VI. Rotations

moments de force et moment cinétique; cinématique de la rotation: rotation plane, rotation 3D, rotation inifintésimale, formule de Poisson, coordonnées cylindriques et sphériques

Ph. Müllhaupt

Programme — VI. Rotations

- moment de force et moment cinétique invariance et rotation
- les rotations planes
 le point tourne, le repère demeure fixe
 le repère tourne, le point demeure fixe
- la formule de Poisson
 par la méthode de la matrice de rotation
 la formule de Poisson
- 4. coordonnées

 cylindriques

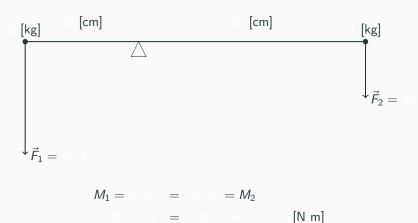
 sphériques

moment de force et moment

cinétique

moment de force - équilibre de leviers

constat empirique: équilibre lors d'équivalence de leviers



2

moment de force - interprétation énergétique

On va généraliser la force à un nouveau concept de telle sorte qu'au niveau du travail on ait une équation du type

$$= \delta W = \vec{F} \bullet \vec{dr}$$

avec $d\theta$ un angle infiniment petit.

La quantité M reste à définir.

Etudions une rotation plane d'un angle infinitésimal $d\theta$. Comme il s'agit d'une rotation, il y a une contrainte (liaison) circulaire

$$x^2 + y^2 = r^2 = \|\vec{OP}\|^2$$

la position du point P s'exprime par le rayon vecteur \vec{r}

$$\vec{OP} = \vec{r} = x \hat{x} + y \hat{y}$$

et la force est exprimée par ses composantes

$$\vec{F} = F_x \,\hat{x} + F_y \,\hat{y}$$

dérivons la contrainte par rapport au temps, et faisons apparaître les différentielles dx, dy, (des petits Δx et Δy)

$$2x\dot{x} + 2y\dot{y} = 0$$

$$2x\frac{dx}{dt} + 2y\frac{dy}{dt} = 0$$

$$x dx + y dy = 0$$

tous les déplacements sont paramétrés par l'angle

$$\dot{x} = \dot{y} = 0$$
 $dx = 0$
 $dy = 0$

mais

$$r\cos\theta = r\sin\theta =$$

donc...

$$dx = dy =$$

et le travail infinitésimal s'écrit

$$\delta W = \vec{F} \bullet \vec{dr} = F_x \, dx + F_y \, dy$$
$$= d\theta$$

M ≜

On retrouve le bras de levier

moment de force - produit vectoriel

Essayons de transformer la formule de M en une formule plus "vectorielle":

si on exprime en composantes et que l'on représente le parallélogramme

on constate que l'on bien une surface donnée par

ainsi on est amené à poser

$$ec{M} = M \, \hat{z} = ec{r} \wedge ec{F} = igg|$$

comme \vec{M} dépend du point d'origine, on note

 $\vec{M}_O = \vec{r} \wedge \vec{F}$

définition

Le moment de force d'un système de forces agissants sur des points P_{α} bien particuliers, moment de force par rapport à un point A donné, est:

moment cinétique - loi de Newton associée

théorèmes issus des lois de Newton

lois de Newton et invariance par rotation

remarque

Certaines propriétés dynamiques d'un ensemble de points matériels (ensemble rigide ou nom) demeurent invariantes par rotation. En absence de moment extérieur, le moment cinétique évalué en un point fixe ${\cal O}$ ou au centre de masse ${\cal G}$ est invariant.

rotation d'un angle fixe

Soit deux référentiels galiléens qui sont obtenus par rotation de l'un par rapport à l'autre d'un angle fini (non dépendant du temps). Les lois physiques sont les mêmes dans ces deux référentiels.

les rotations planes

les rotations planes

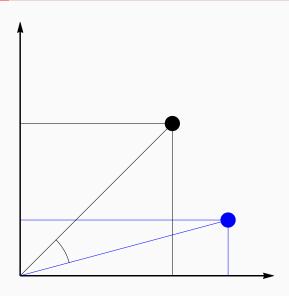
le point tourne, le repère demeure fixe

$$\vec{OP} = \alpha \hat{x}_1 + \beta \hat{x}_2$$

$$\vec{OP'} = \alpha' \hat{x}_1 + \beta' \hat{x}_2$$

$$\begin{pmatrix} \alpha' \\ \beta' \end{pmatrix} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} \alpha \\ \beta \end{pmatrix}$$

