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Introduction

Neurological injuries are a common cause of disability in 
the U.S. There are approximately 800 000 strokes each year 
and over 300 000 people live with the effects of spinal cord 
injury (SCI).1,2 Many survivors are left with long-term 
upper limb hemiparesis, which can lead to disability.3 There 
is a clear and present need to develop interventional strate-
gies to reduce this disability.

Recently, a strategy based on delivering bursts of vagus 
nerve stimulation (VNS) concurrent with rehabilitation 
received Food and Drug Administration (FDA) approval for 
the treatment of upper extremity motor deficits associated 
with chronic ischemic stroke.4-6 VNS therapy is premised 
on the timing of VNS concurrent with upper limb move-
ment during rehabilitative exercises.7 Limb movement is 
driven by engagement of motor networks in the central 
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Abstract
Background. Recent evidence demonstrates that manually triggered vagus nerve stimulation (VNS) combined with 
rehabilitation leads to increased recovery of upper limb motor function after stroke. This approach is premised on studies 
demonstrating that the timing of stimulation relative to movements is a key determinant in the effectiveness of this approach. 
Objective. The overall goal of the study was to identify an algorithm that could be used to automatically trigger VNS on 
the best movements during rehabilitative exercises while maintaining a desired interval between stimulations to reduce 
the burden of manual stimulation triggering. Methods. To develop the algorithm, we analyzed movement data collected 
from patients with a history of neurological injury. We applied 3 different algorithms to the signal, analyzed their triggering 
choices, and then validated the best algorithm by comparing triggering choices to those selected by a therapist delivering 
VNS therapy. Results. The dynamic algorithm triggered above the 95th percentile of maximum movement at a rate of 5.09 
(interquartile range [IQR] = 0.74) triggers per minute. The periodic algorithm produces stimulation at set intervals but 
low movement selectivity (34.05%, IQR = 7.47), while the static threshold algorithm produces long interstimulus intervals 
(27.16 ± 2.01 seconds) with selectivity of 64.49% (IQR = 25.38). On average, the dynamic algorithm selects movements 
that are 54 ± 3% larger than therapist-selected movements. Conclusions. This study shows that a dynamic algorithm is an 
effective strategy to trigger VNS during the best movements at a reliable triggering rate.
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nervous system, and the concurrent VNS generates a rapid 
release of neuromodulators that facilitates synaptic plastic-
ity in the active motor networks. Consequently, degradation 
of the timing between VNS and the occurrence of the target 
movement reduces the efficacy of this approach. Studies in 
animal models show that delaying VNS until after training 
results in significantly less recovery.8 Moreover, even VNS 
delivered during rehabilitative exercises fails to be effective 
if it is not delivered concurrent with the best movements.9 
Finally, emerging clinical studies provide some preliminary 
evidence of the need for precise timing. Whereas VNS 
delivered by a therapist during movements produces robust 
enhancement of upper limb recovery, additional VNS deliv-
ered during unsupervised exercises where stimulation did 
not explicitly coincide with movement provides compara-
tively modest benefits.5,6,10

In addition to these lines of evidence, the excellent adher-
ence to the use of VNS at home and compounding functional 
benefits raise the prospect that a strategy to allow precise 
timing of stimulation during movement holds promise to 
maximize the benefits of VNS.10 Telerehabilitation solutions 
promote therapy adherence after neurological injury and 
demonstrate equivalent or better outcomes when compared 
to conventional face-to-face therapy.11 Additionally, telere-
habilitation increases engagement and permits longer 
courses of rehabilitation, which has been shown to produce 
additional recovery.12,13 Take-home systems, such as RePlay, 
have been developed to support high-repetition motor reha-
bilitation and could be readily combined with strategies to 
improve VNS stimulation timing. To this end, we sought to 
leverage advances in rehabilitative technology and use min-
iaturized sensors in conjunction with an algorithm to design 
a system that automatically triggers stimulation based on 
selected parameters of movement during rehabilitation. To 
develop the algorithm, we analyzed data previously col-
lected from 14 stroke and 18 cervical SCI patients using 
motion controllers to perform rehabilitative exercises. We 
selected the relevant sensor dimension for each exercise to 
isolate a single signal, then allowed an algorithm to simu-
late when to deliver stimulation as the exercise progressed. 
We simulated the application of 3 different algorithms to the 
signal and analyzed their triggering choices. Based on this 
analysis, we determined that a dynamic algorithm reliably 
selected the best movements with desired timing intervals. 
The dynamic algorithm continually adapts over time to 
adjust for intermittent periods of rest and person-to-person 
variability and can flexibly be applied to signals from vari-
ous controllers (handheld sensors and touchscreen) while 
maintaining similar triggering characteristics. In addition to 
the simulated triggering analyses, we compared the dynamic 
algorithm to actual manual VNS triggers selected by a ther-
apist from the same dataset. Validation of this approach 
shows that the dynamic algorithm selects optimal move-
ments comparable to or better than a trained human 

observer. These findings lay the groundwork for the imple-
mentation of this approach to supplement delivery of VNS 
in future studies.

