Examen écrit de physique générale I

20 janvier 2023, 9h15–12h45

Ne pas ouvrir ce feuillet avant le signal de début d'examen

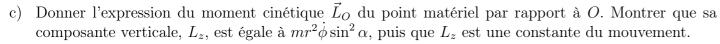
SEUL LE CAHIER DE REPONSES SERA CORRIGE

Avant le début de l'examen

- Verifier les informations présentes sur le cahier de réponses
- Signer la page de garde du cahier de réponse
- Poser votre carte d'étudiant EPFL sur la table devant vous.
- Ne laisser sur votre table que le matériel autorisé, à savoir:
 - carte "Résolution d'un problème de mécanique" reçue au cours;
 - formulaire personnel manuscrit, max. 1 feuille A4 recto-verso (= 2 pages);
 - stylos, crayons, gomme, règle, taille-crayon, papier vierge (pour brouillons);
 - boisson + ravitaillement léger.
- Attendre le signal pour ouvrir ce feuillet et débuter l'examen

Pendant l'examen

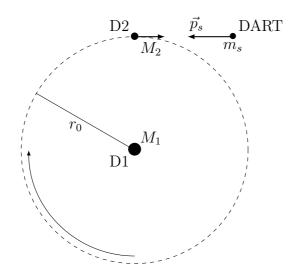
- Pour chacun des problèmes:
 - Répondez aux questions de chaque exercice dans la partie correspondante du cahier, en justifiant vos réponses.
 - Ecrivez lisiblement le développement menant à la solution.
 - Ne dégrafez pas les pages du cahier.
 - encadrez la réponse finale à chaque question posée dans l'énoncé;
 - La place étant limitée, utilisez d'abord les feuilles de brouillon avant de reporter vos réponses au propre.
- Ne pas écrire les solutions de deux problèmes différents dans la même section du cahier.
- Le papier brouillon vierge est autorisé; les brouillons ne seront pas corrigés.
- Ne pas laisser vos brouillons ou vos solutions à côté de vous.
- Ne pas quitter la salle sans autorisation.


A la fin de l'examen (après 3h30 ou quand vous avez terminé)

- Restez assis à votre place en silence et attendez l'arrivée d'un surveillant.
- Rendre le cahier de réponses **signé** et le feuillet d'énoncé en mains propres à un surveillant qui vous fera signer le protocole d'examen.
- Remplir le questionnaire d'évaluation et le déposer en sortant de la salle après avoir rendu votre copie.

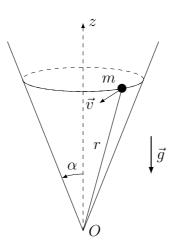
1 Point sur un cône (12 points)

Un point matériel de masse m, soumis à la pesanteur, est contraint à se déplacer sans frottement sur un cône de révolution de sommet O s'ouvrant vers le haut avec un demi-angle d'ouverture α ($0 < \alpha < \pi/2, z > 0$), comme indiqué sur le dessin. On notera Oz l'axe de symétrie du cône.


- a) Choisir un système de coordonnées et exprimer la contrainte géométrique de contact entre le point matériel et le cône dans ces coordonnées. Représenter sur un dessin le repère associé à ces coordonnées.
- b) Ecrire les équations du mouvement, et les projeter sur les axes du repère.

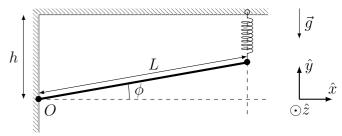
d) Ecrire l'expression de l'énergie mécanique E en fonction de L_z , de la distance r du point matériel au point O, et des données du problème. L'énergie mécanique E du point matériel est-elle une constante du mouvement? Justifier votre réponse.

En septembre 2022, la mission DART de la NASA a testé la possibilité de dévier la trajectoire d'un astéroïde par l'impact d'un projectile. Le système choisi pour ce test consiste en un astéroïde principal D1, de masse M_1 , autour duquel orbite un plus petit objet D2, de masse M_2 très petite par rapport à M_1 . On peut donc travailler dans un référentiel \mathcal{R} , supposé d'inertie, dans lequel D1 est au repos. Les deux astéroïdes sont considérés comme des points matériels, et seule la force gravitationnelle entre D1 et D2 est prise en compte.



a) L'orbite initiale de D2 autour de D1 est circulaire, de rayon r_0 et de période T_0 . Déterminer la masse M_1 en fonction de ces données, ainsi que de la constante G de gravitation universelle. Indication: on pourra écrire les équations du mouvement pour D2.

