Exercices préparatoires à la série 3

Oscillateurs harmoniques

1. Equations différentielles et conditions initiales

L'équation du mouvement d'un oscillateur harmonique est de la forme :

$$x(t) = C\cos(\omega t + \phi) = A\cos(\omega t) + B\sin(\omega t)$$

- a. Etablir les relations entre les constantes A,B et C.
- b. Exprimer les constantes A,B,C et ϕ en fonction des conditions initiales (x_0,v_0) à t=0 et de la pulsation ω .

Aide: Pour la question (a), utiliser l'identité trigonométrique

$$\cos(\alpha + \beta) = \cos(\alpha)\cos(\beta) - \sin(\alpha)\sin(\beta)$$

Pour la question (b), utiliser l'identité

$$\cos^2(\alpha) + \sin^2(\alpha) = 1$$

2. Points matériels reliés par un ressort

On considère deux points matériels (de masse respective m_1 et m_2) attachés entre eux par un ressort de constante d'élasticité k et de longueur à vide l_0 et se déplaçant horizontalement. A t=0, les 2 points sont en contact à une distance d de l'origine avec une vitesse initiale identique v_0 .

- a. Déterminer la position du centre de masse du système **OG** en fonction de **OP**₁ et **P**₁**P**₂. Quelles forces agissent sur le système? Quelle est la position de G au cours du temps?
- b. En déduire OP_1 et OP_2 en fonction de P_1P_2
- c. Etablir l'équation du mouvement de P_2 par rapport à P_1 , c'est à dire $\mathbf{P_1P_2}(\mathbf{t})$. (Aide : écrire les équations de Newton pour chaque point matériel et combiner les accélération pour obtenir $\mathbf{P_1\ddot{P}_2}$).
- d. Avec les résultats de (b) et (c), en déduire l'équation du mouvement de P_1 et P_2 (c'est à dire $\mathbf{OP_1}(\mathbf{t})$ et $\mathbf{OP_2}(\mathbf{t})$).