Methods

Study Design and Testing Protocol

All procedures were approved by the Institutional Review 
Board at the University of Texas at Dallas.14,15 A total of 32 
participants ages 23 to 77 years with a history of upper limb 
motor impairment due to stroke or SCI (mean time since 
neurological injury was 5.8 ± 1.4 years) were recruited for a 
VNS clinical study with RePlay, a tablet-based rehabilita-
tion system,16 and ReStore, an implantable device for 
VNS.17 All participants had motor impairments in the upper 
limbs with some residual function. Participants with stroke 
mostly completed range of motion exercises and SCI par-
ticipants primarily completed isometric strength exercises, 
according to their deficits. We pooled their data together to 
increase the number and type of unique exercises to ana-
lyze. Study participants used the FitMi handheld motion 
controller (Flint Rehab, California) and the ReCheck sys-
tem to perform rehabilitative exercises while playing games 
on an Android tablet.18 The FitMi controller is a rubberized 
puck that contains several sensors including a 3-axis accel-
erometer/gyrometer, magnetometer, and a force sensor. The 
ReCheck system supports 4 isometric tasks and 3 range-of-
motion tasks via interchangeable modules. In addition to 
the FitMi and ReCheck controllers, an additional game 
allowed use of the tablet’s touchscreen for gameplay. 
Physical therapists guided participants to perform exercises 
that challenged range of motion and isometric strength. 
Measurements from the sensors included rotation angle (°), 
pressing and pinching force (g), and movement distance. 
Measurements from the touch screen included speed of fin-
ger movements across the screen. The study contained both 
traditional repetition-based exercises and dynamic game-
controlling movements, each measured by a sensor array 
housed in the selected handheld device. If patients were not 
able to grasp and hold the device, the device was affixed to 
a stabilizing base.

Signal Processing

Movement Signal Capture and Preprocessing.  To capture 
movement data during rehabilitative exercises, the tablet 
application streamed and processed incoming 60 Hz data 
from the controllers and saved the data to local storage for 
offline analysis (Figure 1). Custom Python routines were 
developed for simulations and analysis.

Each algorithm accepted a preprocessed discrete signal 
of a single dimension. To select the relevant channel, RePlay 
required users to select specific exercises prior to movement 
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initiation. This selection process guides the software to iso-
late the movement data to the specific sensor and dimension 
that matched the exercise. The software then processed the 
rotation or force signals to construct movement signals that 
describe rate of change over time. To begin, unprocessed 
movement signals were smoothed with a moving average 
filter (discrete, linear convolution, 300 ms of movement data 
in smoothing window, and kernel size varied with calculated 
sampling rate). About 300 ms of movement data was chosen 
for the smoothing window because large movements require 

approximately 300 ms to complete.19 At each point in time, 
the gradient of the most recent values of the smoothed move-
ment signal was obtained to calculate the rate of change. The 
mean gradient value over the was calculated, resulting in a 
single value that represented the average rate of change over 
the 300 ms window. Each consecutive movement signal 
value was processed in the same manner. This signal pro-
cessing resulted in a rate-of-change-based signal that could 
be used as input to an algorithm for stimulation (Figure 4). 
For force-based exercises, this signal indicates the rate of 

Figure 1.  Examples of rehabilitative exercises and the corresponding movement signals collected from participants with stroke 
or SCI. Game titles and exercise types are listed above each representative signal. Participants controlled 9 sensing devices and 7 
games during rehabilitative exercises to produce the movement signals in this study. Not all combinations are shown here. (A) Some 
exercises are conducted during gameplay. The Space Runner game responds to a force signal. Participants control the Fruit Ninja 
game with a touch screen, where they drag a finger across the touch screen to produce a signal that represents finger location over 
time. Here, the touch signal is shown as either swiping or not swiping. Participants control the Traffic Racer game by rotating a sensor 
puck that rests on a table. (B) Some exercises are performed without companion games to replicate traditional rehabilitation. A 
sensor puck can be used to detect movement for repetitive exercises such as curls, shoulder abduction, or reach across.
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change of force, which may be positive (pressing or grip-
ping) or negative (releasing). For rotation-based exercises, a 
positive signal indicates clockwise angular rate of change of 
the sensor puck, and a negative signal indicates a counter-
clockwise angular rate of change. For touchscreen data, this 
created signals that described the speed of touch over time.

