Table des symboles 7 : Corps Solide I

symbole	signification	formule	unités
I_O	moment d'inertie par rapport au point O et d'axe perpendiculaire au plan d'un corps planaire constitué d'un ensemble de points matériels rigidement reliés les uns aux autres	$I_O = \sum_{\alpha} m_{\alpha} \ \boldsymbol{O} \boldsymbol{P_{\alpha}} \ ^2$	[kg m ²]
I_O	moment d'inertie d'un corps planaire rigide, d'étendue continue,par rapport au point O pour une rotation d'axe perpendiculaire au plan du solide	$I_O = \int_{lpha} \ oldsymbol{O} oldsymbol{P}_{lpha}\ ^2 dm$	[kg m ²]
I_O	moment d'inertie d'un corps planaire rigide, d'étendue continue,par rapport au point O pour une rotation d'axe perpendiculaire au plan du solide calculé à l'aide de coordonnées cartésiennes x et y	$I_O = \mu \int \int (x^2 + y^2) dx dy$	[kg m ²]
ω	vitesse scalaire de rotation instantanée d'un corps solide plan		[rad/s]
L_O	moment cinétique scalaire par rapport à O le long de l'axe \hat{z} perpendiculaire au plan d'un corps planaire d'inertie scalaire I_O	$L_O = I_O \omega$	${ m [kg\ m^2/s]}$
μ	densité de masse surfacique		$[\mathrm{kg/m^2}]$
dm	élément de masse infinitésimal	$dm = \mu dx dy$	[kg]

symbole	signification	formule	unités
I_O	tenseur d'inertie d'un solide par rapport à un repère $(O, \hat{x}, \hat{y}, \hat{z})$ d'un ensemble de points matériels rigidement liés les uns aux autres		[kg m ²]
I_O	tenseur d'inertie d'un solide par rapport à un repère $(O, \hat{x}, \hat{y}, \hat{z})$ d'étendue continue	$m{I_O} = \left(egin{array}{ccc} I_x & I_{xy} & I_{xz} \ I_{xy} & I_y & I_{yz} \ I_{xz} & I_{yz} & I_z \end{array} ight)$	[kg m ²]
I_x	composante du tenseur d'inertie, élément diagonal correspondant à l'axe x	$I_x = \mu \int \int (y^2 + z^2) dx dy dz$	[kg m ²]
I_y	composante du tenseur d'inertie, élément diagonal correspondant à l'axe y	$I_y = \mu \int \int (x^2 + z^2) dx dy dz$	[kg m ²]
I_z	composante du tenseur d'inertie, élément diagonal correspondant à l'axe z	$I_z = \mu \int \int (x^2 + y^2) dx dy dz$	[kg m ²]
I_{xy}	composante du tenseur d'inertie, hors diagonal en position ligne/colonne correspondants aux axes x et y	$I_{xy} = \mu \int \int \int -x y dx dy$	[kg m ²]
I_{xz}	composante du tenseur d'inertie, hors diagonal en position ligne/colonne correspondants aux axes x et z	$I_{xz} = \mu \int \int \int -x z dx dz$	[kg m ²]
I_{yz}	composante du tenseur d'inertie, hors diagonal en position ligne/colonne correspondants aux axes y et z	$I_{yz} = \mu \int \int \int -y z dy dz$	[kg m ²]
L_O	moment cinétique par rapport à O d'un corps solide animé d'un vitesse de rotation instantané ω	$oldsymbol{L_O} = I_O oldsymbol{\omega}$	[rad/s]

symbole	signification	formule	unités
	règle de Steiner (cas planaire)	$I_A = I_G + M \ \boldsymbol{G} \boldsymbol{A} \ ^2$	
$\gamma_x, \gamma_y, \gamma_z$	coordonnées du point A dans le repère $(G, \hat{x}, \hat{y}, \hat{z})$ liè au centre de masse G pour lequel on connaît le tenseur d'inertie I_G	$oldsymbol{AG} = \gamma_x \hat{oldsymbol{x}} + \gamma_y \hat{oldsymbol{y}} + \gamma_z \hat{oldsymbol{z}}$	
	règle de Steiner (cas tridimensionnel)	$I_{\mathbf{A}} = I_{\mathbf{G}} + $ $M \begin{pmatrix} \gamma_y^2 + \gamma_z^2 & -\gamma_x \gamma_y & -\gamma_x \gamma_z \\ -\gamma_x \gamma_y & \gamma_x^2 + \gamma_z^2 & -\gamma_y \gamma_z \\ -\gamma_x \gamma_z & -\gamma_y \gamma_z & \gamma_x^2 + \gamma_y^2 \end{pmatrix}$	
I	inertie d'une tige mince de longueur L et de masse m	$I = \frac{1}{12}mL^2$	[kg m ²]
I	inertie d'une sphère creuse de rayon R et de masse m	$I = \frac{2}{3}mR^2$	[kg m ²]