XIV Statique

1) Conditions d'équatibre "classe 1.1 résultante	ique " 2.1	Contrainte u el-Silaletak	nilaterale
1.1 resurrance	2.2	Principe de d	
1.2 moment 1.3 torreur et réductive			
	2.5	(conservative	rest 1
2) Travaux virtuels et équilisse	2.4 Prince	Forces appliques (conservation non conservation)	ruchves)
1) Conditions d'équilibre	dassique"		7 .,.
1.1) résultante Ti prices appliquées et ramenées au centre co	<u>F</u> ?	7772	
Solide en équilidan		7 F3	Fres.
Ti fonces appliquées et	1		
ramences au centre co	le masie L Th	Fr	
un equiliste peut	erre assimile	a	
A) { -7 un eniche (B) -7 un solide	nble de solide	5	"solide"
(3) Thaque Sol	ide est-ch eg	audisne	Johnae
6) –7 un solide	unique		
Las deen internally	boar took one	.5//	
Les deux interpréta	ment	INC) Mer a	
Turpout the mourem	icii .		
1.2 Noment de fone			
2-7	On peut enr. A guelangue	isager un p	oint
Pro Fr	A quelangue	du "solide	
\rightarrow \sim \sim \sim \sim			
	A: point a		
2/3/	A n'est pas	s netessairemen	nt le
$\sqrt{\overline{I_3}}$	oint de suppor	t des forces.	
	Day no count no	mat à l'estait	cu da calida

Condism d'équilibre: MA = I APa / Fa = 0 $\forall A$ en d'autres termes, si on choisit B, il est également vinci que MB = ZIBPa / Fa = 0 1.3 Torseur Définition: torreur de forces: Un pricur T de forces est un ensemble de forces liées ou glissants. On attuche chacune des forces à un point d'applitation (recteur liés) on à un point sur la dioite de support (recleur glivant). ~= { (P1, Fi), (P2, F2), (P3, F3), ..., (PN, FN)} On définit une classe d'équiralence entre les torseurs. Noth: Clave d'équiralence relation

Tinto et Tinto #7 Tinto + transitive 7, ~ 72 => 72 ~ 71 + réfluire $7, \sim 7_1$ + symélique Définition d'équiralence de deux touseurs: 7, ~ 72 (=7 Pour tout point de rédudin A. Pesultante identique $R_{(1)} = R_{(2)}$ Moment en can $R_{(1)} = R_{(2)}$ point de réduction identique

La dépendance de la réduction par rapport au point de réduction obéct à la règle BABAR

(changement du point de réduction

Autres prieurs:	braur cinémaiju	(\vec{p}, \vec{L})	
	"resultante"	"moment"	BABAIZ
toncur cinétique	\overline{P}	LA	48 - LA + BA 15
lonur (inématique	$\vec{\omega}$	V_{4}	VB = VA +BA 10
toncer de fone	R	MA	MB=MA+BA AR

La condition d'équilibre s'énonce comme l'annulation des élévocots de réduction du torreur de forces

 $R^2 = 0$ TA = 0Plan de coupe arbitraire du sotide.

That image: $T = T_3 \cup T_5$

$$\vec{R} + \vec{R}^{\delta} = 0$$

$$\vec{H}_{A} + \vec{H}_{A}^{\delta} = 0$$

$$T_{s} = \left\{ \left(P_{\alpha}, \overline{f_{\alpha}} \right) \middle| P_{\alpha} \in \delta \right\}$$

$$T_{s} = \left\{ \left(P_{s}, \overline{f_{s}} \right) \middle| P_{s} \in \delta \right\}$$

2.1 Contrainte unitatérale et bilatérale shicerson tremplin bilatéralc: contrainte exprimée sous beforme d'une éjalité x2+y2+r2=0 lerde L'application du princèpe des travaceux no tuels imposent l'attitudin, le con de contraintes prespectes situliales. 22 Principe de d'Alembert: Ruppel; Le travail des forses