We processed manual triggering data for comparison 
with the algorithms. A Google Pixel 2 smartphone triggered 
and recorded therapist-selected manual stimulations during 
the study, while a Samsung Galaxy Tab S4 tablet captured 
movement data during gaming and repetition-based exer-
cises. To align clocks between devices, we calculated the 
average difference between session start time on the tablet 
and stimulation start time on the smart phone to realign the 
triggers with the movement data.

Movement minimums were selected for each exercise to 
separate movement from noise. The movement minimum 
for each exercise was determined by measuring the mean 
maximum value of the signal when a control subject held 
the controller with the arm at rest. Any activity that did not 
exceed the value of the movement minimum was excluded.

Dynamic Algorithm Process.  As movement began and pro-
gressed, signal preprocessing was performed as described 
above, and each sample was passed to the algorithm. The 
algorithm placed each incoming sample into a buffer that 
held up to 3000 of the most recent samples. The buffer size 
was selected so that it was long enough to capture short 
game sessions (~1 minutes) but short enough to adjust to 
changes in movement amplitude that may happen due to 
fatigue or level changes in longer games (>4 minutes). 
Stimulation was prevented at the beginning of the game 
prior to movement initiation. The dynamic algorithm con-
tinuously analyzed the 3000-sample buffer and calculated a 
rate of change threshold value at the user-selected percen-
tile and adjusted it for every new preprocessed sample. If 
the dynamic threshold was surpassed by an incoming value, 
the algorithm delivered a simulated VNS trigger. Option-
ally, users could set values for the minimum interstimulus 
interval and directionality.

Static Algorithm Process.  As movement began and pro-
gressed, signal preprocessing was performed as described 
above, and each sample was passed to the algorithm. As 
each sample was analyzed, the static algorithm compared 
its value to a user-selected multiple of the movement mini-
mum for that exercise. If the static threshold was surpassed 
by an incoming value, the algorithm delivered a simulated 
VNS trigger. Optionally, users could set values for the mini-
mum interstimulus interval and directionality.

Periodic Algorithm Process.  No signal preprocessing or con-
tinuous analysis were required for the periodic algorithm, as 
the nature of the algorithm is signal agnostic. Users were 

required to set a value for the interval between stimulations. 
The algorithm delivered a simulated VNS trigger periodi-
cally at the set interval.

Statistics

Data are reported as mean ± standard error of the mean 
(SEM) or median with interquartile range (IQR). Where 
appropriate, standard parametric statistical tests (paired or 
unpaired t-tests) were used to make comparisons. Statistical 
tests for each comparison are noted in the text. Paired 
2-tailed t-tests were used to determine differences in the 
triggering quality and rate of the algorithms and unpaired 
2-tailed t-tests were used to determine differences in the 
movement signal pairings. The threshold for statistical sig-
nificance was set at P < .05. Error bars in figures represent 
SEM. Whiskers in boxplots represent Q1 − (1.5 × IQR) or 
Q3 + (1.5 × IQR).

Results

Collection of Quantitative Upper Limb 
Movement Data From Stroke and SCI Patients

We sought to design a real-time algorithm that could be 
used to identify the best movements during a variety of dif-
ferent rehabilitative exercises and on average produce 5 
stimulation pairings per minute, based on the most effective 
paradigms from preclinical studies. To develop this algo-
rithm, we simulated various triggering algorithms on a pre-
vious set of rehabilitative movement data collected from 14 
stroke and 18 SCI patients with impairments in upper limb 
motor function. The dataset includes captured movements 
from 9 sensing devices and 7 games. Data was collected 
from 1160 exercise sessions of 30 seconds or longer. 
Individual sessions had unique characteristics relative to 
each participant, game, exercise, and controller type (Figure 
1). FitMi puck and ReCheck device movement was mea-
sured as rotation angle or force, and touch screen movement 
was measured as swipe speed.

We developed 3 algorithms premised on differing selec-
tion criteria and applied them to the previously collected 
data. The first algorithm delivered stimulation triggers when 
the movement signal exceeded a dynamically-adjusted mini-
mum activity threshold, which varied during the exercise 
session based on recent movement (Figures 2A and 3A). The 
second algorithm delivered stimulation triggers when the 
movement signal exceeded a fixed minimum activity thresh-
old (Figures 2B and 3B). The third algorithm delivered stim-
ulation triggers at a regular interval, irrespective of the 
movement signal (Figures 2C and 3C). To evaluate the per-
formance of these algorithms, we applied each algorithm to 
the previously collected data sets and examined movement 
magnitude and interval between triggering instances. 
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Additionally, we compared the performance of the dynamic 
algorithm to previously recorded triggering selections made 
by a therapist during rehabilitation exercises.

