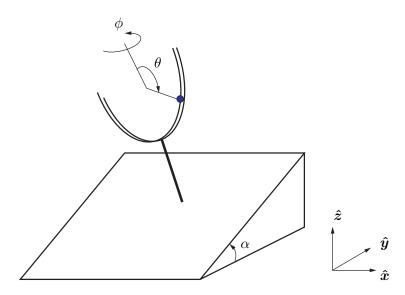
6 novembre 2024

Assimilation de la Théorie 8 : Angles d'Euler


8. Angles d'Euler

1. Vitesses angulaires Soit un objet solide repéré par les angles d'Euler 3-1-3, angles $\psi,\,\theta,\,\phi$. Dans le repère (G,\hat{x}_i''') la vitesse angulaire mesurée est

$$\omega = 30 \, \hat{\boldsymbol{x}}_{\boldsymbol{2}}^{"'}$$
 [rad/s]

lorsque l'attitude est $\psi = \frac{\pi}{4}, \; \theta = \frac{\pi}{6}$ et $\phi = \pi.$ On demande :

- 1. Quelle est la vitesse angulaire ω dans le repère (G, \hat{x}_i'') ?
- 2. Même question mais dans les repères (G, \hat{x}'_i) et (G, \hat{x}_i) ?
- 3. Déterminer les vitesses angulaires des angles d'Euler $\dot{\psi}$, $\dot{\theta}$ et $\dot{\phi}$.

- 2. Glissière hémisphérique penchée. Soit une glissière hémisphérique penchée d'un angle α . Une bille de masse m coulisse sans frottement dans la glissière de rayon R. On peut assimiler la bille à un point matériel.
 - 1. Trouver la matrice de rotation pour passer d'un repère $\hat{x}, \hat{y}, \hat{z}$ au repère sphérique de la glissière $\hat{x}''' = e_{\phi}, \hat{z}''' = e_{r}$, et $\hat{y}''' = -e_{\theta}$. (Indication : la matrice de rotation est une multiplication de trois matrices selon les angles d'Euler 1 3 1).
 - 2. Projeter le vecteur $m\mathbf{g}$ dans le repère de la glissière $(A, \mathbf{e_r}, \mathbf{e_\phi}, \mathbf{e_\theta})$, A étant le centre de la glissière.

(Remarque : partie d'exercice d'examen qui demandait de projeter la gravité sans nécessairement utiliser les matrices de rotations, corrigé proposé par Louis de Germay de Cirfontaine, assistant GM - Phys 101(d) 2023.)