

Point matériel (sphérique)

Nom:								
Prénom:								

Une bille de masse m, considérée comme un point matériel P, coulisse sans frottement dans un tube. Le tube est en rotation à vitesse angulaire $\Omega = \Omega \hat{z}$, où $\Omega = \text{cste} > 0$, dans le sens trigonométrique autour de l'axe vertical Oz. Lors de la rotation du tube, l'angle d'inclinaison constant de l'axe du tube par rapport à l'axe vertical Oz est $\theta = \text{cste}$ où $0 < \theta < \pi$. La bille est attachée à un ressort de constante élastique k et de longueur au repos ℓ_0 . L'autre extrémité du ressort est fixée à l'origine O.

On attache un repère sphérique $(P, \hat{r}, \hat{\theta}, \hat{\phi})$ à la bille et on décrit son mouvement par rapport au référentiel d'inertie \mathcal{R} de la terre.

Les réponses doivent être exprimées en termes des grandeurs scalaires données ci-dessus, des coordonnées sphériques r, θ et ϕ , de leurs dérivées temporelles, des vecteurs de base \hat{r} , $\hat{\theta}$ et $\hat{\phi}$ du repère sphérique et de la norme du champ gravitationnel g.

Questions et réponses au verso!

1.	Déterminer la norme et l'orientation de la force de réaction normale N exercée par le tube sur la bille en fonction de son mouvement.
	$oldsymbol{N}=$
2.	Déterminer la coordonnée radiale d'équilibre r_0 de la bille, c'est à dire la coordonnée pour laquelle il n'y a pas de mouvement relatif de la bille par rapport au tube pour une vitesse angulaire Ω telle que $\Omega^2 \sin^2 \theta \neq k/m$.
	$r_0 = \dots$
3.	Déterminer la condition sur la vitesse angulaire Ω pour que la position d'équilibre r_0 soit une position d'équilibre stable, c'est-à-dire que le mouvement radial autour de la position d'équilibre soit un mouvement harmonique oscillatoire.
4.	Déterminer la période T du mouvement oscillatoire de la question précédente.
	$T = \dots$
5.	Déterminer l'énergie mécanique E de la bille par rapport au référentiel d'inertie $\mathcal R$ de la terre en prenant comme référence d'énergie potentielle de pesanteur le plan horizontal contenant l'origine O et comme référence d'énergie potentielle élastique l'extrémité du ressort en absence de déformation.
	$E = \dots$
6.	L'énergie mécanique E de la bille par rapport au référentiel d'inertie $\mathcal R$ de la terre est-elle constante quel que soit le mouvement de la bille dans le tube?
	Oui \square Non \square
	Si non, quelle condition faut-il imposer pour que l'énergie mécanique E soit constante?