Le point tourne, le repère reste fixe



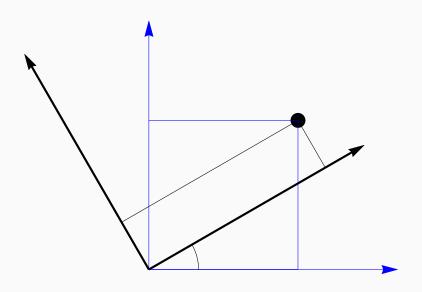
Les rotations planes

le repère tourne, le point demeure fixe

$$\vec{OP} = \alpha \hat{x}_1 + \beta \hat{x}_2$$

$$\vec{OP} = \alpha' \hat{x}_1' + \beta' \hat{x}_2'$$

$$\begin{pmatrix} \alpha' \\ \beta' \end{pmatrix} = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} \alpha \\ \beta \end{pmatrix}$$



la formule de Poisson

Justification de la formule de Poisson...

... par la matrice de rotation ...

définie par un axe engendré par le vecteur \hat{n} normé $(\|\hat{n}\|=1)$ et d'angle heta

description

Une rotation d'axe engendré par \hat{n} et d'angle θ opère sur un point P et amène celui-ci en Q. Le vecteur \hat{n} est de norme unité

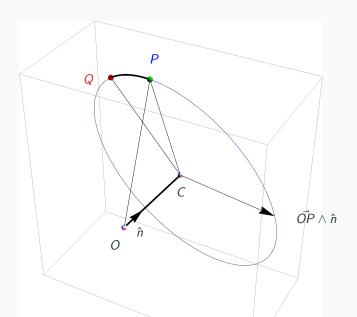
$$\|\hat{n}\| = 1$$

problème

Déterminer la matrice correspondant à cette rotation

définition d'un point auxiliaire C

Le point C est l'intersection entre l'axe de rotation et le plan orthogonal à l'axe de rotation et qui contient les deux points P et Q



première étape

On va commencer par exprimer des relations vectorielles entre différents points spécifiques, en particulier le point P et les vecteurs \vec{CP} et \vec{CQ}

on remarque graphiquement que

$$\vec{OC} = (\vec{OP} \bullet \hat{n})\hat{n}$$

 $\vec{CQ} = \cos\theta\vec{CP} + \sin\theta\hat{n} \wedge \vec{CP}$

... ainsi ...

$$\vec{CP} = \vec{OP} - \vec{OC}$$

$$\vec{CP} = \vec{OP} - (\vec{OP} \cdot \hat{n})\hat{n}$$

$$\vec{CQ} = \cos\theta\{\vec{OP} - (\vec{OP} \cdot \hat{n})\hat{n}\} + \sin\theta\hat{n} \wedge \{\vec{OP} - (\vec{OP} \cdot \hat{n})\hat{n}\}$$

$$= \cos\theta\{\vec{OP} - (\vec{OP} \cdot \hat{n})\hat{n}\} + \sin\theta\hat{n} \wedge \vec{OP}$$

car
$$\sin \theta \hat{n} \wedge (\vec{OP} \bullet \hat{n})\hat{n} =$$

... d'autre part ...

$$\vec{CQ} = \vec{OQ} - \vec{OC}$$

= $\vec{OQ} - (\vec{OP} \cdot \hat{n})\hat{n}$

et ainsi

$$\vec{OQ} - (\vec{OP} \bullet \hat{n})\hat{n} = \cos\theta\{\vec{OP} - (\vec{OP} \bullet \hat{n})\hat{n}\} + \sin\theta(\hat{n} \land \vec{OP})$$
$$\vec{OQ} = \cos\theta\vec{OP} + (1 - \cos\theta)(\vec{OP} \bullet \hat{n})\hat{n} + \sin\theta(\hat{n} \land \vec{OP})$$

... transformation en opérations matricielles ...

