15 octobre 2024 J.-P. Hogge

Série 6 Oscillateur harmonique simple et amorti, ressorts

Exercice 1:

Cet exercice traite des équations différentielles du second ordre.

(a) Soit l'équation différentielle homogène (c'est-à dire qu'il n'y a pas de terme de source) du second ordre à coefficient constants (A, B, C)

$$A\ddot{x} + B\dot{x} + Cx = 0,$$

et soient $x_1(t)$ et $x_2(t)$ deux solutions possibles.

Montrer qu'une combinaison linéaire de $x_1(t)$ et $x_2(t)$ est aussi solution de l'équation différentielle.

(b) Soit l'équation différentielle non-homogène

$$A\ddot{x} + B\dot{x} + Cx = f(t),$$

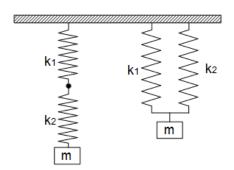
où f(t) est le terme de source de la non homogénéité. Soient $x_G(t)$ et $x_P(t)$ deux solutions. Montrer que la fonction $x_H = x_G - x_P$ satisfait l'équation homogène, soit $A\ddot{x} + B\dot{x} + Cx = 0$.

Exercice 2: Raideur de ressort en parallèle ou en série

On considére une masse suspendue par deux ressorts de raideurs différentes (k_1 et k_2)

- (a) en série.
- (b) en parallèle.

Dans chaque situation on peut remplacer la combinaison des ressorts par un seul ressort avec une certaine 'raideur équivalente' k_{eq} qui donnera le même déplacement pour la masse quand elle est en équilibre. Trouvez cette raideur équivalente en fonction de k_1 et k_2 dans les deux situations.



Exercice 3: Mouvement cyclotronique

Soit un champ magnétique $\vec{B}=B\vec{e_z}$ et un électron (charge e<0) de vitesse $\vec{v_0}=v_{0,x}\vec{e_x}+v_{0,y}\vec{e_y}+v_{0,z}\vec{e_z}$ à l'instant t=0 . L'électron subit la force de Lorentz $\vec{F_L}=e(\vec{v}\times\vec{B})$.

- (a) Représentez le champ magnétique et la force de Lorentz dans un diagramme.
- (b) Montrez (à l'aide des simples arguments géometriques) que la trajectoire de l'électron est une helice autour d'un axe selon z.

(c) Calculez le 'rayon de Larmor' r_L (le rayon d'un orbite de l'helice), ainsi que la 'fréquence cyclotronique' f_c (l'inverse du temps qu'il faut l'électron pour completer un tel orbite) en fonction de la vitesse perpendiculaire au champ $v_\perp = \sqrt{v_x^2 + v_y^2}$.

Exercice 4: Oscillateur harmonique amorti : Le flotteur

Un pêcheur pêche à l'aide d'une canne à pêche en mangeant une... pomme. A l'extrémité de la canne à pêche se trouve un flotteur. Ce dernier est de forme cylindrique de rayon r, de hauteur h et de masse homogène. Le flotteur se tient verticalement dans l'eau et il se deplace de haut en bas. On tient compte de la viscosité partielle de l'eau sous forme de frottememnt $\vec{F_f} = -k\eta\vec{v}$. La masse volumique du cylindre vaut les deux tiers de celle de l'eau : $\rho_c = \frac{2}{3}\rho_{eau}$.

- (a) Calculez la hauteur du cylindre qui se trouve immergée à l'équilibre.
- (b) Déterminez l'équation différentielle du mouvement du cylindre. Exprimez sa pulsation non amortie ω_0 et son coefficient d'amortissement λ en fonction des données du problème.
- (c) On appuie sur le flotteur et il se met à osciller verticalement jusqu'à retrouver sa position d'équilibre. Que pouvez-vous dire sur le type d'amortissement? Dessinez l'amplitude de l'oscillation en fonction du temps.