Che liaison parfecite bilatérales est nul. $m\vec{r}' = \vec{F}_{i}^{n\cdot c} + \vec{T}_{i}$ $m'' \vec{X}_{i} = \vec{F}_{i,\chi} + \vec{T}_{i,\chi}$ $m'' \vec{Y}_{i} = \vec{F}_{i,\chi} + \vec{T}_{i,\chi}$ - Fires consuratives = anouée à un polenties 7=-3V = -3V 1 - 3V 9 + 3Z 2

Point mutacle ex bilan des force, $m_i \vec{r}_i^2 = \vec{T}_i^2 + \vec{F}_i^2 n \cdot c + \vec{F}_i^2 p \cdot r = \vec{T}_i^2 + \vec{F}_i^2 n \cdot c - \vec{\nabla} V$ Travail des fones appliquées (travail infinitesimal des fones $\delta W = \sum_{i=1}^{N} (\overline{\tau}_{i}^{n,c}) \cdot \delta r_{i}^{n,c}$ Princèpe des travaux n'étiels $\delta W = 0$ pour les fonces appliquées $\langle = \rangle$ le système est à l'équilibre Σ(Fine-VV:)·Sri = 0 (=> Equilibre En coordonnées généralisées: On part de lagrange de (39:) - 34 = Qi On ta sort la puite potentiel: Sort la puire pourme. $\frac{d}{dt} \left(\frac{\partial T}{\partial q_i^2} \right) - \frac{\partial T}{\partial q_i} = \left(\frac{\partial V}{\partial q_i^2} \right) \frac{7 \delta ne \text{ generalisted}}{\left(\frac{\partial V}{\partial q_i^2} \right) - \frac{\partial V}{\partial q_i^2}} = \left(\frac{\partial V}{\partial q_i^2} \right) \frac{7 \delta ne \text{ generalisted}}{\left(\frac{\partial V}{\partial q_i^2} \right) - \frac{\partial V}{\partial q_i^2}} = \left(\frac{\partial V}{\partial q_i^2} \right) \frac{7 \delta ne \text{ generalisted}}{\left(\frac{\partial V}{\partial q_i^2} \right) - \frac{\partial V}{\partial q_i^2}} = \left(\frac{\partial V}{\partial q_i^2} \right) \frac{7 \delta ne \text{ generalisted}}{\left(\frac{\partial V}{\partial q_i^2} \right) - \frac{\partial V}{\partial q_i^2}} = \left(\frac{\partial V}{\partial q_i^2} \right) \frac{7 \delta ne \text{ generalisted}}{\left(\frac{\partial V}{\partial q_i^2} \right) - \frac{\partial V}{\partial q_i^2}} = \left(\frac{\partial V}{\partial q_i^2} \right) \frac{7 \delta ne \text{ generalisted}}{\left(\frac{\partial V}{\partial q_i^2} \right) - \frac{\partial V}{\partial q_i^2}} = \left(\frac{\partial V}{\partial q_i^2} \right) \frac{7 \delta ne \text{ generalisted}}{\left(\frac{\partial V}{\partial q_i^2} \right) - \frac{\partial V}{\partial q_i^2}} = \left(\frac{\partial V}{\partial q_i^2} \right) \frac{7 \delta ne \text{ generalisted}}{\left(\frac{\partial V}{\partial q_i^2} \right) - \frac{\partial V}{\partial q_i^2}}$ Remarque: les équations de Lagrange sont étastiès à puiller du principe de d'Alemsect et on $\sum_{i'} \left(\frac{d}{dt} \left(\frac{3T}{3q_i} \right) - \frac{3T}{3q_i} \right) \delta q_i = \sum_{i'} \left(Q_i - \frac{3V}{3q_i} \right) \delta q_i$ Vogi compatible. A l'équilibre la pautie jauche hombe.

	Eguilibre	<= 7	7. (9:	- <u>3V</u>)59.	= 0
Fraccine de	dé monshali m		· i	39:) 1	
	,		1-4 0 1 1	-/-/	· · · · · · · · · · · · · · · · · · ·
- ha ale	monikanim ke ica Test	une brome	aur guei rej auactratia	ue cla vitano	9:=0
Equildre =7	d/ 3T) = TE-(70'
	14 sq.	ر می کار			