 $(\vec{OP} \bullet \hat{n})\hat{n}$ s'écrit

$$(\vec{OP}^T \hat{n})\hat{n} = (\hat{n}^T \vec{OP})\hat{n}$$
 car $\hat{n}^T \vec{OP}$ est un scalaire
 $= \hat{n}(\hat{n}^T \vec{OP})$ idem
 $= (\hat{n}\hat{n}^T)\vec{OP}$ associativité du prod. matriciel

mais...

$$\hat{n}\hat{n}^T = \begin{pmatrix} n_1 \\ n_2 \\ n_3 \end{pmatrix} \begin{pmatrix} n_1 & n_2 & n_3 \end{pmatrix} = \begin{pmatrix} n_1^2 & n_1 n_2 & n_1 n_3 \\ n_1 n_2 & n_2^2 & n_2 n_3 \\ n_1 n_3 & n_2 n_3 & n_3^2 \end{pmatrix}$$

... transformation en opérations matricielles ...

$$\hat{n} \wedge \vec{OP} = \begin{vmatrix} \hat{x_1} & n_1 & OP_1 \\ \hat{x_2} & n_2 & OP_2 \\ \hat{x_3} & n_3 & OP_3 \end{vmatrix} = \begin{pmatrix} n_2 OP_3 - n_3 OP_2 \\ n_3 OP_1 - n_1 OP_3 \\ n_1 OP_2 - n_2 OP1 \end{pmatrix}$$

$$= \begin{pmatrix} OP_1 \\ OP_2 \\ OP_3 \end{pmatrix}$$

... de plus ...

$$\cos\theta\vec{OP} = (\cos\theta I)\vec{OP}$$

L'équation vectorielle

$$ec{OQ} = \cos heta ec{OP} + (1 - \cos heta)(ec{OP} ullet \hat{n})\hat{n} + \sin heta(\hat{n} \wedge ec{OP})$$

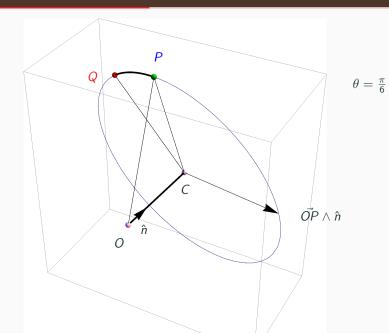
... devient une équation matricielle ...

$$\vec{OQ} = R_{\theta,n} \vec{OP}$$

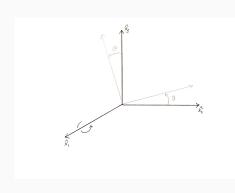
... avec la matrice de rotation

$$R_{\theta,n} = \cos \theta I + (1 - \cos \theta) \hat{n} \hat{n}^T + \sin \theta [\hat{n} \wedge]$$

$$R_{\theta,n} = \cos\theta \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} + (1 - \cos\theta) \begin{pmatrix} n_1^2 & n_1 n_2 & n_1 n_3 \\ n_1 n_2 & n_2^2 & n_2 n_3 \\ n_1 n_3 & n_2 n_3 & n_3^2 \end{pmatrix} + \sin\theta \begin{pmatrix} 0 & -n_3 & n_2 \\ n_3 & 0 & -n_1 \\ -n_2 & n_1 & 0 \end{pmatrix}$$



le repère tourne, le point reste fixe



$$\vec{OP} = \alpha \hat{x}_1 + \beta \hat{x}_2 + \gamma \hat{x}_3$$

 $= \alpha' \hat{x}_1' + \beta' \hat{x}_2' + \gamma' \hat{x}_3'$
 $\hat{n} = \hat{x}_1$
 $n_1 = 1, n_2 = 0, n_3 = 0$

$$R_{\theta,\hat{n}}^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\theta & \sin\theta \\ 0 & -\sin\theta & \cos\theta \end{pmatrix}$$

$$\begin{pmatrix} \alpha' \\ \beta' \\ \gamma' \end{pmatrix} = R_{\theta,\hat{n}}^{-1} \begin{pmatrix} \alpha \\ \beta \\ \gamma \end{pmatrix}$$

te repère tourne, le point reste fixe



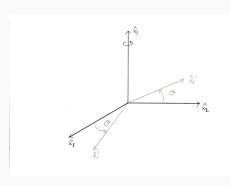
$$\begin{split} \vec{OP} &= \alpha \hat{\mathbf{x}}_1 + \beta \hat{\mathbf{x}}_2 + \gamma \hat{\mathbf{x}}_3 \\ &= \alpha' \hat{\mathbf{x}}_1' + \beta' \hat{\mathbf{x}}_2' + \gamma' \hat{\mathbf{x}}_3' \\ \hat{\mathbf{n}} &= \hat{\mathbf{x}}_2 \end{split}$$

$$n_1=0, n_2=1, n_3=0$$

$$R_{\theta,n}^{-1} = \begin{pmatrix} \cos \theta & 0 & -\sin \theta \\ 0 & 1 & 0 \\ \sin \theta & 0 & \cos \theta \end{pmatrix}$$

