Table des symboles 12 : Forces Centrales / Kepler

symbole	signification	formule	unités
F_P	une force centrale qui agit sur le point P	$m{F_P} = \gamma(t) m{OP}$	[N]
C	constante des aires	$C = r^2 \dot{\theta}$	$[\mathrm{m^2~rad/s}]$
a_r	accélération radiale	$a_r = \ddot{r} - r\dot{\theta}^2$	$[\mathrm{m/s^2}]$
a_r	formule de Binet	$a_r = -\frac{C^2}{r^2} \left[\frac{d^2}{d\theta^2} \left(\frac{1}{r} \right) + \frac{1}{r} \right]$	$ m [m/s^2]$
О	point fixe centre des forces centrales		
О	foyer de la conique		
Δ	directrice de la conique		
d	distance entre la directrice et le foyer		[m]
P	point matériel sujet à une force centrale		
Q	point sur la directrice, abaissée perpendiculaire du point P		
e	eccentricité de la conique	$e = \frac{\ OP\ }{\ PQ\ }$	
p	paramètre de la conique	p = ed	[m]

symbole	signification	formule	unités
a	demi grand axe de l'ellipse ou abscisse de l'asymptote de l'hyperbole	$p = \frac{b^2}{a}$	[m]
b	demi petit axe de l'ellipse ou ordonnée de l'asymptote de l'hyperbole	$p = \frac{b^2}{a}$	[m]
	équation paramétrique de la conique	$\frac{p}{r} = 1 + e\cos\theta$	
χ	paramètre de la force centrale en $\frac{1}{r^2}$	$a = -\chi \frac{r}{\ r\ ^3}$	$[1/({ m m \ s^2})]$
χ	pour un mouvement central dû à la loi uni- verselle de la gravité	$\chi = G M$	$[1/(\mathrm{m}\ \mathrm{s}^2)]$
χ	pour un mouvement central dû à la force électrostatique	$\chi = -\frac{1}{m} \frac{1}{4\pi\epsilon_0} q Q$	$1/(\mathrm{m}\ \mathrm{s}^2)]$