
EPFL

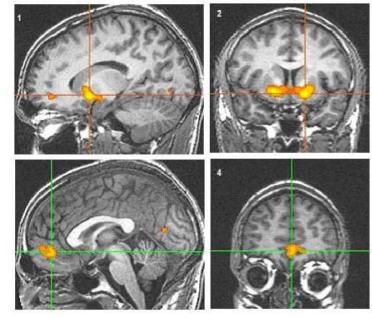
 École polytechnique fédérale de Lausanne

What is the ultimate goal in neuroscience?

What is the ultimate goal in neuroscience?

The ultimate goal in neuroscience is to understand how the brain works in its entirety—how neural circuits and networks process information, generate behavior, and underpin cognition, emotions, and consciousness. This encompasses understanding the molecular, cellular, and systems-level mechanisms of brain function, as well as how these processes are altered in diseases and disorders.

Achieving this goal could lead to transformative advancements in treating neurological and psychiatric conditions, improving mental health, and even enhancing cognitive abilities. It would also open new avenues for neurotechnology, brain-machine interfaces, and other applications that could have profound implications for human health, society, and the understanding of our consciousness.



What is the ultimate goal in neuroscience?

Grace W. Lindsay				
My Writing Elsewhere	About Me	Neurdiness Blog	Talks, Videos, Podcasts	
			September 3, 2012 / neurograce	
What is the	goal of	neuroscie	nce?	

However, I do feel that the varied, irregular and disjointed terrain of this field is merely a product of our *present* (very limited) knowledge of the brain. We don't have enough knowledge to see how a cohesive theory of the brain could arise from all our disparate branches of research. Of course if we did reach a full understanding of how the brain works, it would cover all possible levels and serve any purpose. Our knowledge of the computational, algorithmic, and physical workings of Alzheimer's and the brain areas involved with it, for instance, would make the production of treatments straight-forward. The field will be united. But for now, we are all working on separate chunks of a puzzle who's end picture none of us knows for certain. The best we can do is try to add one more piece onto our chunk in the hopes that they"ll all come together some day. However, for now, I think the goal of neuroscience will continue to vary from lab to lab, from researcher to researcher, and maybe even from day to day. Until we've all worked hard enough to realize that we're working on the same thing.

Brain – behaviour interactions

Petersen et al., 2005

Monetary Reward > Expectations

But...

Brain – behaviour interactions

"A primary challenge has been replicating associations between inter-individual differences

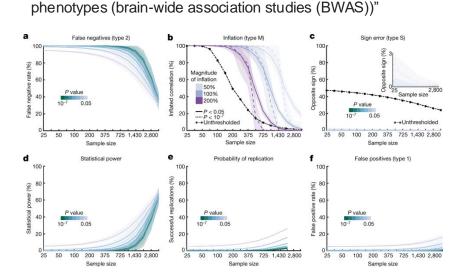
brain structure or function and complex cognitive or mental health

nature > articles > article

nature

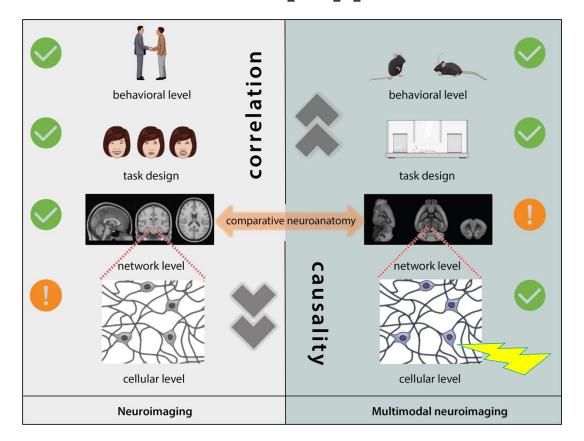
Explore content >

Article | Open Access | Published: 16 March 2022

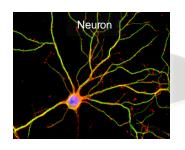

About the journal ∨

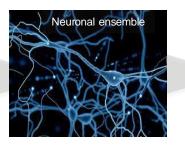
Reproducible brain-wide association studies require thousands of individuals

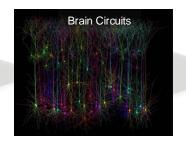
Publish with us >


Scott Marek . Brenden Tervo-Clemmens . Finnegan J. Calabro, David F. Montez, Benjamin P. Kay, Alexander S. Hatoum, Meghan Rose Donohue, William Foran, Ryland L. Miller, Timothy J. Hendrickson, Stephen M. Malone, Sridhar Kandala, Eric Feczko, Oscar Miranda-Dominguez, Alice M. Graham, Eric A. Earl, Anders J. Perrone, Michaela Cordova, Olivia Doyle, Lucille A. Moore, Gregory M. Conan, Johnny Uriarte, Kathy Snider, Benjamin J. Lynch, James C. Wilgenbusch, Thomas Pengo, Angela Tam Jianzhong Chen, Dillan J. Newbold, Annie Zheng, Nicole A. Seider, Andrew N. Van, Athanasia Metoki, Roselvne J. Chauvin, Timothy O. Laumann, Deanna J. Greene, Steven E. Petersen, Hugh Garavan. Wesley K. Thompson, Thomas E. Nichols, B. T. Thomas Yeo, Deanna M. Barch, Beatriz Luna, Damien A.

