29 octobre 2024 J.-P. Hogge

Série 7 : Rotations et Oscillations

Exercice 1: Vecteur de rotation

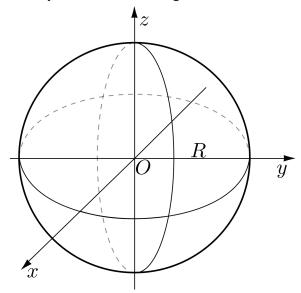
On considère un point matériel ayant un mouvement circulaire uniforme de rayon R.

- (a) Déterminez les vecteurs de position $\vec{\rho}$, vitesse \vec{v} et accélération \vec{a} de son mouvement en coordonnées appropriées.
- (b) Montrez qu'on peut introduire un vecteur $\vec{\omega} = \omega \vec{e_z}$ tel que $\vec{v} = \vec{\omega} \times \vec{\rho}$ et $\vec{a} = \vec{\omega} \times (\vec{\omega} \times \vec{\rho})$. Quelle est la dimension, l'unité et la signification physique de ω ?
- (c) Définir, en fonction de la latitude, la vitesse et l'accélération d'un point à la surface de la Terre. Application numérique : $\lambda_{Lausanne}=46.5^\circ$ et $R_T=6.37\times 10^6$ m.

Exercice 2: Sphère et cylindre en coordonnées cartésiennes, cylindriques et sphériques

Ecrire en coordonnées cartésiennes (x,y,z), cylindriques (ρ,ϕ,z) et sphériques (r,θ,ϕ) :

(a) L'équation d'une sphère de rayon R centrée à l'origine.



(b) L'équation d'un cylindre parallèle à l'axe z, de rayon R, de longueur L, dont l'axe passe par l'origine.



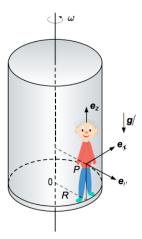
Exercice 3: Bille astreinte à se déplacer dans un tube en rotation

Une bille de masse m est astreinte à se déplacer sans friction dans un tube dont l'axe est incliné d'un angle θ fixe par rapport à l'axe vertical. La bille et le tube ont le même rayon. Le tube est en rotation à une vitesse angulaire ω constante autour de l'axe vertical.

- (a) Quel système de coordonnées est le plus adapté à cette situation?
- (b) Déterminez les équations de mouvement de la bille libre dans le tube. *Indication :* Elles doivent inclure la force de réaction du tube sur la bille.
- (c) Calculez la position d'équilibre $r_{\rm eq}$ de la bille.

 Indication : Posez $\dot{r} = \ddot{r} = 0$ et résolvez l'équation du mouvement radiale.
- (d) Le point d'équilibre que vous avez déterminé au point précédent est-il stable ou instable ? Indication : Posez $r=r_{\rm eq}+\delta_r$ où δ_r représente une petite perturbation de la position d'équilibre, écrivez l'équation du mouvement radiale pour δ_r et comparez les signes de $\ddot{\delta}_r$ et δ_r .
- (e) Considérez maintenant que l'angle $\theta>90^\circ$ et la bille est attachée à un ressort, qui lui-même est attaché au point du tube qui est sur l'axe de rotation. Adaptez les équations de mouvement à cette situation.
- (f) Quelles sont la position radiale, la vitesse et l'accélération de la bille loorsqu'elle est à équilibre (sous-entendu : le long du tube)?
- (g) Supposons que la position de la bille dans le tube est légèrement perturbée par rapport à l'équilibre. Quel sera alors le caractère de son mouvement le long du tube?
 - Indication : Regardez bien la composante radiale de l'équation du mouvement et comparez-la à une équation bien connue.

Exercice 4: Manège à plancher rétractable



Un manège est constitué d'un grand cylindre creux de rayon R qui peut tourner autour de son axe de symétrie vertical. Un homme, que l'on peut modéliser par un point matériel P de masse m soumis au champ de pesanteur $\mathbf{g}=-g\mathbf{e}_z$, prend place dans le cylindre, plaqué contre la face interne du cylindre et l'ensemble est mis en rotation. Lorsque la vitesse angulaire $\omega\mathbf{e}_z$ est suffisante, le plancher est retiré et l'homme reste "collé à la paroi". La condition de frottement sans glissement la norme de la force de frottement statique est $F_f \leq \mu_s N$ où μ_s est le coefficient de frottement statique entre l'homme et le manège et N est la norme de la force de réaction normale au manège.

- (a) Etablir le bilan des forces exercées sur une personne à l'équilibre dans le manège sans plancher en-dessous d'elle
- (b) Déterminer la vitesse angulaire minimale ω_{min} pour que le plancher puisse être retiré.