A Dynamic Algorithm Pairs VNS With the Best 
Movements and Produces Minimum Triggering 
Rate Variability

First, we explored the performance of a dynamic algorithm. 
Dynamic algorithms that select the best trials per subject 
during rehabilitation have consistently been employed dur-
ing preclinical studies involving rehabilitation of force and 
range of motion.9,20-23 Since variability of impairment levels 
between stroke or SCI patients is a consideration, the 
dynamic algorithm was designed to actively adjust the stim-
ulation threshold to account for differences in performance 

across subjects and exercises (Figure 4). We examined the 
algorithm at multiple minimum activity thresholds created 
from distributions of recent movement (Percentiles: 45%, 
55%, 65%, 75%, 85%, and 95%). Analysis of the algorithm 
showed VNS was routinely paired with movements above 
the set minimum percentile of recent movement. When the 
algorithm was set to pair VNS with movements above the 
95th percentile of recent movements, the algorithm trig-
gered at 5.09 (IQR = 0.74) stimulations per minute and 
selected movements at a percentile of 97.61% (IQR = 0.88) 
during VNS (Figure 5A and 5B).

All triggers were paired with movements above the 95th 
percentile of recent movements. Moreover, the dynamic 
algorithm produced triggers in all exercise samples, indicat-
ing that this approach is able to adjust to various types of 
signals and levels of participant performance.

Figure 2.  Graphical description of each algorithm. (A) The dynamic algorithm measures the movement in progress and adjusts a 
minimum activity level and triggers stimulation if that movement exceeds the threshold. (B) The threshold algorithm measures the 
movement in progress and triggers stimulation if that movement is larger than a preset minimum activity level. (C) The periodic 
algorithm employs a countdown timer that triggers stimulation upon expiration.
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A Static Threshold Algorithm Pairs VNS With 
Movements But Produces Substantial Triggering 
Rate Variability

Second, we evaluated the performance of a static threshold 
algorithm. The static threshold reduced the complexity of 
the signal processing, but as a tradeoff, it could reduce the 
flexibility to accommodate differences in performance 
across different patients and exercises. We explored the per-
formance of this algorithm at multiple fold increases over 
the noise floor (Movement minimum multipliers = 1, 2, 4, 8, 
16, and 32). For comparison, we set the level that produced 
a median triggering rate similar to the dynamic algorithm. 
Figure 5A and 5B shows a movement minimum multiplier 
of 32× produces a triggering rate of 4.94 (IQR = 1.78) stim-
ulations per minute and selectivity of 64.49% (IQR = 25.38).

29.03% of sessions resulted in no stimulation triggers 
during the entirety of the session. Individual analyses of 
these sessions revealed that participants were moving dur-
ing the session, but the movements were not large enough to 
surpass the static threshold. About 43.86% of sessions 
resulted in total movement-VNS pairings below 95% selec-
tivity. Individual analyses of these sessions revealed an 
abundance of activity above the minimum activity thresh-
old that was set. As expected, when the triggering threshold 
was increased, the selectivity of the algorithm increased, 
and the triggering rate decreased (Supplemental Figure 1). 
At high thresholds, selection emphasized performance-
based triggering, so stimulations only occurred on the larg-
est movements. However, this consequently produced less 

frequent triggers. Similarly, when the triggering threshold 
was decreased, the selectivity of the algorithm decreased 
and the triggering rate increased.

A Periodic Algorithm Provides Consistent Inter-
Stimulation Intervals But Poor Selectivity

Finally, we investigated the performance of a periodic algo-
rithm. This is advantageous in that it represents the simplest 
implementation of signal processing, but because it does 
not expressly account for performance, it may fail to effec-
tively trigger stimulation concurrent with the best move-
ments. We evaluated performance at multiple inter-stimulus 
intervals (6, 6.67, 7.5, 10, 12, and 15 seconds). By design of 
the algorithm, each timing parameter resulted in a consis-
tent stimulation interval at the set value (Figure 5A). 
Because this approach does not consider movement when 
determining triggering, the algorithm often produced trig-
ger events when no movement was occurring and only 
rarely produced trigger events during large movements. As 
a result, the algorithm consistently triggered during move-
ments that were below the 50th percentile of recent move-
ments. The median movement selectivity was 34.05% 
(IQR = 7.47) when the inter-stimulus interval was set to 
12 seconds (Figure 5A and 5B). Because the algorithm does 
not account for movement, it frequently triggered during 
periods of rest, which decreased the percentile of the 
selected movements. When the inter-stimulus interval was 
shortened or lengthened, the selection characteristics of the 
algorithm do not improve (Supplemental Figure 1). Thus, 