Nature 603, 654-660 (2022) | Cite this article 64k Accesses | 277 Citations | 1511 Altmetric | Metrics


TOP-down vs BOTTOM-up approach

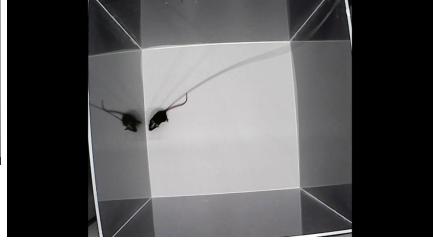



TOP-down vs BOTTOM-up approach

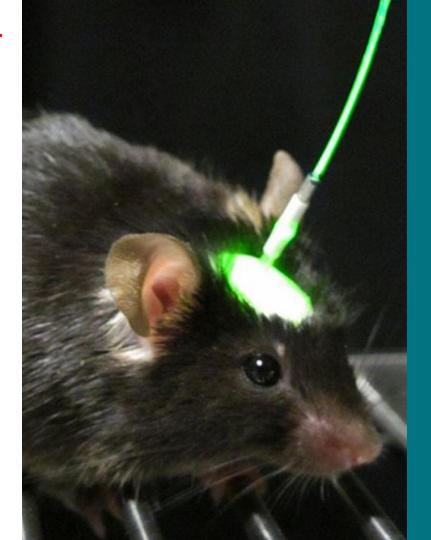
alerio zerbi

What to target?

In which species?



If you control brain-circuit activity, you control behavior



OUTLINE

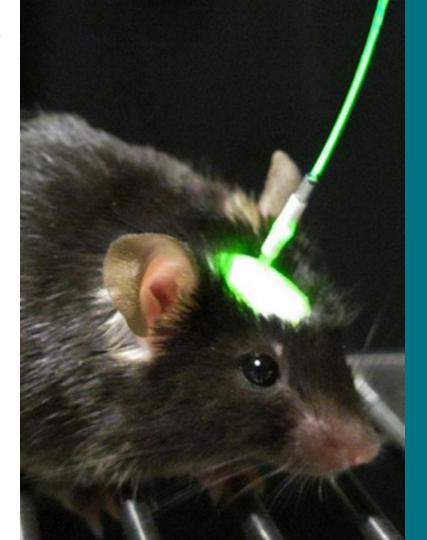
1. Neural activity and action potentials

Generation

Transmission

Propagation

The synapsis


2. Engineering neural activity

Optogenetics

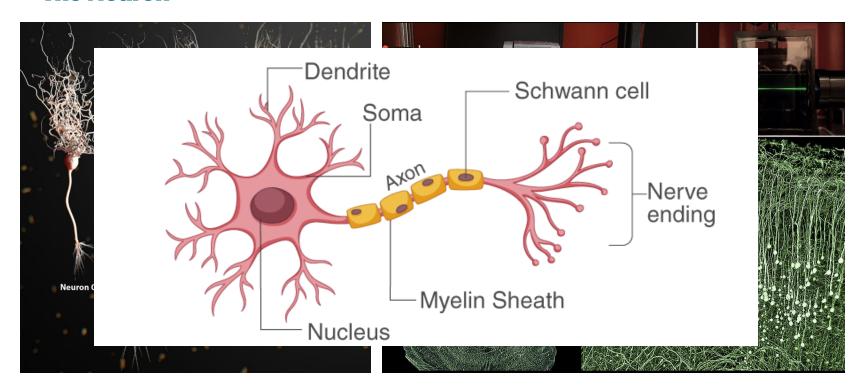
Chemogenetics

Sonogenetics

3. Some cool examples

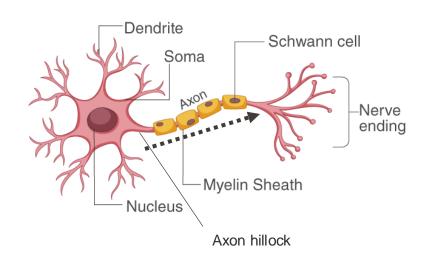
OUTLINE

1. Neural activity and action potentials


Generation Transmission Propagation The synapsis

2. Engineering neural activity
Optogenetics
Chemogenetics
Sonogenetics

3. Some cool examples


The Neuron

The Neuron

Key proprieties

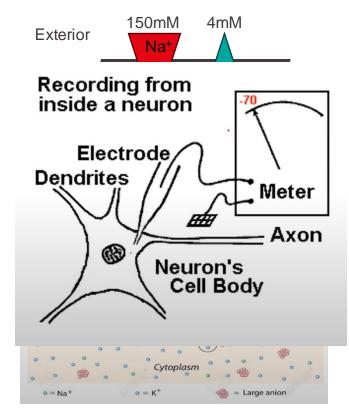
- ✓ Their function is to transmit information (in a single direction, dendrite → axons)
- ✓ Asymmetric. They communicate between each other at the start or end (synapse)
- √ Neurons are highly polarised cells

