III. oscillateur harmonique I

le ressort, l'oscillateur à ressort, le pendule simple, le mouvement harmonique

Ph. Müllhaupt

Programme — III. oscillateur harmonique I

- 1. loi de Hooke
- 2. équations différentielles du mouvement
- 3. intégration des équations différentielles
- 4. le pendule simple

première méthode: repère fixe

deuxième méthode: repère mobile

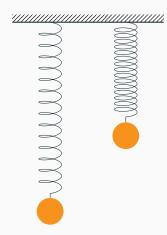
3 ème méthode: les moments

approximation des petits angles

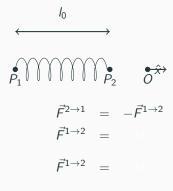
autre méthode pour obtenir la solution de l'oscillateur harmonique

loi de Hooke

loi de Hooke



loi de Hooke



formule de la force du ressort

On note

$$\vec{F}^{A \rightarrow B}$$

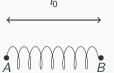
la force dont "la cause" se trouve au point A la force est liée au point B et agit ainsi au point B.

pour le ressort

$$\vec{F}^{A o B} =$$

une force apparaît toujours aux deux extrémités du ressort et on a

$$\vec{F}^{A \to B} = -\vec{F}^{B \to A}$$



La même formule est valable en compression également

Remarque: $\vec{F}^{B \to A}$ obéit à la troisième loi de Newton (action-réaction) car la formule donne

$$\vec{F}^{B \to A} = = -\vec{F}^{A \to B}$$

équations différentielles du

mouvement

équation différentielles du mouvement

En 1D:

$$\vec{F} = m\vec{a} \\ \vec{F}^{O \to P} = m\vec{OP} \\ = \\ =$$

les \hat{x} se simplifient et en divisant par m:

changement de variable

$$\dot{e} = \dot{x}$$
 car l_0 est constant $\ddot{e} = \ddot{x}$ $=$

on a obtenu <u>une équation homogène</u>, qui comprend que la variable e et ses dérvées \dot{e} , \ddot{e} dans chaque terme (il n'y a plus le terme $+\frac{k}{m}I_0$).

oscillateur harmonique

Définition de l'oscillateur harmonique

Tout système équivalent à un point matériel astreint à se déplacer en ligne droite et soumis à une force de rappel proportionnelle à la distance à un point fixe sur cette droite.

différentielles

intégration des équations

solution de l'équation différentielle

$$e(t) =$$

démonstration

$$\dot{e}(t) =$$
 $\ddot{e}(t) =$
 $\ddot{e}(t) =$
 $\ddot{e}(t) =$

les conditions initiales

$$e(0) = C_1 \cos\left(\sqrt{\frac{k}{m}}0\right) + C_2 \sin\left(\sqrt{\frac{k}{m}}0\right) = C_1$$

$$\dot{e}(0) = -C_1 \sqrt{\frac{k}{m}} \sin\left(\sqrt{\frac{k}{m}}0\right) + C_2 \sqrt{\frac{k}{m}} \cos\left(\sqrt{\frac{k}{m}}0\right) = C_2 \sqrt{\frac{k}{m}}$$

solution complète

$$e(t) = x - l_0 = e(0) \cos \left(\sqrt{\frac{k}{m}} t \right) + \sqrt{\frac{m}{k}} \dot{e}(0) \sin \left(\sqrt{\frac{k}{m}} t \right)$$

les paramètres du mouvement oscillatoire masse-ressort

la pulsation

la fréquence

la période

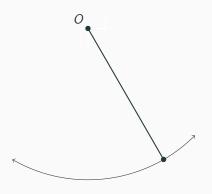
le pendule simple

repère fixe

1 ère méthode de modélisation

1. référentiel et repère

le référentiel est le plan fixe (ou en translation uniforme) repère fixe et centré en ${\it O}$



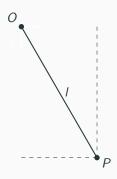
l'axe x est dirigé vers le bas et O est fixé sur le centre de rotation

2. coordonnées et liaison

coordonnées:

$$\vec{OP} =$$

liaison:



3. modèle de force

force gravifique:

force de liaison:

dirigée dans le sens du fil:



4. lois de Newton

$$\vec{F} = m\vec{a}$$
 $\vec{a} = m\vec{a}$

5. équations différentielles du mouvement

$$= m\vec{a}$$

$$=$$

$$=$$

il faut également dériver la liaison 2 fois:

$$x^2 + y^2 = I^2$$
$$= 0$$
$$= 0$$

 $m\ddot{x} = m\ddot{y} = 0$ = 0 = 0

système différentiel algébrique inconnues: T_x , T_y , \ddot{x} , \ddot{y} , 4 inconnues et 4 équations

cela devient plus clair ... avec θ

une coordonnée libre θ au lieu des coordonnées liées x et y

$$x =$$

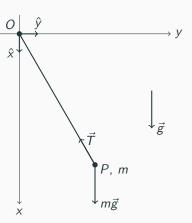
$$y =$$

la liaison est automatiquement satisfaite

$$x^2 + y^2 = ($$
 $)^2 + ($ $)^2 = I^2($ $) = I^2$

On introduit la variable ${\cal T}$ (inconnue pouvant être négative) de telle sorte que

$$I_{\times} = T_{y} =$$



exprimons \ddot{x} et \ddot{y} en fonction de $\ddot{\theta}$...

$$x = 1 \cos \theta$$

$$y = 1 \sin \theta$$

$$\dot{x} = -1 \sin \theta \theta$$

$$\dot{y} = 1 \cos \theta \theta$$

$$\ddot{y} = 1 \cos \theta \theta - 1 \cos \theta \theta$$

$$\ddot{y} = 1 \cos \theta \theta - 1 \sin \theta \theta^{2}$$

en remplaçant dans les équations différentielles...

$$m\ddot{x} = mg + T_x = mg + T\cos\theta$$

 $m\ddot{y} = T_y = T\sin\theta$

$$= mg + T\cos\theta \tag{1}$$

$$= T \sin \theta \tag{2}$$

effectuons: (1) $\times \sin \theta$ – (2) $\times \cos \theta$:

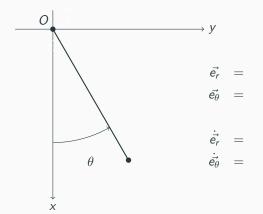
=

en simplifiant par m et en utilisant $\cos^2 \theta + \sin^2 \theta = 1$, on a:

2 ème méthode de modélisation repère mobile

1. référentiel et repère

le référentiel est le plan fixe (ou en translation uniforme) on ajoute un repère mobile



2. coordonnées et liaisons

coordonnée: θ

liason du fil de longueur constante donne une force de liaison, mais pas de liaison sur la coordonnée θ

si on considère deux coordonnées θ et r, alors la liaison s'exprime comme $r=\mathit{l}$, la longueur du fil

3. modèle de force

$$\hat{x} = \hat{y} = 0$$

gravité:

$$\vec{g} =$$

force de liaison (dans la direction du fil, T inconnu)

$$\vec{T} =$$

4. lois de Newton

$$\vec{F} = m \vec{a}$$

$$= m \vec{OP}$$

$$\vec{OP} =$$
 $\vec{OP} =$
 $\vec{OP} =$
 $\vec{OP} =$

5. équations différentielles du mouvement

= m
$$\vec{OP}$$

on trouve la force de liaison

et l'équations différentielle pour $\boldsymbol{\theta}$

remarque...

on trouve la même force avec le repère fixe, à condition d'effectuer

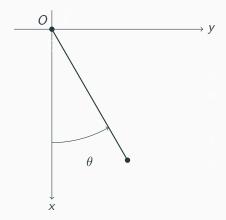
$$(1) \times \cos \theta + (2) \times \sin \theta$$

méthode des moments

3 ème méthode de modélisation

1. référentiel et repère

le référentiel est le plan fixe (ou en translation uniforme)