Figure 3.  Examples of triggering during rehabilitative exercises with each algorithmic method. A rotation exercise produced the 
representative signal in each plot. (A) The dynamic algorithm triggers stimulation when movement crosses a variable threshold based 
on percentile of recent movement. The green curve represents a threshold that mark the 95th percentile of recent movement in the 
direction of supination. (B) The threshold algorithm triggers stimulation when movement crosses beyond preset movement levels. 
The blue horizontal line represents the preset movement level, which is set to 32× the movement minimum in this example. (C) The 
periodic algorithm triggers stimulations every 12 seconds, regardless of movement. Vertical dashed lines represent VNS stimulations. 
Red dots represent the movement level that coincided with the VNS trigger.
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the periodic algorithm produced reliable trigger intervals, 
but demonstrated poor selectivity for the best movements.

Not All Algorithms Create Appropriate 
Triggering Intervals

The periodic and dynamic algorithms can maintain a desired 
triggering interval while providing 5 triggers per minute 

(12 seconds between triggers), which matches the rate used 
in previous studies that demonstrate VNS-dependent bene-
fits.4-6 In the periodic algorithm, the inter-stimulus interval 
is the only input parameter and is constant across exercise 
types and patients (Figure 5B). The threshold and dynamic 
algorithms employ a minimum inter-stimulus interval to 
ensure stimulations are separated by at least 5 seconds. 
When the minimum activity threshold in the static 

Figure 4.  Illustrative example of movement sampling and the processes employed by the dynamic algorithm. (A) Prior to analysis 
by the algorithm, the movement signal is collected by the sensor and preprocessed. Step 1: Users select specific exercises from 
the RePlay application to guide the rehabilitation and select the relevant sensor dimension. Step 2: Sensors capture movement in a 
single relevant dimension while the rehabilitation exercise is performed. Step 3: The movement data is continuously smoothed with 
a convolution filter to remove the noise. The gradient of the samples in the last 300 ms of the smoothed signal produces the rate of 
change. The preprocessing ends by calculating the average rate of change within the 300 ms window. (B) Preprocessed movement 
signal samples are continuously delivered to the algorithm for triggering decisions. Step 1: The algorithm receives single values 
previously calculated from the average rate of change in the movement signal. Step 2: The dynamic algorithm identifies the size of the 
current movement sample by its location in the distribution of up to 3000 recent samples. Step 3: If the movement magnitude is in the 
top 5% of the 3000 samples, the algorithm triggers VNS if the 5 s minimum inter-stimulus interval has passed.
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Figure 5.  The dynamic algorithm yields the most robust selection of large movements and a reliable triggering interval. (A) The 
periodic algorithm produced consistent triggers every 12 seconds for a rate of 5 stims/minute. Variance of the periodic triggering 
rate seen here is from gameplay times not divisible by 12. The static threshold algorithm produced a median triggering rate of 4.94 
(IQR = 1.78) stimulations per minute with considerable variance. The dynamic algorithm produced a median triggering rate of 5.09 
(IQR = 0.74) stimulations per minute with moderate variance. No significant differences between median rates were observed. 
The notched boxes in each plot represent 1160 exercise sessions and include all controllers, games, and participants. Notches 
represent a 90% CI of the median. (B) The quality of the movements selected by the algorithms are represented as the percent of 
maximum movements during each exercise. The periodic algorithm triggered VNS on 34.50% (IQR = 7.47) of maximum movement. 
The threshold algorithm triggered VNS on 64.50% (IQR = 25.38) of maximum movement. The selective algorithm triggered VNS on 
97.61% (IQR = 0.88) of maximum movement.

algorithm is set to 32 times the movement minimum, the 
mean inter-stimulus interval is 27.16 ± 2.01 seconds for 
sessions where triggering occurred. When the minimum 
percentile of recent movement is set to 95% in the dynamic 
algorithm, the average inter-stimulus interval is 
13.87 ± 0.22 seconds. Thus, the periodic and dynamic algo-
rithms can produce triggering near the desired 12-second 
interval but the threshold algorithm does not consistently 
produce enough triggers.

The Dynamic Algorithm Maximizes Movement 
Magnitude Across All Exercises and Capabilities

Triggering stimulation to coincide with the best movements 
during rehabilitation is necessary for VNS-dependent ben-
efits.24 We compared the selectivity of the algorithms to 
determine which algorithm balanced consistent timing with 
triggering on the best movements. The quality of the move-
ments selected by the algorithms are represented as the per-
cent of maximum movements during each exercise. Overall, 
the dynamic algorithm resulted in the greatest percent of 

maximum movement compared to periodic and static algo-
rithms (Figure 5B, periodic: 33.86 ± 1.01%, paired t-test, 
P = 1.13 × 10−34; static: 64.30 ± 3.04%, paired t-test, 
P = 2.77 × 10−12). This indicates that the dynamic algorithm 
provides the most reliable selection of the best movements 
across exercises and participants (Figure 6, Supplemental 
Table 1).