$$\begin{pmatrix} \alpha' \\ \beta' \\ \gamma' \end{pmatrix} = R_{\theta,n}^{-1} \begin{pmatrix} \alpha \\ \beta \\ \gamma \end{pmatrix}$$

le repère tourne, le point reste fixe



$$\vec{OP} = \alpha \hat{\mathbf{x}}_1 + \beta \hat{\mathbf{x}}_2 + \gamma \hat{\mathbf{x}}_3$$
$$= \alpha' \hat{\mathbf{x}}_1' + \beta' \hat{\mathbf{x}}_2' + \gamma' \hat{\mathbf{x}}_3'$$
$$\hat{\mathbf{n}} = \hat{\mathbf{x}}_2$$

$$n_1 = 0$$
, $n_2 = 0$, $n_3 = 1$

$$R_{\theta,n}^{-1} = \begin{pmatrix} \cos \theta & \sin \theta & 0 \\ -\sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} \alpha' \\ \beta' \\ \gamma' \end{pmatrix} = R_{\theta,n}^{-1} \begin{pmatrix} \alpha \\ \beta \\ \gamma \end{pmatrix}$$

rotation instantanée

formule de Poisson

Un vecteur quelconque \vec{r} subit une rotation infinitésimale (il ne s'allonge pas et ne rétrécit pas) de vitesse angulaire $\vec{\omega}$

rotation infinitésimale: la formule de Poisson

démonstration

en utilisant

$$R_{\theta,n} = \cos \theta \, I + (1 - \cos \theta) \hat{n} \hat{n}^T + \sin \theta \begin{pmatrix} 0 & -n_3 & n_2 \\ n_3 & 0 & -n_1 \\ -n_2 & n_1 & 0 \end{pmatrix}$$

rotation infinitésimale: la formule de Poisson

...dans la formulation de la dérivée...

Remarques

- $sin(d\theta) = d\theta car d\theta petit$
- Les termes en $\cos(d\theta)$ disparaissent car $\cos(-d\theta) = \cos(d\theta)$

rotation infinitésimale: la formule de Poisson

autre démonstration: développement de Taylor à partir de

$$R_{\theta,n} = \cos \theta I + (1 - \cos \theta) \hat{n} \hat{n}^T + \sin \theta \begin{pmatrix} 0 & -n_3 & n_2 \\ n_3 & 0 & -n_1 \\ -n_2 & n_1 & 0 \end{pmatrix}$$

cela donne

$$\vec{OQ} = \vec{OP}(t + dt) = R_{\theta,n}\vec{OP}(t) \approx \left[R_{\theta,n}(0) + \left. \frac{\partial R_{\theta,tn}}{\partial \theta} \right|_{\theta=0} d\theta \right] \vec{OP}(t)$$

$$\vec{OP}(t + dt) = \left[I + (1 - 1)\hat{n}\hat{n}^T + d\theta \begin{pmatrix} 0 & -n_3 & n_2 \\ n_3 & 0 & -n_1 \\ -n_2 & n_1 & 0 \end{pmatrix} \right] \vec{OP}(t)$$

rotation infinitésimale: la formule de Poisson

Soit
$$\overrightarrow{OP}$$
 tel que $\|\overrightarrow{OP}\| =$ cte., on a

Formule de Poisson

$$\frac{\vec{OP}(t+dt) - \vec{OP}(t)}{dt} = \hat{n}\frac{d\theta}{dt} \wedge \vec{OP}$$

$$\vec{OP} = \vec{\omega} \wedge \vec{OP}$$

car

$$\vec{\omega} = \hat{n} \frac{d\theta}{dt}$$

rotation infinitésimale: la formule de Poisson

... autre méthode ...

En dérivant directement en $\theta = 0$ On a en $\theta = 0$, $R(\theta) = R(0)$ avec \vec{OP} fixe:

$$\vec{OQ} = R(0)\vec{OP} = \vec{OP}$$

On calcule la dérivée de \vec{QQ} en $\theta=0$

$$\dot{\vec{OQ}} = \dot{R}(0)\vec{OP}
= -\sin(0)\dot{\theta}\vec{OP} + \sin(0)\dot{\theta}\hat{n}\hat{n}^T\vec{OP} + \cos(0)\dot{\theta}\hat{n} \wedge \vec{OP}
= \dot{\theta}\hat{n} \wedge \vec{OP} = \vec{\omega} \wedge \vec{OP}
= \vec{\omega} \wedge \vec{OQ}$$