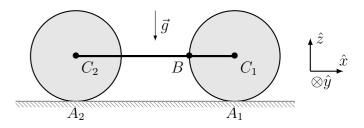
La sonde DART, de masse m_s (négligeable par rapport à M_2 et M_1), doit entrer en collision avec D2. Juste avant la collision, la sonde a une quantité de mouvement \vec{p}_s , tangente à l'orbite de D2, et de sens opposé au vecteur vitesse de D2 comme indiqué sur le dessin. Le choc est frontal et parfaitement mou. Après le choc, l'astéroïde D2 a une nouvelle orbite, elliptique, autour de D1.


- b) Calculer V_2 , la vitesse de D2 juste après le choc.
- c) Quelles sont les quantités conservées dans l'orbite de D2 ? Justifier votre réponse. Exprimer l'égalité de ces quantités à l'apogée (point le plus éloigné de D1) et au périgée (point le plus proche de D1) de l'orbite elliptique.
- d) Calculer la nouvelle période orbitale T de D2, en fonction de T_0 , r_0 , V_2 , M_1 , et G.

 Indication: commencer par calculer le grand axe de l'orbite à l'aide des résultats de la question c).

3 Microscope à force atomique (15 points)

Un microscope à force atomique est constitué d'une tige rigide de masse M, de longueur L et de diamètre négligeable. La tige est attachée à un support immobile à l'une de ses extrémités (O) formant un angle ϕ avec l'horizontale. L'autre extrémité est attachée à un ressort de raideur k et de longueur à vide nulle. On restraint l'étude à $-\pi/2 < \phi < \pi/2$.



Le ressort est attaché au support à une hauteur h au dessus du point O, de manière à rester vertical à tout instant, et le mouvement s'effectue dans le plan vertical contenant le ressort et la tige. Indication: le moment d'inertie de la tige par rapport à son centre de masse est $I_G = \frac{ML^2}{12}$.

- a) Enumérer les forces appliquées sur la tige avec leur point d'application et les représenter sur un dessin. Donner leurs expression en fonction de ϕ et des données du problème.
- b) On considère la situation d'équilibre statique. Calculer l'angle ϕ_e qui réalise l'équilibre statique. Donner une condition reliant k et les données du problème pour que $\phi_e = 0$.
- c) On considère maintenant le mouvement de la tige autour de la position d'équilibre $\phi_e = 0$. Donner une équation différentielle pour ϕ . Dans cette équation différentielle, utiliser l'approximation des petits angles ($\phi \simeq 0 \implies \sin \phi \simeq \phi$ et $\cos \phi \simeq 1$) et en déduire la période des oscillations autour de la position d'équilibre.

4 Freinage à vélo (18 points)

Un vélo circule en ligne droite sur une route horizontale. On modélise les roues du vélo par des anneaux minces identiques, de masse m et de rayon R. Le moment d'inertie de chacune des roues par rapport à son axe est mR^2 . Une tige rigide, sans masse et de longueur L>2R relie les centres C_1 et C_2 des deux roues, comme indiqué sur le dessin.

On considère d'abord que les deux roues reposent sur le sol et roulent sans glisser sur celui-ci. Les questions c) et d) peuvent être résolues indépendamment de la question b).

a) Enumérer les forces externes appliquées sur le système {tige + deux roues}, et les représenter sur un dessin avec leurs points d'application. Donner leurs expressions dans le repère indiqué sur le dessin.

Dans une première situation, on freine avec la roue avant: la tige et la roue avant sont alors en contact au point B, de sorte que la tige exerce sur la roue une force constante $\vec{F}_B = -F_B\hat{z}$, avec $F_B > 0$. Le freinage produit une accélération pour le velo $\vec{a}_0 = -a_0\hat{x}$.

b) Exprimer la force de frottement entre la roue avant et le sol en fonction de a_0 et F_B , et des données du problème. Indication: On pourra écrire les équations du mouvement pour la roue avant.

Dans une autre situation, on freine pour bloquer les deux roues, qui sont maintenant reliées rigidement à la tige, formant un unique solide indéformable. Les roues glissent sur le sol, avec un coefficient de frottement cinétique identique pour les deux roues, noté μ_c . Ce freinage produit une accélération $\vec{a}_1 = -a_1\hat{x}$.

- c) Exprimer a_1 en fonction de μ_c et des données du problème.
- d) Donner une condition sur a_1 pour que la roue arrière décolle du sol sous l'effet du freinage.

Rappel: écrivez vous réponses dans la section correspondante du cahier d'examen. Ne dégrafez pas les pages. Seul ce cahier sera corrigé.