The Dynamic Algorithm Selects Larger 
Movements Than Supervised Manual Triggering

Based on the ability to trigger at the desired interval and 
selection of the largest movements, the dynamic algorithm 
represented the optimal triggering paradigm of those tested. 
Because the algorithm is ultimately intended to facilitate 
the delivery of VNS therapy by reducing the burden on a 
therapist to trigger stimulation, we sought to directly vali-
date performance by comparing to dynamic algorithmic 
stimulation selection to that delivered by a trained therapist. 
To do so, we reanalyzed a large set of rehabilitative data in 
which a therapist triggered stimulation and compared the 
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paired movement magnitude and stimulation timing to the 
dynamic algorithm’s selections. We individually normal-
ized the movement data by calculating the average paired 
peak size within ±1 second of periodic stimulations at 
12 seconds intervals throughout the therapy session, for all 
possible 2-second samples. Normalization was performed 
per participant, per exercise, per game, for each therapy 
date. The selection quality of the manual and dynamic algo-
rithm triggers is represented by the percent improvement of 
the paired movement peaks over the periodic algorithm. 

Both manual triggers and the dynamic algorithm pair VNS 
with larger movement peaks than the periodic algorithm. 
Peak-pairing performance of the dynamic algorithm indi-
cates that the algorithm selects large movements at least as 
well as a trained human observer (Figure 7, P = 1.77 × 10−74, 
dynamic algorithm stimulations: 25 203, manual stimula-
tions: 31 079). On average, the dynamic algorithm selects 
movements that are 70.28 ± 3.03% bigger than the periodic 
algorithm and 54.38 ± 2.97% larger than therapist-selected 
movements (Figure 7).

Figure 6.  Illustrative examples of exercise signals after processing by the dynamic algorithm. Each processed signal is labeled with its 
game title and exercise type. Puck movements were translated to rate of change signals. Swiping speed was extracted during gameplay 
and used as the main signal for Fruit Ninja. Red dots indicate movement instances that triggered VNS. The dynamic algorithm 
triggers a stimulation when movement crosses an active threshold, represented as a percentile of recent movement. The green curve 
represents a threshold that marks the 95th percentile of recent movement (last 3000 samples).
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Discussion

Here, we report the design of an algorithm capable of pair-
ing VNS with the best movements during upper limb reha-
bilitation following neurological injury. We recorded 
movement data from 14 stroke and 18 SCI patients during a 
variety of different rehabilitative exercises. We used this 
data to develop a dynamic algorithm and compare it to 
alternative and clinically-employed algorithms to compare 
which strategy exhibits the best triggering criteria. After 
testing a range of parameters within each of the algorithms, 
we identified a set of parameters within the dynamic algo-
rithm that can select the best movements while maintaining 

a consistent median triggering rate. Additionally, we vali-
dated that the dynamic algorithm performs at least as well 
as a trained human observer, indicating that this approach 
represents a means to provide unsupervised, closed-loop 
VNS during rehabilitation.

The motivation for this study was to develop an algo-
rithm to facilitate feedback-controlled neurostimulation 
during rehabilitation, aimed at increasing the dose and qual-
ity of VNS pairings. Previous studies show stimulation tim-
ing and trial selection affect the magnitude of VNS-dependent 
enhancement of post-stroke and post-SCI recovery.8,9,20,24,25 
A recent preclinical study clearly illustrates the reliance of 
VNS effects on trial selection. Pairing VNS with the stron-
gest forelimb movements during rehabilitative training sig-
nificantly enhanced recovery of forelimb strength, whereas 
pairing the weakest movements failed to promote recovery.9 
Pairing VNS with an adaptive threshold algorithm in mod-
els of stroke, SCI, and peripheral nerve injury resulted in 
significantly enhanced forelimb recovery.9,20-23 Moreover, 
several studies confirm that a matched amount of stimula-
tion that is not paired with movement fails to enhance 
recovery.6,8,25 These provide the rationale for developing an 
algorithm that can trigger stimulation concurrent with the 
best movements. Several additional lines of evidence dem-
onstrate the importance of stimulation timing on VNS-
dependent effects.26 Faster rates of stimulation (ie, shorter 
inter-stimulation intervals) are associated with smaller 
VNS-dependent effects in preclinical models.27,28 Moreover, 
clinical evidence shows large amounts of periodic VNS 
during rehabilitation provides only modest benefits com-
pared to stimulation delivered explicitly concurrent with 
exercises.5,10 Together, these findings reinforce the impor-
tance of incorporating inter-stimulation timing into an algo-
rithm for unsupervised stimulation. Overall extraction of 
these findings indicates that VNS is likely most effective 
when therapy sessions include an effective number of stim-
ulations that incorporate the best movements with the lon-
ger intervals between stimulations.