Composition de rotations infinitésimales

Les rotations ne sont pas commutatives (en général)

$$R_{\theta_1,n_1}R_{\theta_2,n_2} \neq R_{\theta_2,n_2}R_{\theta_1,n_1}$$

... par contre les rotations infinitésimales d'axe concourant sont commutatives ... et s'additionnent !

$$\vec{\omega} = \vec{\omega_1} + \vec{\omega_2} = \vec{\omega_2} + \vec{\omega_1}$$

Composition des rotations $R=R_2R_1$ Soit R_1 la rotation d'angle θ et d'axe \hat{n} suivie de la rotation R_2 d'angle ϕ et d'axe \hat{m}

$$R = R_2 R_1 = (\cos \phi I + (1 - \cos \phi) \hat{m} \hat{m}^T + \sin \phi [\hat{m} \wedge])$$
$$(\cos \theta I + (1 - \cos \theta) \hat{n} \hat{n}^T + \sin \theta [\hat{n} \wedge])$$

$$= \cos\theta\cos\phi I + \cos\theta(1-\cos\phi)\hat{m}\hat{m}^T + \cos\phi(1-\cos\theta)\hat{n}\hat{n}^T \\ + \sin\phi(1-\cos\theta)[\hat{m}\wedge]\hat{n}\hat{n}^T + \sin\theta(1-\cos\phi)\hat{m}\hat{m}^T[\hat{n}\wedge] \\ + (1-\cos\phi)(1-\cos\theta)\hat{m}\hat{m}^T\hat{n}\hat{n}^T \\ + \cos\phi\sin\theta[\hat{n}\wedge] + \cos\theta\sin\phi[\hat{m}\wedge] + \sin\phi\sin\theta[\hat{m}\wedge][\hat{n}\wedge]$$

... dérivée ...

$$\dot{R} = -(\dot{\theta}\sin\theta\cos\phi + \dot{\phi}\cos\theta\sin\phi)I \\ + (-\dot{\theta}\sin\theta(1-\cos\phi) + \dot{\phi}\cos\theta\sin\phi)\hat{m}\hat{m}^T \\ + (-\dot{\phi}\sin\phi(1-\cos\theta) + \dot{\theta}\cos\phi\sin\theta)\hat{n}\hat{n}^T \\ + (-\dot{\theta}\sin\phi\sin\phi + \dot{\phi}\cos\theta\cos\phi)[\hat{m}\wedge] \\ + (-\dot{\phi}\sin\phi\sin\theta + \dot{\theta}\cos\phi\cos\phi)[\hat{n}\wedge] \\ + (\dot{\phi}\cos\phi(1-\cos\theta) + \dot{\theta}\sin\phi\sin\theta)[\hat{m}\wedge]\hat{n}\hat{n}^T \\ + (\dot{\theta}\cos\phi(1-\cos\phi) + \dot{\phi}\sin\theta\sin\phi)\hat{m}\hat{m}^T[\hat{n}\wedge] \\ + (\dot{\phi}\cos\phi\sin\theta + \dot{\theta}\sin\phi\cos\theta)[\hat{m}\wedge][\hat{n}\wedge] \\ + (\dot{\phi}\sin\phi(1-\cos\theta) + \dot{\theta}\sin\theta(1-\cos\phi))\hat{m}\hat{m}^T\hat{n}\hat{n}^T$$

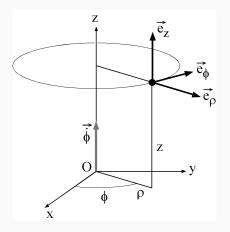
... **évalué en**
$$\theta = 0$$
, $\phi = 0$... $\dot{R} = -(\dot{\theta} \sin 0 \cos 0 + \dot{\phi} \cos 0 \sin 0)I + (-\dot{\theta} \sin 0 (1 - \cos 0) + \dot{\phi} \cos 0 \sin 0) \hat{m} \hat{m}^T + (-\dot{\phi} \sin 0 (1 - \cos 0) + \dot{\theta} \cos 0 \sin 0) \hat{m} \hat{n}^T + (-\dot{\theta} \sin 0 \sin 0 + \dot{\phi} \cos 0 \cos 0) [\hat{m} \wedge] + (-\dot{\phi} \sin 0 \sin 0 + \dot{\theta} \cos 0 \cos 0) [\hat{m} \wedge] + (\dot{\phi} \cos 0 (1 - \cos 0) + \dot{\theta} \sin 0 \sin 0) [\hat{m} \wedge] \hat{n} \hat{n}^T + (\dot{\theta} \cos 0 (1 - \cos 0) + \dot{\phi} \sin 0 \sin 0) \hat{m} \hat{m}^T [\hat{n} \wedge] + (\dot{\phi} \cos 0 \sin 0 + \dot{\theta} \sin 0 \cos 0) [\hat{m} \wedge] [\hat{n} \wedge] + (\dot{\phi} \sin 0 (1 - \cos 0) + \dot{\theta} \sin 0 (1 - \cos 0)) \hat{m} \hat{m}^T \hat{n} \hat{n}^T = \dot{\theta} [\hat{n} \wedge] + \dot{\phi} [\hat{m} \wedge] = [\vec{\omega}_1 \wedge] + [\vec{\omega}_2 \wedge] = [(\vec{\omega}_1 + \vec{\omega}_2) \wedge]$