Polarization or resting potential (unexcited neuron)

1.Membrane Potential

The voltage difference across the neuron's membrane, known as "membrane potential," is comparable to a capacitor, typically resting at around -70mV, representing a polarized state

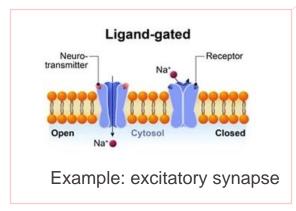
2.Na+/K+ pumps

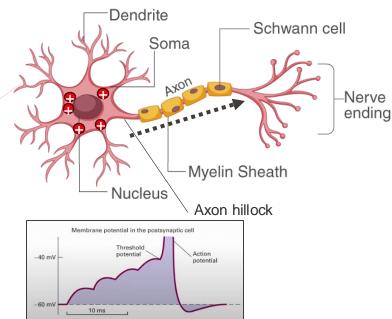

Neurons expend energy to maintain ion concentration gradients, allowing for electrical signalling. ATP is converted to ADP to actively transport 3 Na⁺ ions out of the cell and pump 2 K⁺ ions inside

3.Anions

Inside the cell there are large anions, which are negatively charged

4.Leaky channels


Diffusion of the Na⁺ and K⁺ across channels helps maintaining the resting potential across the membrane

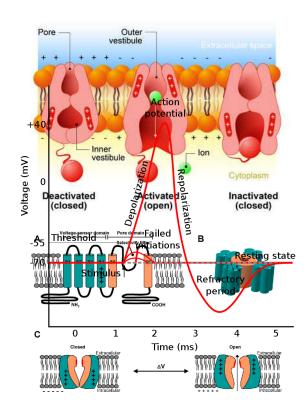


ENGINEERING NEURONS

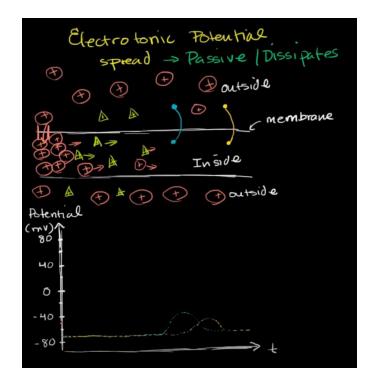
It all starts in the dendrites

Ligand-gated ion channels: allow positive or negative ions (eg. Na+) to flow into the cell following a chemical signalling (eg. Serotonin) → Transient change of membrane potential

The Action Potential (AP)

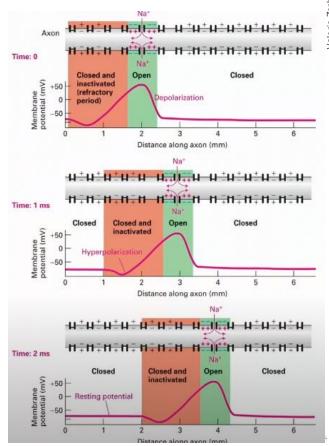

Voltage-Gated Na⁺ channels

Open at -55mV and close at +40mV. Sodium ions (Na+) rapidly enter the neuron through these channels, causing a swift change in membrane potential and depolarizing the membrane. These channels physically block after 0.5-1ms, impeding more Na+ to enter

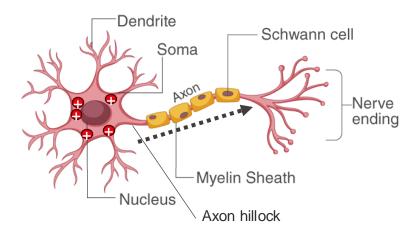

Depolarization and K⁺

Open at +40mV and close at -80mVAs
As the depolarization progresses, voltage-gated
potassium (K+) channels also open, allowing
potassium ions to flow out of the neuron. This
potassium efflux helps repolarize the membrane quickly,
restoring the negative resting membrane potential.

VOLTAGE-GATED CHANNEL

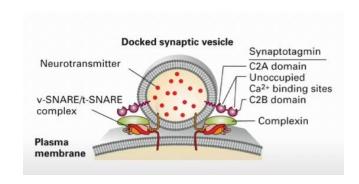

Action potential is a traveling wave of ions

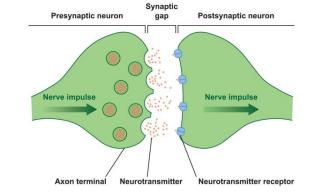
Action potential is a traveling wave of ions

