Table des symboles 6 : Rotations et Coordonnées

symbole	signification	formule	unités
F	force planaire	$oldsymbol{F} = F_x \hat{oldsymbol{x}} + F_y \hat{oldsymbol{y}}$	[N]
F	force	$oldsymbol{F} = F_x\hat{oldsymbol{x}} + F_y\hat{oldsymbol{y}} + F_z\hat{oldsymbol{z}}$	[N]
r	rayon vecteur planaire	$oldsymbol{r} = r_x\hat{oldsymbol{x}} + r_y\hat{oldsymbol{y}} := oldsymbol{OP}$	[m]
r	rayon vecteur	$oldsymbol{r} = r_x \hat{oldsymbol{x}} + r_y \hat{oldsymbol{y}} + r_z \hat{oldsymbol{z}} := oldsymbol{OP}$	[m]
M	moment de force scalaire d'une force pla- naire unique autour de l'origine	$M := x F_y - y F_x$	[N m]
M_O	moment des forces par rapport à l'origine O d'un repère lié au référentiel galiléen	$M_{oldsymbol{O}} := \sum_{lpha} oldsymbol{O} P_{oldsymbol{lpha}} \wedge F_{oldsymbol{lpha}}$	[N m]
M_A	moment des forces par rapport à un point arbitraire A	$M_{m{A}} := \sum_{lpha} m{A} m{P_{m{lpha}}} \wedge m{F_{m{lpha}}}$	[N m]
M_G	moment des forces par rapport au centre de gravité	$M_{oldsymbol{G}} := \sum_{lpha} oldsymbol{G} P_{oldsymbol{lpha}} \wedge F_{oldsymbol{lpha}}$	[N m]
L_O	moment cinétique par rapport à l'origine O d'un repère lié au référentiel galiléen	$oldsymbol{L_O} := \sum_{lpha} oldsymbol{O} oldsymbol{P_lpha} \wedge m_lpha oldsymbol{v_lpha}$	[kg m ² /s]
L_A	moment cinétique par rapport à un point arbitraire A	$oldsymbol{L_A} := \sum_{lpha} oldsymbol{A} oldsymbol{P_{lpha}} \wedge m_{lpha} oldsymbol{v_{lpha}}$	[kg m ² /s]

symbole	signification	formule	unités
L_G	moment cinétique par rapport à centre de gravité G	$oldsymbol{L_O} := \sum_{lpha} oldsymbol{GP_{lpha}} \wedge m_{lpha} oldsymbol{v_{lpha}}$	[kg m ² /s]
θ	angle d'une rotation finie		[rad]
p	quantité de mouvement	$oldsymbol{p} := \sum_{lpha} m_{lpha} oldsymbol{v}_{oldsymbol{lpha}}$	[kg m/s]
$R_{ heta}$	matrice d'une rotation dans le plan (les vecteurs tournes, le repère reste fixe)	$R_{\theta} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$	
$R_{ heta}{}^{'}$	matrice d'une rotation dans le plan (les vecteurs restent fixes, le repère tourne)	$R_{\theta}' = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}$	
$(O, \hat{m{x}}, \hat{m{y}}, \hat{m{z}})$	repère fixe		
$(O, \hat{\boldsymbol{x}}', \hat{\boldsymbol{y}}', \hat{\boldsymbol{z}}')$	repère qui a tourné d'un angle fini		
x, y, z	coordonnées cartésiennes avant rotation		[m]
x',y',z'	coordonnées cartésiennes après rotation		[m]
$(O, \hat{m{x}}, \hat{m{y}})$	repère fixe du plan		
$(O, \hat{m{x}}', \hat{m{y}}')$	repère qui a tourné d'un angle fini		

symbole	signification	formule	unités
r, heta, z	coordonnées cylindriques	$ \begin{aligned} x &= r \cos \theta \\ y &= r \sin \theta \\ z &= z \end{aligned} $	
$ ho,\phi,z$	coordonnées cylindriques	$x = \rho \cos \phi$ $y = \rho \sin \phi$ $z = z$	
$r, heta,\phi$	coordonnées sphériques	$x = r \sin \theta \cos \phi$ $y = r \sin \theta \sin \phi$ $z = r \cos \theta$	
$(P, e_r, e_{\theta}, e_z)$	repère cylindrique lié au point P		
$\hat{m{n}}$	vecteur unitaire le long de l'axe de rotation		
ω	vecteur instantané de rotation		[rad/s]
C	point à l'intersection du plan orthogonal à l'axe de rotation (i.e. $\perp \hat{n}$) et passant par le point P		
P	point avant la rotation		
Q	point après la rotation		
$rac{d}{dt}oldsymbol{V}=oldsymbol{\omega}\wedgeoldsymbol{V}$	formule de Poisson : rotation instantanée d'un vecteur \boldsymbol{V} de norme constante		