Given the reliance on movement selection and inter-
stimulation timing, we developed algorithms with different 
characteristics to achieve VNS triggering based on these 
factors, including replicating the methods that were effec-
tive in preclinical studies. Studies indicate that timing VNS 
delivery with a dynamic threshold algorithm that adaptively 
scaled on the median peak force of the 10 antecedent trials 
resulted in significantly more recovery than unpaired VNS 
or sham stimulation.9,20-23 Successful translation of this 
approach from bench to clinic requires task consideration. 
Patients perform continuous tasks while playing games for 
several minutes at a time to maximize repetitions within the 
allotted rehabilitation session time. Thus, the dynamic algo-
rithm employed here was augmented to fit a continuous sig-
nal while still adjusting the VNS threshold based on recent 
movement.

Figure 7.  The dynamic algorithm selects larger movements 
than a trained observer. During upper limb physical therapy 
with RePlay and ReCheck, the dynamic algorithm triggered 
stimulation on movements that were 54.38 ± 2.97% larger than 
movements selected by a trained physical therapist (unpaired 
2-tailed t-test, P = 1.77 × 10−74). We individually normalized 
the movement data by calculating the average paired peak size 
within ± 1 second of periodic stimulations at 12 second intervals 
throughout the therapy session. The dynamic algorithm and the 
periodic algorithm were applied in post-hoc analysis and the 
manual stimulations were conducted in real time.
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Each of the algorithms explored here has unique bene-
fits. The periodic algorithm employs simple timing for the 
sake of prioritizing the rate of VNS over the quality of its 
pairings and matches the conventional method for unsuper-
vised VNS delivery. This algorithm is beneficial for ease of 
implementation and simplifies validation testing. However, 
since the periodic algorithm is operated by a countdown 
timer, it does not account for movement quality and thus 
does not provide selection of the best movements. 
Alternatively, the static algorithm can select movements 
while maintaining an optimum stimulation rate. The capa-
bility to select movements makes a static threshold appeal-
ing, but the realistic application of such an algorithm is 
hindered by the large variability of impairment levels 
observed in patients with neurological injuries. Additionally, 
motor performance can fluctuate day-to-day or with 
improvement over the course of rehabilitation, which com-
plicates selection of an appropriate static threshold. If the 
threshold is set too high, a patient may not perform any 
movements of a magnitude great enough to trigger VNS. If 
the threshold is set too low, movement of virtually any mag-
nitude will trigger stimulation, which limits selection of the 
best movements. The dynamic algorithm compensates for 
this issue by automatically individualizing the triggering 
criteria in real-time without the need to fine tune parameters 
for each person or session. An adaptive minimum activity 
threshold fluctuates according to recent movement to 
achieve selectivity on the best movements while maintain-
ing the optimum rate of stimulation. The dynamic threshold 
ensures the algorithm can be applied to various exercises 
across a range of impairment levels without losing its main 
advantages. These characteristics increase the number of 
ideal VNS pairings during therapy.

VNS has emerged as an FDA-approved strategy to 
enhance rehabilitation following neurological injury. 
Previous studies show that manually triggered VNS paired 
with upper limb rehabilitation can reduce long-term deficits 
following stroke.4-6 In its conventional implementation, 
VNS is delivered by a therapist who pushes a button during 
movements they want to reinforce. This method enhances 
motor function and improvements persist over time, dem-
onstrating that supervised rehabilitation with VNS can gen-
erate long-lasting, clinically significant improvements in 
stroke patients. However, patients that receive VNS with 
rehabilitation still exhibit residual deficits.4-6 Maximizing 
the clinical impact of VNS for stroke recovery may depend 
on the selection of an algorithm that can properly address 
many unique movements that take place during rehab. 
Some clinical observations support this notion. Whereas 
patients demonstrated significant changes in function when 
VNS was triggered by a therapist observing movement, 
patients from a pilot study demonstrate comparatively mod-
est gains when receiving unsupervised VNS that was not 
explicitly paired with movements, even when stimulation 

was delivered for years.5,10 This approach uses a stimulation 
paradigm congruent to the periodic algorithm described in 
this study. The absence of continued improvements in func-
tion may reflect the lack of consistent stimulation during the 
best movements. Given the advantage in selectivity with the 
dynamic algorithm, it is reasonable that using this approach 
to deliver unsupervised closed-loop stimulation during 
rehabilitation over a long time-course may represent a 
means to drive greater recovery.16,28