... et on a bien ...

$$\vec{OQ} = \vec{R} \vec{OQ} = [(\vec{\omega_1} + \vec{\omega_2}) \land] \vec{OQ}$$

= $(\vec{\omega_1} + \vec{\omega_2}) \land \vec{OQ}$

coordonnées



coordonnées ρ , ϕ , z Expressions des coordonnées cartésiennes x_1 , x_2 et x_3 en fonction des coordonnées ρ , ϕ et z:

$$x = x_1 = \rho \cos \phi$$

 $y = x_2 = \rho \sin \phi$
 $z = x_3 = z$

repère cylindrique

Soit un repère attaché au point point P et s'aligne avec le repère cylindrique

$$(P,\vec{e_\rho},\vec{e_\phi},\vec{e_z})$$

Ainsi que le repère de vecteurs générateurs identiques mais attaché en ${\it O}$

$$(O,\vec{e_\rho},\vec{e_\phi},\vec{e_z})$$

Soit un point Q arbitraire. On va exprimer \vec{OQ} selon deux repères.

coordonnées
$$\alpha$$
, β , γ ... dans le repère fixe

$$(O, \hat{x}_1, \hat{x}_2, \hat{x}_3)$$

coordonnées
$$\alpha^{'}$$
, $\beta^{'}$, $\gamma^{'}$... dans le repère qui se déplace

$$\left(\textit{O},\vec{e_{\rho}},\vec{e_{\phi}},\vec{e_{z}}\right)$$

$$\hat{x}_{1} = \hat{e}_{2}$$

$$\hat{x}_{1}' = \hat{e}_{3}$$

$$\hat{x}_{1}' = \hat{e}_{4}$$

$$\hat{x}_{1}' = \hat{e}_{4}$$

$$\hat{x}_{1}' = \hat{e}_{4}$$

$$\hat{x}_{2}' = \hat{e}_{4}$$

$$\hat{x}_{3}' = \hat{e}_{4}$$

$$\hat{x}_{1}' = \hat{e}_{4}$$

$$\hat{x}_{2}' = \hat{e}_{4}$$

$$\hat{x}_{3}' = \hat{e}_{4}$$

$$\hat{x}_{1}' = \hat{e}_{4}$$

$$\hat{x}_{2}' = \hat{e}_{4}$$

$$\hat{x}_{3}' = \hat{e}_{4}$$

$$\hat{x}_{1}' = \hat{e}_{4}$$

$$\hat{x}_{2}' = \hat{e}_{4}$$

$$\hat{x}_{3}' = \hat{e}_{4}$$

$$\hat{x}_{1}' = \hat{e}_{4}$$

$$\hat{x}_{2}' = \hat{e}_{4}$$

$$\hat{x}_{3}' = \hat{e}_{4}$$

$$\hat{x}_{4}' = \hat{e}_{4}$$

$$\hat{x}_{5}' = \hat{e}_{4}$$

$$\hat{x}_{5}' = \hat{e}_{5}$$

$$\hat{x}_{7}' = \hat{e}_{7}$$

$$\hat{x}_{7}' = \hat{e}_{7}'$$

$$\hat{x}_{7}' = \hat{e}_{7}'$$

$$\hat{x}_{7}' = \hat{e}_{7$$

aini $\alpha' \vec{e_r} + \beta' \vec{e_p} + \delta' \vec{e_r} = \alpha \hat{x} + \beta \hat{x}_r + \delta \hat{x}_s$

... ce qui donne la correspondance ...

$$\begin{pmatrix} \alpha' \\ \beta' \\ \gamma' \end{pmatrix}_{(O,\vec{e_p},\vec{e_\phi},\vec{e_z})} = \begin{pmatrix} \cos\phi & \sin\phi & 0 \\ -\sin\phi & \cos\phi & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \alpha \\ \beta \\ \gamma \end{pmatrix}_{(O,\hat{x}_1,\hat{x}_2,\hat{x}_3)}$$

...explications ...