symbole	signification	formule	unités
$R_{m{ heta},\hat{m{x}}}$	matrice de rotation d'angle θ et d'axe x (le repère reste fixe, le vecteur tourne)	$R_{\theta,\hat{x}} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\theta & -\sin\theta \\ 0 & \sin\theta & \cos\theta \end{pmatrix}$	
$R_{m{ heta}, \hat{m{y}}}$	matrice de rotation d'angle θ et d'axe y (le repère reste fixe, le vecteur tourne)	$R_{\theta,\hat{\boldsymbol{y}}} = \begin{pmatrix} \cos\theta & 0 & \sin\theta \\ 0 & 1 & 0 \\ -\sin\theta & 0 & \cos\theta \end{pmatrix}$	
$R_{ heta,oldsymbol{\hat{z}}}$	matrice de rotation d'angle θ et d'axe z (le repère reste fixe et le vecteur tourne)	$R_{\theta,\hat{z}} = \begin{pmatrix} \cos\theta & -\sin\theta & 0\\ \sin\theta & \cos\theta & 0\\ 0 & 0 & 1 \end{pmatrix}$	
$[\omega\wedge]$	matrice du produit vectoriel $\omega \wedge$	$[oldsymbol{\omega}\wedge]= \left(egin{array}{ccc} 0 & -\omega_3 & \omega_2 \ \omega_3 & 0 & -\omega_1 \ -\omega_2 & \omega_1 & 0 \end{array} ight)$	
$[\hat{m{n}}\wedge]$	matrice du produit vectoriel $\hat{\boldsymbol{n}} \wedge$	$[\hat{m{n}}\wedge] = egin{pmatrix} 0 & -n_3 & n_2 \ n_3 & 0 & -n_1 \ -n_2 & n_1 & 0 \end{pmatrix}$	
$R_{ heta, m{\hat{n}}}$	matrice de rotation d'angle θ et d'axe de rotation généré par $\hat{\boldsymbol{n}}$ (le vecteur tourne, le repère reste fixe)	$R_{ heta,\hat{m{n}}} = (I - \hat{m{n}}\hat{m{n}}^T)\cos heta + \hat{m{n}}\hat{m{n}}^T + \sin heta[\hat{m{n}}\wedge]$	
$R_{m{ heta},m{\hat{n}}^{'}}$	matrice de rotation d'angle θ et d'axe de rotation généré par $\hat{\boldsymbol{n}}$ (le vecteur reste fixe, le repère tourne)	$egin{aligned} R_{ heta, \hat{m{n}}}' &= (I - \hat{m{n}} \hat{m{n}}^T) \cos heta + \ \hat{m{n}} \hat{m{n}}^T - \sin heta [\hat{m{n}} \wedge] \end{aligned}$	

symbole	signification	formule	unités
$a_P = \ddot{OP}$	accélération du point P par rapport à un référentiel galiléen exprimé dans un repère cylindrique en mouvement lié au point P	$\mathbf{a} = a_{\rho} \mathbf{e}_{\rho} + a_{\phi} \mathbf{e}_{\phi} + a_{z} \mathbf{e}_{z}$	$ m [m/s^2]$
$a_{ ho}$	composante selon e_{ρ} de l'accélération du point P dans le réfrentiel galiléen exprimée dans le repère cylindrique en mouvement lié au point P	$a_{ ho} = \ddot{ ho} - \dot{\phi}^2 ho$	$[\mathrm{m/s^2}]$
a_{ϕ}	composante selon e_{ϕ} de l'accélération du point P dans le référentiel galiléen exprimée dans le repère cylindrique en mouvement lié au point P	$a_{\phi}= ho\ddot{\phi}+2\dot{ ho}\dot{\phi}$	$[\mathrm{m/s^2}]$
a_z	composante selon e_z de l'accélération du point P par rapport à un référentiel galiléen exprimé dans un repère cylindrique en mouvement et lié au point P	$a_z = \ddot{z}$	$[\mathrm{m/s^2}]$
$a_P = \ddot{OP}$	accélération du point P par rapport à un référentiel galiléen exprimé dans un repère sphérique en mouvement lié au point P	$a = a_r e_r + a_\theta e_\theta + a_\phi e_\phi$	$ m [m/s^2]$
a_r	composante radiale de l'accélération du point P dans le référentiel galiléen exprimé dans le repère sphérique en mouvement et lié au point P	$a_r = \ddot{r} - r\dot{\theta}^2 - r\dot{\phi}^2 \sin^2 \theta$	$[\mathrm{m/s^2}]$
$a_{ heta}$	composante selon e_{θ} de l'accélération du point P par rapport à un référentiel galiléen exprimé dans un repère sphérique en mouvement et lié au point P	$a_{\theta} = r\ddot{\theta} + 2\dot{r}\dot{\theta} - r\dot{\phi}^2\cos\theta\sin\theta$	$[\mathrm{m/s^2}]$
a_{ϕ}	composante selon ϕ de l'accélération du point P par rapport à un référentiel galiléen exprimé dans un repère sphérique en mouvement et lié au point P	$a_{\phi} = r\ddot{\phi}\sin\theta + 2r\dot{\phi}\dot{\theta}\cos\theta + 2\dot{r}\dot{\phi}\sin\theta$	$[\mathrm{m/s^2}]$