Table des symboles 5 : Oscillateur Harmonique II

symbole	signification	formule	unités
k	constante de rigité du ressort		[N/m]
m	masse		[kg]
b	coefficient de frottement visqueux		[N s/m]
λ	variable du calcul opérationel	$\lambda := rac{d}{dt}$	
ω_0	pulsation naturelle (pulsation à vide)	$\omega_0 := \sqrt{rac{k}{m}}$	[rad/s]
γ	facteur d'amortissement	$\gamma := rac{b}{2m}$	[1/s]
A	amplitude (de l'accélération, resp. de la position) du mouvement forcé de l'extérieur sur la masse de l'oscillateur		$[\mathrm{m/s^2}]$
A_m	amplitude (de l'accélération, resp. de la position) du mouvement harmonique correspondant à la solution particulière	$A_m = A \frac{1}{\sqrt{\left(\frac{k}{m} - \omega^2\right)^2 + \frac{b^2 \omega^2}{m^2}}}$	[m]
$\hat{A_m}$	amplitude A_m (de l'accélération, resp. de la position) à la résonance		[m]
$C_{-}, C_{+} \text{ ou } A_{1}, A_{2}$	constantes d'intégration complexes		[m]
C_1, C_2	constantes d'intégration réelles		[m]

symbole	signification	formule	unités
x_0	position initiale		[m]
\dot{x}_0	vitesse initiale		[m/s]
α_0, α_1	coefficients indéterminés lors du calcul de la solution particulière	$x_p := \alpha_0 \sin(\omega t) + \alpha_1 \cos(\omega t)$	[m]
α, eta	variables intermédiaires lors du calcul des constantes d'intégration complexes C_+ et C		
λ_1,λ_2	solution du polynôme caractéristique	$\lambda_1 = -\gamma - \sqrt{\gamma^2 - \omega_0^2}$ $\lambda_2 = -\gamma + \sqrt{\gamma^2 - \omega_0^2}$	
$ ilde{A}, ilde{B}$	regroupement de paramètres lors du calcul des battements	$\tilde{B} := \frac{1}{\omega_0} \left(\dot{x}_0 - \frac{A\omega}{\omega_0^2 - \omega^2} \right)$ $\tilde{B}\tilde{A} := \frac{A}{\omega_0^2 - \omega^2}$	
ν	variables temporaire pour le calcul de la pulsation de résonance	$ u = \omega^2$	
ω_r	pulsation de résonance	$\omega_r = \sqrt{\omega_0 - 2\gamma^2}$ $= \sqrt{\frac{k}{m} - \frac{b^2}{2m^2}}$	[rad/s]

symbole	signification	formule	unités
P	puissance		[W]
E	énergie		[J]
τ	constante de temps de l'énergie	$ au=rac{m}{b}$	[s]
Q	facteur de qualité	$Q = \sqrt{\omega_0 - \gamma^2} \tau$	