On utilise la rotation d'angle ϕ qui tourne le repère fixe selon l'axe 3 d'un angle $\phi.$

... lorsque le repère cylindrique subit ...

$$\vec{\omega} = \omega \; \vec{e_z}$$

... conséquence sur ...

la vitesse $\vec{v_P}$ et l'accélération $\vec{a_P}$ dans le référentiel absolu (galiléen) mais exprimées à l'aide du repère

$$(O,\vec{e_\rho},\vec{e_\phi},\vec{e_z})$$

vitesse

$$\begin{array}{lcl} \vec{OP} & = & \rho \vec{e_\rho} + z \vec{e_z} \\ \\ \vec{v_P} & = & \vec{OP} = \dot{\rho} \vec{e_\rho} + \rho \dot{\vec{e_\rho}} + \dot{z} \vec{e_z} \\ \\ \dot{\vec{e_\rho}} & = & \vec{\omega} \wedge \vec{e_\rho} = \dot{\phi} \vec{e_z} \wedge \vec{e_\rho} = \dot{\phi} \vec{e_\phi} \\ \\ \dot{\vec{e_\phi}} & = & \vec{\omega} \wedge \vec{e_\phi} = \dot{\phi} \vec{e_z} \wedge \vec{e_\phi} = -\dot{\phi} \vec{e_\rho} \end{array}$$

... ainsi ...

$$\vec{v_P} = \dot{\rho}\vec{e_\rho} + \dot{\phi}\rho\vec{e_\phi} + \dot{z}\vec{e_z}$$

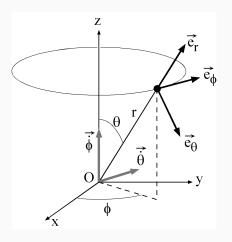
accélération

$$\vec{a_P} = \ddot{\rho} \vec{e_\rho} + \dot{\rho} \dot{\vec{e_\rho}} + \rho \ddot{\phi} \vec{e_\phi} + \dot{\phi} \dot{\rho} \vec{e_\phi} + \dot{\phi} \rho \dot{\vec{e_\phi}} + \ddot{z} \vec{e_z}$$

$$= \ddot{\rho} \vec{e_\rho} + \dot{\rho} \dot{\phi} \vec{e_\phi} + \rho \ddot{\phi} \vec{e_\phi} + \dot{\phi} \dot{\rho} \vec{e_\phi} - \dot{\phi}^2 \rho \vec{e_\rho} + \ddot{z} \vec{e_z}$$

$$= (\ddot{\rho} - \dot{\phi}^2 \rho) \vec{e_\rho} + (\rho \ddot{\phi} + 2 \dot{\rho} \dot{\phi}) \vec{e_\phi} + \ddot{z} \vec{e_z}$$

$$\ddot{\vec{OP}} = (\ddot{\rho} - \dot{\phi}^2 \rho)\vec{e_\rho} + (\rho \ddot{\phi} + 2\dot{\rho}\dot{\phi})\vec{e_\phi} + \ddot{z}\vec{e_z}$$



repère sphérique

Soit un repère attaché au point point P et s'aligne avec le rayon vecteur \vec{r} et les axes définis par les angles ϕ et θ

$$(P, \vec{e_{\theta}}, \vec{e_{\phi}}, \vec{e_r})$$

Ainsi que le repère de vecteurs générateurs identiques mais attaché en ${\it O}$

$$(O, ec{e_{ heta}}, ec{e_{\phi}}, ec{e_r})$$

Soit un point Q arbitraire. On va exprimer \overrightarrow{OQ} selon deux repères.

coordonnées
$$\alpha$$
, β , γ ... dans le repère fixe

$$(O, \hat{x}_1, \hat{x}_2, \hat{x}_3)$$

coordonnées
$$\alpha^{''}, \beta^{''}, \gamma^{''}$$
 ... dans le repère qui se déplace

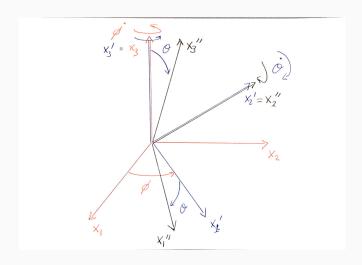
$$(O, \vec{e_{ heta}}, \vec{e_{\phi}}, \vec{e_r})$$

... ce qui donne la correspondance ...

$$\begin{pmatrix} \alpha'' \\ \beta'' \\ \gamma'' \end{pmatrix} = \begin{pmatrix} \cos\theta & 0 & -\sin\theta \\ 0 & 1 & 0 \\ \sin\theta & 0 & \cos\theta \end{pmatrix} \begin{pmatrix} \cos\phi & \sin\phi & 0 \\ -\sin\phi & \cos\phi & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \alpha \\ \beta \\ \gamma \end{pmatrix}$$

... explications ...

