18 novembre 2024

Série 9 : Chocs et collisions

1. Chocs de particules

Une particule incidente de masse m_1 , de vitesse initiale $\mathbf{v}_1 = v_1 \mathbf{e}_x$ entre en collision avec une particule de masse m_2 , initialement au repos, i.e. $\mathbf{v}_2 = \mathbf{0}$. On considère ici le cas d'un choc élastique entre les deux particules. On dénote $\mathbf{v}'_1 = v'_1 (\cos \theta_1 \mathbf{e}_x + \sin \theta_1 \mathbf{e}_y)$ et $\mathbf{v}'_2 = v'_2 (\cos \theta_2 \mathbf{e}_x - \sin \theta_2 \mathbf{e}_y)$ les vitesses résultantes après le choc.

- a) A l'aide des lois de conservation, écrire les équations liant, v_1 , m_1 , m_2 d'une part et v_1' , v_2' , θ_1 , θ_2 , d'autre part.
- b) Dans le cas particulier où $\theta_1 = 0$, exprimer v'_1 et v'_2 en fonction de v_1 , m_1 et m_2 .
- c) Toujours dans le cas $\theta_1 = 0$, déterminer l'énergie cinétique résultante T_2' de la deuxième particule en fonction de l'énergie cinétique incidente T_1 de la première et des masses m_1 et m_2 .

2. Coup de billard

Déterminer la hauteur à laquelle il faut percuter une bille de billard de R=6 [cm] et de masse 210 [g] avec un coup de queue parfaitement horizontal afin que la bille, après le choc, roule sans glisser. On admettra que la queue de billard est à l'arrêt après le choc. (Indication : considérer non seulement la quantité de mouvement mais également le moment cinétique avant le choc et après le choc du système isolé queue de billard et bille.)

3. Rebonds multiples

On lâche sans vitesse initiale une balle d'une hauteur H_0 sur un sol plan. Le coefficient de restitution est e < 1.

- a) A quelle hauteur la balle remonte-t-elle au n^e rebond?
- b) Quel est le nombre (théorique) total de rebonds? Quelle est leur durée totale? Quel est le paradoxe classique ainsi évoqué?

4. Modèle de choc élastique

Un chariot assimilable à un point matériel de masse m, est mobile sans frottement sur un plan horizontal; ce chariot est muni à son extrémité d'un ressort de raideur k pouvant se comprimer. Par l'intermédiaire de ce ressort, le chariot, animé d'une vitesse \mathbf{v}_0 , heurte un obstacle fixe (supposé de masse infinie); le ressort se comprime alors, puis se détend, et le chariot repart en sens inverse. On admettra que le choc est parfaitement élastique, c'est-à-dire que l'énergie mécanique se conserve.

- a) Déterminer l'intervalle de temps Δt pendant lequel le ressort reste en contact avec l'obstacle (durée du choc), l'enfoncement maximal x_{max} du ressort et la force maximale \mathbf{F}_{max} exercée par le ressort.
- b) Déterminer les expressions précédentes dans la limite $k \to \infty$.
- c) Déterminer l'expression de la quantité de mouvement après le choc en fonction de la quantité de mouvement avant le choc.
- d) Etablir l'expression de la 2^e loi de Newton, en calculant explicitement l'intégrale suivante durant le choc,

$$\int_0^{\Delta t} \mathbf{F} \, dt \,,$$

où \mathbf{F} correspond, dans ce modèle, à la force élastique exercée par le ressort.