vektor $r_x(t) \cdot \overrightarrow{e_x} + r_y(t) \cdot \overrightarrow{e_y}$.



b) Durch Ableiten nach der Zeit findet man

$$\vec{v}(t) = b\dot{\psi}(t) \left(\cos(\psi(t))\overrightarrow{e_y} - \sin(\psi(t))\overrightarrow{e_x}\right),$$

$$\vec{a}(t) = b\ddot{\psi}(t) \left(\cos(\psi(t))\overrightarrow{e_y} - \sin(\psi(t))\overrightarrow{e_x}\right) - b\dot{\psi}^2(t) \left(\sin(\psi(t))\overrightarrow{e_y} + \cos(\psi(t))\overrightarrow{e_x}\right).$$

c) Gesucht ist
$$\overrightarrow{v}(t) = \overrightarrow{\Omega}(t) \times \overrightarrow{r}(t) = b \begin{pmatrix} \Omega_1 \\ \Omega_2 \\ \Omega_3 \end{pmatrix} \times \begin{pmatrix} \cos(\psi) \\ \sin(\psi) \\ \mathbf{r}_{\mathbf{Z}}/b \end{pmatrix} = b \dot{\psi} \begin{pmatrix} -\sin(\psi) \\ \cos(\psi) \\ 0 \end{pmatrix}$$
, wonach $\overrightarrow{\Omega} = \frac{\Omega_1}{b \cos(\psi)} \begin{pmatrix} b \cos(\psi) \\ b \sin(\psi) \\ \mathbf{r}_{\mathbf{Z}} \end{pmatrix} + \begin{pmatrix} 0 \\ 0 \\ \dot{\psi} \end{pmatrix}$.

Der erste Term ist proportional zu \vec{r} und verschwindet für die Wahl von $\Omega_1=0$.

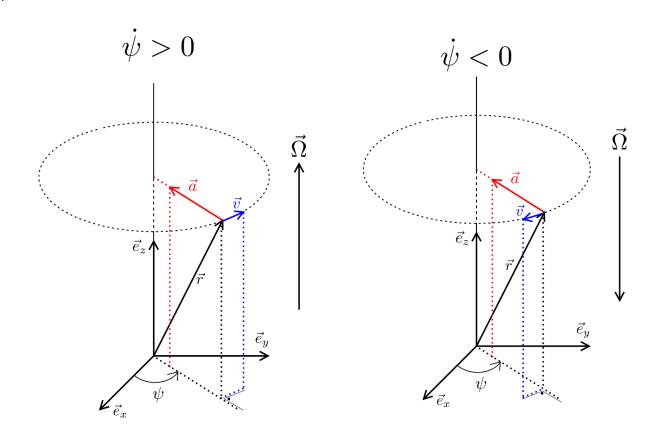
d) Durch Ableiten der Gleichung aus c) und mit Hilfe der Produktregel für Ableitungen folgt

$$\vec{a}(t) = \dot{\vec{v}} = \dot{\vec{\Omega}}(t) \times \vec{r}(t) + \vec{\Omega}(t) \times [\vec{\Omega}(t) \times \vec{r}(t)].$$

Nr. 3 vom 30.09.2024

Lifmet

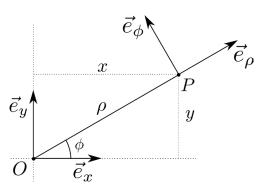
e)



Üb.3 Zylinderkoordinaten

a) Die Skizze liefert

$$\overrightarrow{OP} = \rho \cdot cos(\phi) \cdot \overrightarrow{e_x} + \rho \cdot sin(\phi) \cdot \overrightarrow{e_y} + z \cdot \overrightarrow{e_z} = \rho \cdot \overrightarrow{e_\rho} + z \cdot \overrightarrow{e_z} \,.$$



b) Die Änderung der Basisvektoren als Funktion der Zeit lauten

$$\frac{d\overrightarrow{e_{\rho}}}{dt} = \frac{d\phi}{dt} \cdot \overrightarrow{e_{\phi}}, \quad \frac{d\overrightarrow{e_{\phi}}}{dt} = -\frac{d\phi}{dt} \cdot \overrightarrow{e_{\rho}}.$$

$$\rightarrow \overrightarrow{v_P} = \frac{d\overrightarrow{OP}}{dt} = \frac{d\rho}{dt} \cdot \overrightarrow{e_\rho} + \rho \cdot \frac{d\overrightarrow{e_\rho}}{dt} + \frac{dz}{dt} \cdot \overrightarrow{e_z} = \frac{d\rho}{dt} \cdot \overrightarrow{e_\rho} + \rho \cdot \frac{d\phi}{dt} \cdot \overrightarrow{e_\phi} + \frac{dz}{dt} \cdot \overrightarrow{e_z}.$$

Ebenso findet sich für die Geschwindigkeit

Physik - Mechanik (Prof. Grütter)

Nr. 3 vom 30.09.2024

$$\overrightarrow{a_P} = \frac{d\overrightarrow{v_P}}{dt} = \left(\frac{d^2\rho}{dt^2} - \rho \cdot \left(\frac{d\phi}{dt}\right)^2\right) \cdot \overrightarrow{e_\rho} + \left(2 \cdot \frac{d\rho}{dt} \cdot \frac{d\phi}{dt} + \rho \cdot \frac{d^2\phi}{dt^2}\right) \cdot \overrightarrow{e_\phi} + \frac{d^2z}{dt^2} \cdot \overrightarrow{e_z}.$$