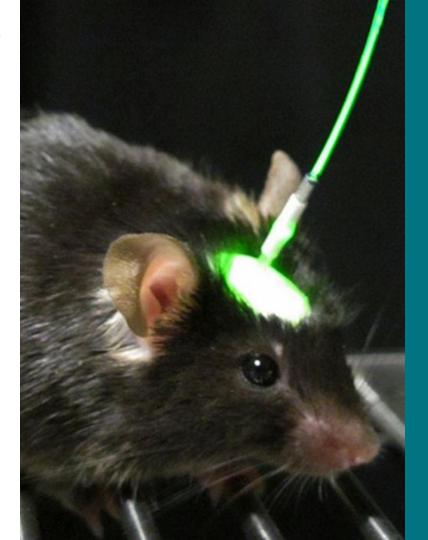

Traveling Wave

- Action potentials act as traveling waves, ensuring information travels in one direction along the neuron.
- Because the Na⁺ voltage-gated channels close after 0.5-1ms, the AP can't travel backwards
- In Myelinated axons the speed of conduction is up to 100fold faster transmission of the signal (speed) AP is jumping from node to node
- Disease like Multiple Sclerosis affects the myelin sheet (slow down AP, impact in the network communication)

Synaptic transmission


Synaptic transmission


At the end of the axon, the synapsis contains vesicles that are docked at the plasma membrane and contain neurotransmitters


Fusion Trigger: Synaptic vesicle fusion is initiated by an increase in intracellular Ca2+ levels, which occurs upon receiving an action potential.

Neurotransmitter Release: This fusion process leads to the release of neurotransmitters into the synaptic cleft.

Signal Termination: The signal is terminated by reabsorption or re-uptake in the presynapse, a target for certain drugs like SSRI antidepressants, which are re-uptake inhibitors.

OUTLINE

1. Neural activity and action potentials

Generation

Transmission

Propagation

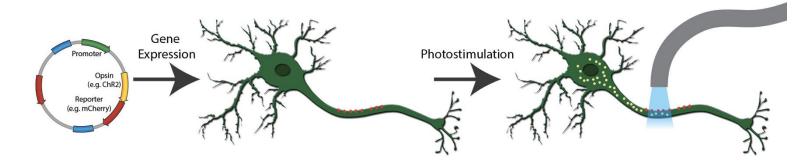
The synapsis

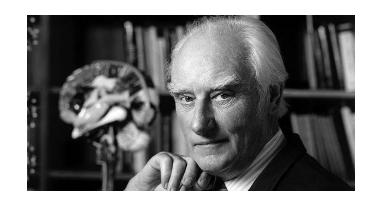
2. Engineering neural activity

Optogenetics Chemogenetics Sonogenetics

3. Some cool examples

Opto? Genetics?


Integration of optics and genetics that allows for experimental control of events within a specific cell


Building a tool to reach the ultimate goal in neuroscience

- If we could express a light-activated ion channel in a specific subpopulation of neurons ..
- If we could then illuminate those neurons ...
- ✓.. we could influence behavior at the speed of light!

History

The possibility of using light to control neural activity (action potential) was first articulated by Francis Crick

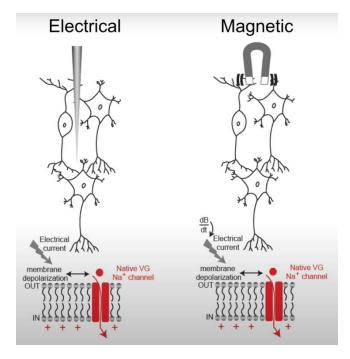
The impact of molecular biology on neuroscience

Francis Crick, OM FRS

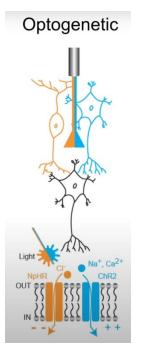
The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA

"One of the next requirements (as discussed above) is to be able to turn the firing of one or more types of neurons on and off in the alert animal in a rapid manner. The ideal signal would be light, probably at an infrared wavelength to allow the light to penetrate far enough. This seems rather farfetched but it is conceivable that molecular biologists could engineer a particular cell type to be sensitive to light in this way."

Francis Crick (1999)


Valerio Zer

Recipe for success


In order to light-control neurons, you need few things:

- 1. Light-sensitive system (sensor)
- 2. Ability to influence cellular ion flow in response to light (actuator)
- 3. Potential for co-expression of these systems in neurons
- 4. A system that does all these things without harming the cell

Basic Concepts

Non-specific

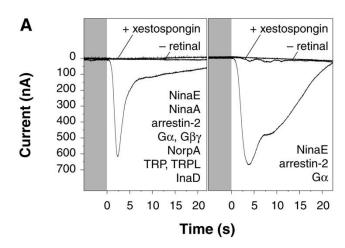
Cell-type-specific

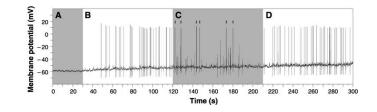
Early developments: multi-component cocktails

> Neuron. 2002 Jan 3;33(1):15-22. doi: 10.1016/s0896-6273(01)00574-8.