Since the conventional approach involves a therapist 
pairing VNS manually with rehabilitative movements, we 
sought to determine if the dynamic algorithm could select 
movements at least as well as a trained observer. An algo-
rithm capable of matching the selection characteristics of a 
human observer would allow for paired VNS during unsu-
pervised rehabilitation and also let therapists focus on reha-
bilitative exercises rather than stimulation timing. In the 
current study, therapists observed patients during gaming 
and pressed a button to deliver stimulation when large 
movements were observed, with a limit of at least 5 seconds 
between consecutive stimulation. We used this manual 
stimulation timing data to conduct post-hoc timing analysis 
of the dynamic algorithm and the human observer on the 
same movements. The result of this comparison indicates 
that the algorithm is able to match and exceed the selection 
of large movements during therapy. The automation of this 
effective conventional approach indicates the algorithm 
could be used for unsupervised at-home VNS.

Full automation of movement selection must consider 
unbalanced deficits that could be present during bidirec-
tional exercises. Motor impairments after neurological 
injury commonly present as deficits that exist to a greater 
degree in 1 direction over another, such as a moderate 
impairment of forearm supination and severe impairment of 
forearm pronation in the same arm. These deficits appear as 
low levels of activity in 1 direction of the respective move-
ment signal. We considered this scenario and designed the 
dynamic algorithm to handle bidirectional movements by 
optionally maintaining 2 separate movement distributions, 
which provides automatic adjustment of 2 individual thresh-
olds during bidirectional movements (Supplemental Figure 
2). The static algorithm can compensate when different 
minimum activity thresholds are set for each direction, but 
extensive manual tuning would be needed. The periodic 
algorithm is unable to compensate for a deficit imbalance, 
indicating it is least suitable for handling bidirectional 
movement training.

This algorithm is designed to identify instances where a 
single-dimension signal outperforms its own previous 
activity; however, greater complexity of movement analysis 
that require multidimensional examination may be valu-
able, such as during bimanual exercises. In the future, sig-
nal preprocessing could combine multiple dimensions by 
averaging multiple channels together, taking the largest 
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channel, or many other methods that could be tested and 
employed. Future implementations could utilize multiple 
signals competitively to prevent stimulation during move-
ment with characteristics that would suggest unwanted 
compensation.

In addition to developing an algorithm that can select 
optimal movements while maintaining an effective trigger-
ing rate, the simplicity of the algorithm is a consideration. It 
is likely that more complex methods, such as approaches 
premised on machine learning, could be comparable or 
superior at movement selection. However, we sought to 
develop an algorithm that yielded the appropriate behavior 
with minimal complexity based on 2 overarching consider-
ations. First, machine learning algorithms can be computa-
tionally intensive, and we sought to avoid a scenario that 
required combining a high bandwidth computation algo-
rithm and the software that governs control of the VNS sys-
tem on the same smart device. Second, the black-box nature 
of machine learning complicates verification and validation 
testing for regulatory approval, a crucial consideration in 
eventual deployment of this approach. We expect this algo-
rithm to be useful in future applications of medical devices 
with physiologic closed-loop control technology or for inte-
gration into Software as a Medical Device; subsequently, 
we have followed all relevant and emerging guidance, such 
as simplicity of system integration and operational transpar-
ency for clinicians, while meeting our requirements for rate 
and signal peak selection.

Here, we describe an algorithm that can be used to pair 
VNS with the best movements at a reliable interval to repli-
cate and build on the manually paired VNS delivery para-
digm that produced clinical benefits. Automatic closed-loop 
VNS can be achieved with an algorithm that dynamically 
modulates a minimum activity threshold based on previous 
movements. This approach performs at least as well as a 
trained human observer, providing initial evidence of valid-
ity. If effective, this strategy could improve the timing of 
VNS delivery during rehabilitation, reduce on therapists of 
simultaneously overseeing rehabilitative exercises and 
stimulation delivery, and allow for closed-loop unsuper-
vised stimulation at home to extend the duration of therapy. 
Future studies should implement this algorithm to control 
VNS delivery and determine whether this approach can 
complement conventional VNS therapy to generate greater 
recovery in individuals with neurological injury. The algo-
rithm may also be effective in providing closed-loop neuro-
modulation via transcranial magnetic stimulation, spinal 
cord stimulation, cortical stimulation, deep brain stimula-
tion, or peripheral nerve stimulation.
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