Somit sind radiale bzw. tangentielle Beschleunigungen gegeben durch

$$\begin{split} a_r &= \frac{d^2\rho}{dt^2} - \rho \cdot \left(\frac{d\phi}{dt}\right)^2 \text{ und} \\ a_t &= 2 \cdot \frac{d\rho}{dt} \cdot \frac{d\phi}{dt} + \rho \cdot \frac{d^2\phi}{dt^2}. \end{split}$$

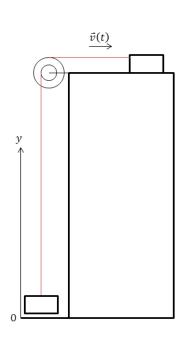
c) Seien R der Radius des Karussels, v_r die Norm der konstanten radialen Geschwindigkeit und $\phi(t) = \phi_0 + \omega \cdot t$, mit Anfangswinkel ϕ_0 . Die Trajektorie des Mannes in Zylinderkoordinaten ist

$$\rho(t) = R - v_r \cdot t .$$

Daraus folgt die Beschleunigung $\overrightarrow{a_P} = -\rho(t) \cdot \omega^2 \cdot \overrightarrow{e_\rho} - 2 \cdot v_r \cdot \omega \cdot \overrightarrow{e_\phi}$. Eine tangentiale Beschleunigung ist folglich unabdingbar in diesem Bezugssystem, damit der Rotation entgegengewirkt werden kann und die gewünschte Trajektorie beigehalten wird.

Üb.4 Seilzug und Laufrolle

a)



Vitesse du traction du treuil

3.5

2.5

2

0.5

1

0.5

0

20

40

60

80

100

120

140

160

180

Temps [s]

- b) $\omega(t) = \frac{v_T}{R} \cdot \left(1 exp(-A \cdot t)\right)$; $\alpha(t) = \frac{d(\omega(t))}{dt} = \frac{v_T}{R} \cdot A \cdot exp(-A \cdot t)$. Da die beiden Zylinder konzentrisch sind, finden wir dieselben $\omega(t)$ und $\alpha(t)$ für beide Zylinder.
- c) Die Höhe der Babywanne als Funktion der Zeit ist gegeben durch:

$$y(t) = \frac{v_T}{A} \cdot \frac{r}{R} \cdot (A \cdot t + exp(-A \cdot t) - 1) \Rightarrow v_T = A \cdot H \cdot \frac{R}{r} \cdot \frac{1}{A \cdot T + exp(-A \cdot T) - 1} = 3.5 \left[\frac{m}{s} \right].$$

Physik - Mechanik (Prof. Grütter)

Nr. 3 vom 30.09.2024

d) Die Beschleunigung der Wanne als Funktion der Zeit lautet

$$a(t) = \frac{d^2(y(t))}{dt^2} = v_T \cdot \frac{r}{R} \cdot A \cdot exp(-A \cdot t)$$

und ist maximal für t=0[s] mit $a_{max}=v_T\cdot\frac{r}{R}\cdot A=8.8\cdot 10^{-2}\left[\frac{m}{s^2}\right]$.

e) Die Rolle dreht sich $n = \frac{H}{2\pi r} = 477$ mal.

Üb.5 Uhr

e) Die beiden Zeiger liegen übereinander falls ihre Winkel bezüglich der Semi-Vertikalen (definiert als Linie zwischen Uhrmittelpunkt und 12:00h) gleich sind. Somit muss gelten

$$\theta_h(t) = \omega_h \cdot t = \frac{2\pi}{T_h} \cdot t$$
, $\theta_m(t) = \omega_m \cdot t = \frac{2\pi}{T_m} \cdot t$,

wobei $T_h=43200s$ und $T_m=3600s$. Falls die Zeiger zur Zeit t_k übereinanderliegen, gilt

$$\frac{2\pi}{T_m} \cdot t_k = \frac{2\pi}{T_h} \cdot t_k + k \cdot 2\pi \qquad \Rightarrow \qquad t_k = k \cdot \frac{T_h \cdot T_m}{T_h - T_m}$$

wobei k die Anzahl Umdrehungen des Minutenzeigers bezeichnet. Die Zeiger liegen erstmals $t_1 = 3927s = 1h\ 5'27''$ übereinander. Nach 11 Umdrehungen überlagern sie mittags. Somit überlagern sie 22 Mal täglich.

f) Ähnlich müssen nun die ganzen Zahlen k_1 und k_2 gefunden werden, so dass

$$\frac{2\pi}{T_s} \cdot t = \frac{2\pi}{T_m} \cdot t + k_1 \cdot 2\pi = \frac{2\pi}{T_h} \cdot t + k_2 \cdot 2\pi .$$

Es folgt $\frac{k_2}{k_1} = \frac{719}{708}$, was 43200s, also einem halben Tag entspricht. Die drei Zeiger sind als nur 2 Mal täglich deckend (mittags und mitternachts).