On utilise deux rotations avec le formalisme de "tourner le repère". Axe 3, angle ϕ suivi d'axe 2 d'angle θ .



report des vitesses angulaires

$$\vec{\omega} = \dot{\phi}\hat{x}_3 + \dot{\theta}\hat{x}_2'$$
$$= \dot{\phi}\hat{x}_3' + \dot{\theta}\hat{x}_2'$$

$$\vec{\omega} = \begin{pmatrix} \cos\theta & 0 & -\sin\theta \\ 0 & 1 & 0 \\ \sin\theta & 0 & \cos\theta \end{pmatrix} \begin{pmatrix} 0 \\ \dot{\theta} \\ \dot{\phi} \end{pmatrix} = \begin{pmatrix} -\sin\theta\dot{\phi} \\ \dot{\theta} \\ \cos\theta\dot{\phi} \end{pmatrix}$$

autrement dit

$$\vec{\omega} = -\sin\theta \dot{\phi} \vec{e_{\theta}} + \dot{\theta} \vec{e_{\phi}} + \cos\theta \dot{\phi} \vec{e_{r}}$$

vitesse

$$\vec{OP} = r\vec{e_r}$$

$$\vec{v_P} = \vec{OP} = \dot{r}\vec{e_r} + r\dot{\vec{e_r}}$$

$$\dot{\vec{e_r}} = \vec{\omega} \wedge \vec{e_r} = \begin{vmatrix} \vec{e_\theta} & -\sin\theta\dot{\phi} & 0 \\ \vec{e_\phi} & \dot{\theta} & 0 \\ \vec{e_r} & \cos\theta\dot{\phi} & 1 \end{vmatrix} = \dot{\theta}\vec{e_\theta} + \sin\theta\dot{\phi}\vec{e_\phi}$$

$$\vec{v_P} = \dot{r}\vec{e_r} + r\dot{\theta}\vec{e_\theta} + r\sin\theta\dot{\phi}\vec{e_\phi}$$

accélération

$$\begin{split} \ddot{\vec{OP}} &= \ddot{r}\vec{e_r} + \dot{r}\vec{\cdot}\vec{e_r} + \dot{r}\dot{\theta}\vec{e_\theta} + r\ddot{\theta}\vec{e_\theta} + r\dot{\theta}\vec{\cdot}\vec{e_r} \\ &+ \dot{r}\sin\theta\dot{\phi}\vec{e_\phi} + r\cos\theta\dot{\theta}\dot{\phi}\vec{e_\phi} + r\sin\theta\ddot{\phi}\vec{e_\phi} + r\sin\theta\dot{\phi}\vec{\cdot}\vec{e_r} \\ &= \ddot{r}\vec{e_r} + \dot{r}(\dot{\theta}\vec{e_\theta} + \sin\theta\dot{\phi}\vec{e_\phi}) + \dot{r}\dot{\theta}\vec{e_\theta} + r\ddot{\theta}\vec{e_\theta} \\ &+ r\dot{\theta}(\cos\theta\dot{\phi}\vec{e_\phi} - \dot{\theta}\vec{e_r}) + \dot{r}\sin\theta\dot{\phi}\vec{e_\phi} + r\cos\theta\dot{\phi}\dot{\phi}\vec{e_\phi} \\ &r\sin\theta\ddot{\phi}\vec{e_\phi} + r\sin\theta\dot{\phi}(-\cos\theta\dot{\phi}\vec{e_\theta} - \sin\theta\dot{\phi}\vec{e_r}) \end{split}$$

... regroupement ...

$$\vec{\vec{OP}} = (\ddot{r} - r\dot{\theta}^2 - r\dot{\phi}^2 \sin^2 \theta)\vec{e_r} + (r\ddot{\theta} + 2\dot{r}\dot{\theta} - r\dot{\phi}^2 \cos \theta \sin \theta)\vec{e_\theta} + (r\ddot{\phi}\sin \theta + 2r\dot{\phi}\dot{\theta}\cos \theta + 2\dot{r}\dot{\phi}\sin \theta)\vec{e_\phi}$$