Selective photostimulation of genetically chARGed neurons

Boris V Zemelman 1, Georgia A Lee, Minna Ng, Gero Miesenböck


Affiliations + expand


PMID: 11779476 DOI: 10.1016/s0896-6273(01)00574-8

Free article

Abstract

To permit direct functional analyses of neural circuits, we have developed a method for stimulating groups of genetically designated neurons optically. Coexpression of the Drosophila photoreceptor genes encoding arrestin-2, rhodopsin (formed by liganding opsin with retinal), and the alpha subunit of the cognate heterotrimeric G protein--an explosive combination we term "chARGe"-sensitizes generalist vertebrate neurons to light. Illumination of a mixed population of neurons elicits action potentials selectively and cell-autonomously in its genetically chARGed members. In contrast to bath-applied photostimulants or caged neurotransmitters, which act indiscriminately throughout the illuminated volume, chARGe localizes the responsiveness to light. Distributed activity may thus be fed directly into a circumscribed population of neurons in intact tissue, irrespective of the spatial arrangement of its elements.

Mayor Breakthrough: single component system

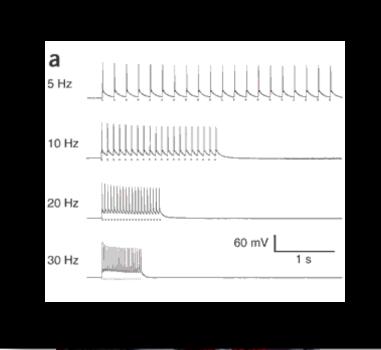
First demonstration of a single-component optogenetic system, beginning in cultured mammalian neurons using channelrhodopsin, a single-component light-activated cation channel from unicellular algae).

Prof. Karl Deisseroth

https://www.youtube.com/watch?v=MUG ky_QaaV0&ab_channel=iBiologyScience Stories

Mayor Breakthrough: single component system

First demonstration of a single-comport optogenetic system, beginning in culture mammalian neurons using channel rhodops in single-component light-activated cation chart from unicellular algae).


Comparative Study > Nat Neurosci. 2005 Sep;8(9):1263-8. doi: 10.1038/nn1525. Epub 2005 Aug 14.

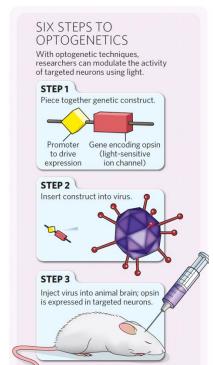
Millisecond-timescale, genetically targeted optica control of neural activity

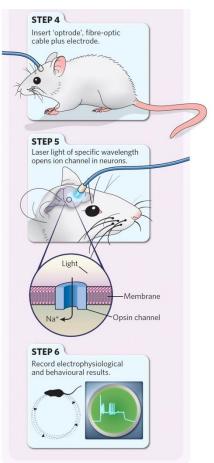
Edward S Boyden ¹, Feng Zhang, Ernst Bamberg, Georg Nagel, Karl Deisseroth

Affiliations + expand

PMID: 16116447 DOI: 10.1038/nn1525

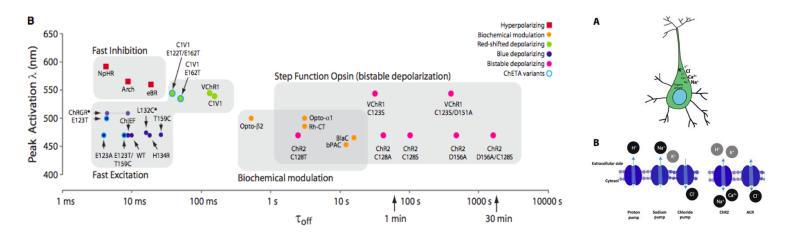
In six steps

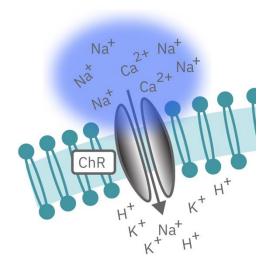



News Feature | Published: 05 May 2010

Neuroscience: Illuminating the brain

Lizzie Buchen


Nature 465, 26-28 (2010) Cite this article

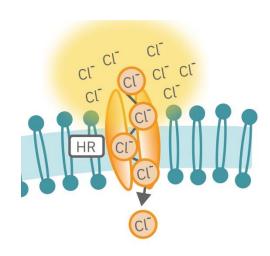

A diverse toolkit

- The optogenetic effect experienced by a cell will depend on many factors
 - The properties of single-component opsin being used
 - The efficiency of the expression of that opsin
 - The source/wavelength/intensity of the light
 - · The location and density of the population of neurons being investigated

A diverse toolkit

Opsin	Mechanism	Peak Activation λ	Off Kinetics (τ, ms)*	Kinetics References
Blue/Green Fast Excitator	у			
ChR2	Cation channel	470 nm	~10 ms	Boyden et al., 2005; Nagel et al., 2003
ChR2(H134R)	Cation channel	470 nm	18 ms	Nagel et al., 2005; Gradinaru et al., 2007
ChR2 (T159C)	Cation channel	470 nm	26 ms	Berndt et al., 2011
ChR2 (L132C)	Cation channel	474 nm	16 ms*	Kleinlogel et al., 2011
ChETAs: ChR2(E123A) ChR2(E123T) ChR2(E123T/T159C)	Cation channel	470 nm (E123A) 490 nm (E123T)	4 ms (E123A) 4.4 ms (E123T) 8 ms (E123T/T159C)	Gunaydin et al., 2010; Berndt et al., 2011
ChIEF	Cation channel	450 nm	~10 ms	Lin et al., 2009
ChRGR	Cation channel	505 nm	4-5 ms* (8-10ms)	Wang et al., 2009; Wen et al., 2010
Yellow/Red Fast Excitator	у			
VChR1	Cation channel	545 nm	133 ms	Zhang et al., 2008
C1V1	Cation channel	540 nm	156 ms	Yizhar et al., 2011a
C1V1 ChETA (E162T)	Cation channel	530 nm	58 ms	Yizhar et al., 2011a
C1V1 ChETA (E122T/E162T)	Cation channel	535 nm	34 ms	Yizhar et al., 2011a