2. coordonnées et liaison, cinématique

coordonnée:

liaison du fil, donne une force mais pas déquation de liason sur la coordonnée $\boldsymbol{\theta}$

cinématique

formule de Poisson

$$\dot{\vec{e_r}} = \dot{\theta} \, \vec{e_{\theta}} = \dot{\theta} \, (-\sin\theta \hat{x} + \cos\theta \hat{y}) = -\dot{\theta} \begin{vmatrix} \hat{x} & \cos\theta \\ \hat{y} & \sin\theta \end{vmatrix}$$

$$\dot{\vec{e_r}} = \left| \begin{array}{ccc} \hat{x} & 0 & \cos \theta \\ \hat{y} & 0 & \sin \theta \\ \hat{z} & \dot{\theta} & 0 \end{array} \right| = \vec{\omega} \wedge \vec{e_r}$$

3. modèle de force

force gravifique:

force de liaison:

moment de force $\vec{M_O}$

calcul du moment de force avec un déterminant

moment cinétique $\vec{L_O}$

remarque: inertie du pendule $m l^2$ [kg m²]

4. loi de Newton

remarque: la méthode des moments ne permet pas de calculer la tension $\vec{\mathcal{T}}$ dans le fil !

approximation des petits angles

Lorsque θ est petit et exprimé en [rad] on a

de telle sorte que l'équation différentielle devient analogue à celle de la masse muni d'un ressort (même structure de l'équation, donc solution de même structure, il faut juste remplacer les variables $x \to \theta$, $k \to g$, $m \to l$):

comparaison avec l'oscillateur masse-ressort

L'équation différentielle du pendule masse-ressort:

$$\ddot{e} = -\frac{k}{m}e$$

dont la solution est avec $e = x - I_0$

$$e(t) = e(0) \cos \left(\sqrt{\frac{k}{m}} t\right) + \sqrt{\frac{m}{k}} \dot{e}(0) \sin \left(\sqrt{\frac{k}{m}} t\right)$$

est analogue à celle du pendule simple pour les petits angles θ :

$$\ddot{\theta} = -\frac{g}{I} \theta$$

Ainsi la solution du pendule pour des petits angles θ est par analogie:

$$\theta(t) = \theta(0) \cos\left(\sqrt{\frac{g}{I}} t\right) + \sqrt{\frac{I}{g}} \dot{\theta}(0) \sin\left(\sqrt{\frac{g}{I}} t\right)$$

Les paramètres du pendule simple à petits angles

la pulsation

la fréquence

la période

avec les nombres complexes...

soit à résoudre

$$\ddot{x} = -\frac{k}{m}x$$

Posons $x(t) = Ce^{st}$ avec $s \in \mathbb{C}$

$$\ddot{x} + \frac{k}{m}x = 0$$

$$Cs^{2}e^{st} + \frac{k}{m}Ce^{st} = 0$$

$$\left(s^{2} + \frac{k}{m}\right)Ce^{st} = 0$$

conditions

Comme $e^{st} \neq 0$ on a soit C = 0 (inutile) soit $C \neq 0$ et

$$s = \pm i\sqrt{\frac{k}{m}}$$

Ainsi, par principe de superposition (linéarité de l'équation différentielle)

$$x(t) = \tilde{C}_1 e^{i\sqrt{\frac{k}{m}}t} + \tilde{C}_2 e^{-i\sqrt{\frac{k}{m}}t}$$

avec $ilde{\mathcal{C}}_1,\, ilde{\mathcal{C}}_2\in\mathbb{C}$.

paramétrisation réelle des constantes d'intégration

$$\tilde{C}_1 = \frac{a+ib}{2}$$

$$\tilde{C}_2 = \frac{a-ib}{2}$$

avec $a, b \in \mathbb{R}$

le ressort linéaire avec une masse

regroupement

$$x(t) = \frac{a+ib}{2}e^{i\sqrt{\frac{k}{m}}t} + \frac{a-ib}{2}e^{-i\sqrt{\frac{k}{m}}t}$$
$$= a\frac{e^{i\sqrt{\frac{k}{m}}t} + e^{-i\sqrt{\frac{k}{m}}t}}{2} - b\frac{e^{i\sqrt{\frac{k}{m}}t} - e^{-i\sqrt{\frac{k}{m}}t}}{2i}$$

solution

$$x(t) = a\cos\left(\sqrt{\frac{k}{m}}t\right) - b\sin\left(\sqrt{\frac{k}{m}}t\right)$$
$$a = x(0)$$
$$b = -\sqrt{\frac{m}{k}}\dot{x}(0)$$