Exercice préparatoire à la série 5

Oscillateur Harmonique II

1. Ressort forcé avec amortissement

Soit un ressort de constante de rigidité k et de longueur à vide l_0 au bout duquel un point matériel P de masse m est attaché. L'ensemble est à l'horizontale et il n'y a pas de gravité. L'autre extrémité du ressort est forcé selon le déplacement $B \sin(\omega t)$. On peut ainsi ajuster l'amplitude du déplacement avec le paramètre B et sa pulsation ω .

1. Ecrire l'équation différentielle sous la forme

$$\ddot{e} + \frac{b}{m}\dot{e} + \frac{k}{m}e = A\sin(\omega t)$$

et déterminer la relation entre les paramètres A et B. (INDICATION : poser $e = x - l_0$, avec x la coordonnée du point P.)

- 2. Déterminer l'amplitude maximale B_m de la grandeur e(t) pour une fréquence de f [Hz], c'est-à-dire l'amplitude maximale de l'excursion du point matériel par rapport à sa position de repos $x = l_0$ une fois le transitoire estompé.
- 3. Déterminer le délai en [s] entre les maxima des positions des deux extrémités du ressort après une grande durée (mouvement asymptotique).

Application numérique : k = 10 [N/m], m = 2 [kg], b = 0.5 [N s/m].

2. Ressort amorti et énergie

Une masse m [kg] est accrochée à un ressort de constante k [N/m] et de longueur à vide l_0 [m]. Le ressort peut uniquement se déplacer horizontalement dans un bain d'huile. Le coefficient de frottement visqueux est b [N s/m]. Le montage est à l'horizontale, la gravité est négligée.

- a. Expliquer la raison pour laquelle il n'est pas possible d'associer un potentiel à la force de frottement.
- b. Déterminer l'expression de l'énergie mécanique totale (complète) $E(t) = E_c(t) + E_p(t)$.
- c. Démontrer que l'énergie mécanique n'est pas conservée.
- d. (facultatif) Dans le cas numérique k = m = b = 1, déterminer une borne

$$E(t) \le \alpha E_0 e^{-\beta t}$$

avec α et β des constantes positives en utilisant la fonction (avec $e = x - l_0$, $\dot{e} = \dot{x}$):

$$F = \frac{3}{2}e^2 + \dot{e}e + \dot{e}^2$$

en utilisant les deux propriétés de cette fonction

$$F \le \frac{2.5 + \sqrt{1.25}}{2} (e^2 + \dot{e}^2) \tag{1}$$

$$F \ge \frac{2.5 - \sqrt{1.25}}{2} (e^2 + \dot{e}^2) \tag{2}$$

(INDICATION : dériver F par rapport au temps).

e. A partir de l'expression précédente (si partie facultative non effectuée, considérer α et β connus) déterminer le temps \bar{t} à partir duquel il est garantit que le système ait perdu 90 % de son énergie initiale quelles que soient les conditions initiales.