Valerio Zerbi


OPTOGENETICS

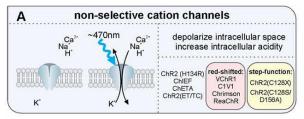
A diverse toolkit

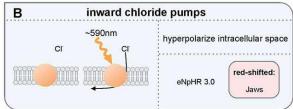
Yellow/Red Inhibitory				
eNpHR3.0	Chloride pump	590 nm	4.2 ms	Gradinaru et al., 2010
Green/Yellow Inhibitory*				
Arch/ArchT	Proton pump	566 nm	9 ms	Chow et al., 2010
eBR	Proton pump	540 nm	19 ms	Gradinaru et al., 2010

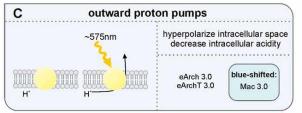
Active pumps (slower)

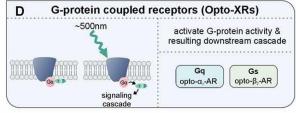
Fast inhibition

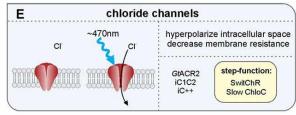
Halorhodopsin


A diverse toolkit


- Product of molecular engineering
- Much slower deactivation rate
- Cation (or chloride) channels
- Larger disparity between activating wavelength and deactivating wavelength


Bistable Modulation				
ChR2-step function opsins (SFOs)	Cation channel	470 nm activation / 590 nm deactivation	2 s (C128T); 42 s (C128A) 1.7 min (C128S) 6.9 min (D156A) 29 min (128S/156A)	Berndt et al., 2009; Bamann et al., 2010 Yizhar et al., 2011a
VChR1-SFOs	Cation channel	560 nm activation / 390 nm deactivation	32 s (C123S) 5 min (123S/151A)	


Step Function Opsins (SFOs)


A diverse toolkit

OPTOGENETICS

Targeting neurons with opsins

- 1. Anatomical Coordinates (injection & light)
- 2. Viral vector (Lenti (LV), Adeno-associated (AAV), canine, rabies, ..)
- 3. Viral promoter (CamKIIa, Syn1, ...)
- 4. Transgenic mouse lines that are under recombinase-dependent control
- 5. Spatiotemporal targeting (Birthdate of cells, specific layer, ...)
- 6. Light delivery

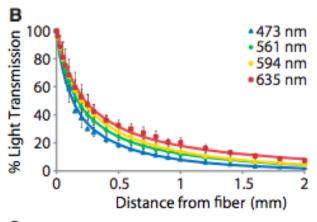
OPTOGENETICS

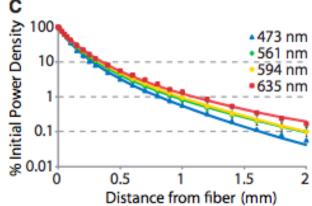
Light delivery (1)

Assuming you are expressing the correct opsin in the desired cell population, you now need to somehow get light to those cells.

There are several facets to consider, and the best choice will depend on your experiment

- ✓ Excitation vs inhibition vs bistable
- √ Wavelength
- ✓ Intensity
- ✓ Duration

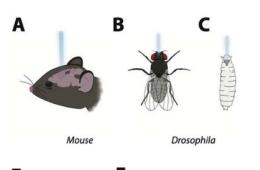

Valerio Zerbi

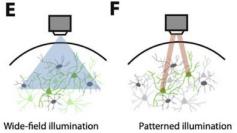

OPTOGENETICS

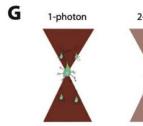
Light delivery (2)

Brain tissue scatters and absorbs light

Different wavelengths of light penetrate brain tissue better than others




OPTOGENETICS


Advanced Tools

More than just an optic fiber ..

Recap

What if...

Instead of proteins that are sensitive to light, can we engineer proteins that respond exclusively to synthetic compounds (designer drugs) and not endogenous ligands?

