Exercices complémentaires à la série 6

Série 6: Rotations

1. Matrices de rotations

Maîtriser l'utilisation des matrices de rotations s'avère très utile pour le calcul des réactions dans les directions ($\mathbf{e_r}$, $\mathbf{e_\phi}$, $\mathbf{e_z}$) dans un repère cylindrique et dans les directions ($\mathbf{e_\theta}$, $\mathbf{e_\phi}$, $\mathbf{e_r}$) dans un repère sphérique. Pour déterminer la résultante d'une force \mathbf{F} exprimée dans un premier repère $(O, \hat{x}, \hat{y}, \hat{z})$ dans un nouveau repère $(O, \hat{x}', \hat{y}', \hat{z}')$, on pose :

$$\mathbf{F}' = R \cdot \mathbf{F}$$

On demande alors de déterminer l'expression de la force F dans les nouveaux repères.

Indication : Utiliser les matrices de rotations suivantes (le repère tourne et on exprime les relations entre les coordonnées avant et après rotation du repère) : Rotation d'axe z et d'angle θ

$$R_1 = \begin{pmatrix} \cos \theta & \sin \theta & 0 \\ -\sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Rotation d'axe y et d'angle θ

$$R_2 = \begin{pmatrix} \cos \theta & 0 & -\sin \theta \\ 0 & 1 & 0 \\ \sin \theta & 0 & \cos \theta \end{pmatrix}$$

Rotation d'axe z et d'angle ϕ

$$R_3 = \begin{pmatrix} \cos \phi & \sin \phi & 0 \\ -\sin \phi & \cos \phi & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

En ce qui concerne la transformation en coordonnées cylindriques seule R_3 est nécessaire. Utiliser par contre R_2 et R_3 pour les coordonnées sphériques.

- 1. Exprimer par un examen graphique les vecteurs du repère $(\mathbf{e_r}, \mathbf{e_{\phi}}, \mathbf{e_z})$ à partir des vecteurs \hat{x} , \hat{y} et $\hat{z} = e_z$.
- 2. Exprimer la relation entre un vecteur exprimé dans la base $(\mathbf{e_r}, \mathbf{e_{\phi}}, \mathbf{e_z})$ et un vecteur exprimé dans la base cartésienne fixe $(\hat{x}, \hat{y}, \hat{z})$ et en utilisant la matrice de rotation R_1 .

- 3. En ce qui concerne les coordonnées sphériques (\mathbf{e}_{θ} , \mathbf{e}_{ϕ} , $\mathbf{e}_{\mathbf{r}}$) (cf. figure), exprimer les vecteurs (\mathbf{e}_{θ} , \mathbf{e}_{ϕ} , $\mathbf{e}_{\mathbf{r}}$) à partir de $\hat{\boldsymbol{x}}$, $\hat{\boldsymbol{y}}$ et $\hat{\boldsymbol{z}}$ uniquement en examinant la figure et en utilisant des projections trigonométriques.
- 4. Déterminer la relation entre un vecteur exprimé dans la base sphérique (\mathbf{e}_{θ} , \mathbf{e}_{ϕ} , $\mathbf{e}_{\mathbf{r}}$) en fonction de ce même vecteur mais exprimé dans la base cartésienne fixe (\hat{x} , \hat{y} , \hat{z}) en utilisant deux rotations successives avec les matrices R_2 et R_3 . Est-ce que l'ordre des opérations est importante?

2. Point matériel captif sur une sphère

Un corps pesant de masse m est posé au sommet d'une demi-sphère de rayon R. Il glisse sans frottement en restant en permanence en contact avec la sphère.

- a. Sachant que les 2 forces agissant sur la masse m sont le poid ${\bf P}$ et la réaction ${\bf N}$, les exprimer dans le repère (${\bf e}_{\theta}$, ${\bf e}_{\phi}$, ${\bf e}_{{\bf r}}$).
- b. Établir les équations du mouvements : un système de 3 équations dans les directions ($\mathbf{e}_{\theta},\ \mathbf{e}_{\phi},\ \mathbf{e}_{\mathbf{r}}$) . Rappel :

$$\sum \mathbf{F_{ext}} = m\mathbf{a}$$

c. Démontrer que la quantité scalaire



