EPFL

Cinématique

Nom:								
Prénom :								

1 Balistique et sécurité (Examen 2022)

Pascal, jeune et talentueux golfeur est capable de frapper la balle en lui donnant une vitesse $|\vec{v}_0|$ faisant un angle $0 \le \alpha \le 90$ deg avec l'horizontale. Son ami Sébastien, vidéaste amateur féru de nouvelles technologies, décide de réaliser un plan audacieux de la trajectoire de la balle de golf à l'aide d'un drône, qu'on assimilera à un point matériel.

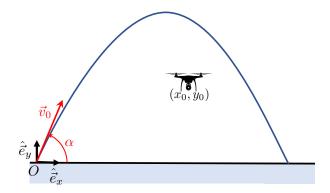


FIGURE 1 – Trajectoire d'une balle de golf et drône

a)	Quelle est la portée maximale de tir de Pascal, sachant que l'amplitude de la vitesse initiale est $ \vec{v}_0 $
	En d'autres termes, quelle est la distance D_{max} à laquelle la balle peut toucher le sol, en supposant
	que celui-ci est plat? On utilisera un repère $(O, \hat{e}_x, \hat{e}_y)$ centré sur le point de départ de la balle,
	avec $\hat{\vec{e}}_x$ dans la direction horizontale.

 $D_{
m max} =$

b) A quel angle de tir cela correspond-il?

 $oldsymbol{lpha}_{D_{ ext{max}}} =$

c)	Quelle	est la	hauteur	maximale	h_{max}	que la	balle	peut	atteindre	<u> </u>
U I	Quene	cst ra	nauteur	maximate	I_{t} max	que la	Dane	peut	autemart	<i>-</i> :

$$oldsymbol{h}_{ ext{max}} =$$

d) A quel angle de tir cela correspond-il?

$$lpha_{h_{ ext{max}}} =$$

e) En supposant que le drône de Sébastien se trouve au point (x_0, y_0) , établir, sans la résoudre, l'équation qui détermine sous quel(s) angle(s) Pascal devrait ajuster son tir pour l'atteindre.

 $\underline{\text{Indication}}: \text{On utilisera } \frac{1}{\cos^2 \alpha} = 1 + \tan^2 \alpha \text{ pour \'etablir une \'equation pour } \tan \alpha.$

.....

f) A partir du résultat du point précédent, déduire la relation entre x et y qui délimite la frontière entre la zone où le drône est à portée de tir et celle où il est hors d'atteinte. De quel type est cette courbe ? Esquissez-la à main levée.