-> A step toward a translational tool (no optic fiber required)

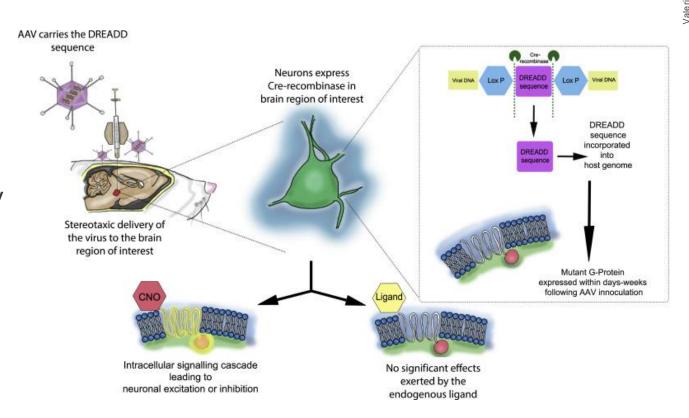
DREADDS

Designer
Receptors
Exclusively
Activated by
Designer
Drugs

Neuron. Author manuscript; available in PMC 2017 Feb 17. Published in final edited form as:

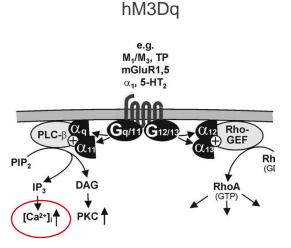
Neuron. 2016 Feb 17; 89(4): 683–694. doi: 10.1016/j.neuron.2016.01.040

DREADDs for Neuroscientists

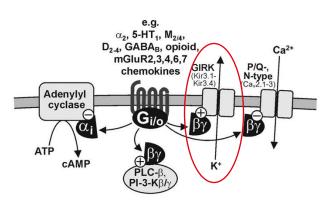

Bryan L. Roth 1,*

Prof. Bryan Roth

DREADDs were originally invented by modifying muscarinic acetylcholine receptors to be activated by the inert ligand clozapine-*N*-oxide (CNO) via directed molecular evolution in genetically engineered yeast (Armbruster et al., 2007)


Designer
Receptors
Exclusively
Activated by
Designer
Drugs

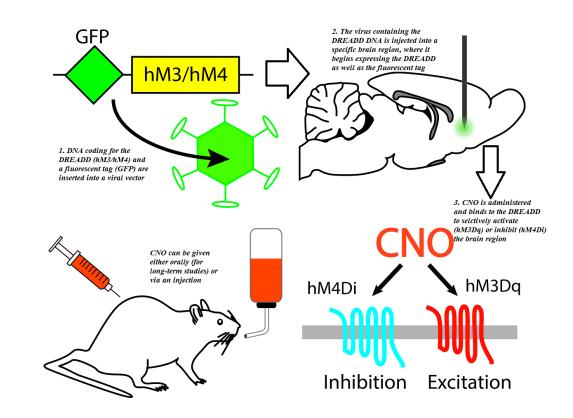
ale rio Zerb


DREADDs

Designer
Receptors
Exclusively
Activated by
Designer
Drugs

Neuronal excitation

hM4Di


Neuronal inhibition

Valerio Zerbi

CHEMOGENETICS

DREADDs

Designer
Receptors
Exclusively
Activated by
Designer
Drugs

CHEMOGENETICS or OPTOGENETICS?


Chemogenetic: DREADDs

- AAV delivery
- Neuron-specific
- Activated systemically by drug
- Reversible
- No external implant
- Effect lasts 30min-2h

Optogenetics

- AAV delivery
- Neuron-specific
- Activated locally by light
- Reversible
- Requires external implant
- Millisecond control

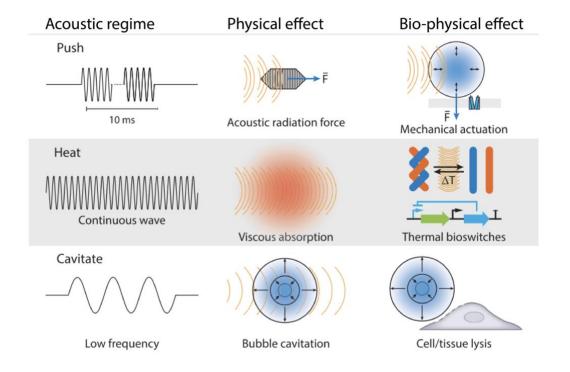
SONOGENETICS

Replacing light with soundwaves?

Brain Stimulation

Volume 15, Issue 5, September–October 2022, Pages 1308-1317

Sonogenetics: Recent advances and future directions


 $\frac{\text{Tianyi Liu}^{a}, \text{Mi Hyun Choi}^{b}, \text{Jiejun Zhu}^{a}, \text{Tingting Zhu}^{a}, \text{Jin Yang}^{a}, \text{Na Li}^{ae}, \text{Zihao Chen}^{ae},}{\text{Quanxiang Xian}^{c}, \text{Xuandi Hou}^{c}, \text{Dongmin He}^{a}, \text{Jinghui Guo}^{cd}, \text{Chunlong Fei}^{e}, \text{Lei Sun}^{c} \overset{\text{Q}}{\sim} \text{Mihai Qiu}^{a}} \overset{\text{Q}}{\sim} \text{Mihai Qiu}^{a} \overset{\text{Q}}{\sim} \text{Mihai Qiu}^{a$

Valerio Zerbi

SONOGENETICS

How Does it Work?

US can produce thermal or mechanical effects on the tissue

SONOGENETICS

Brain Stimulation

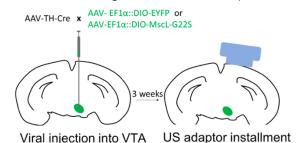
Volume 15, Issue 5, September–October 2022, Pages 1308-1317

SONOGENETICS

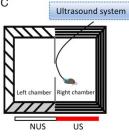
Replacing light with soundwaves?

Sonogenetics: Recent advances and future directions

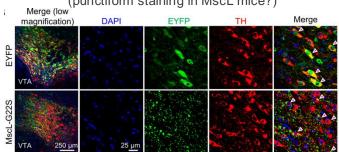
Tianyi Liu ^a, Mi Hyun Choi ^b, Jiejun Zhu ^a, Tingting Zhu ^a, Jin Yang ^a, Na Li ^a ^e, Zihao Chen ^a ^e, Quanxiang Xian ^c, Xuandi Hou ^c, Dongmin He ^a, Jinghui Guo ^c ^d, Chunlong Fei ^e, Lei Sun ^c ^a, Shihai Qiu ^a ^a, S

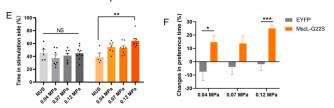

Table 1 Mediators for Sonogenetics *in vivo*.

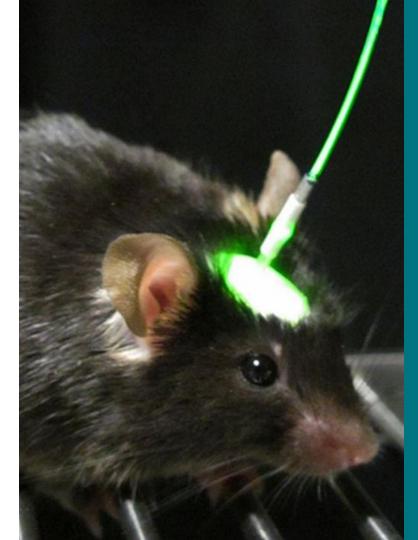
Mediator	Nature of the mediator	Frequency (MHz)	Acoustic pressure (MPa)	Promoter	Validation method
MscL-G22s	Mechanosensitive ion channel	0.5, 2.25, 15	>0.3	hSyn, CaMKII, SNCG,	Cellular calcium imaging, EMG, fiber photometry, MEA, EcoCG, Behaviors
TRPV1	Thermal sensitive ion channel	1.5, 1.7	>0.9	CaMKII	In vitro calcium imaging, <i>in vivo</i> two photon calcium imaging, Place preference behaviors
<i>m</i> Prestin	Membrane protein for electromobility in hair cell in ear	0.5	>0.5	hSyn	Cellular calcium imaging in vitro, c fos staining
hsTRPA1	Ion channel	7	>1.05	hSyn DIO, hSyn. Cre	EMG, c-fos staining, Behaviors
Gas vesicles	Nano-sized protein structure	1	0.2	N.A.	fiber photometry, EMG, c fos staining


SONOGENETICS

Sonogenetics of dopaminergic neurons in VTA & behavior


Mix of AAVs to target the TH+ neurons (Cre strategy)


Appetitive conditioning (real-time place preference essay)


Co-expression of EYFP and TH (punctiform staining in MscL mice?)

MscL mice spend more time in the stimulated side

NB: worked only with smooth waveform, rectangular had an aversive effect in control mice -> unspecific auditory effects?

OUTLINE

1. Neural activity and action potentials

Generation

Transmission

Propagation

The synapsis

2. Engineering neural activity

Optogenetics

Chemogenetics

Sonogenetics

3. Some cool examples

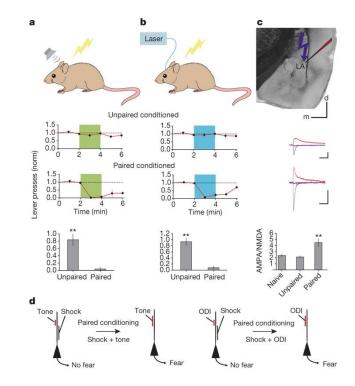
OPTOGENETICS – EXAMPLES (1)

Can memories be controlled via optogenetics?

nature > letters > article

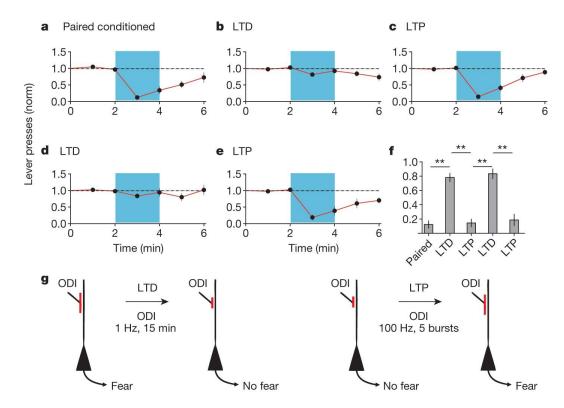
Published: 01 June 2014

Engineering a memory with LTD and LTP

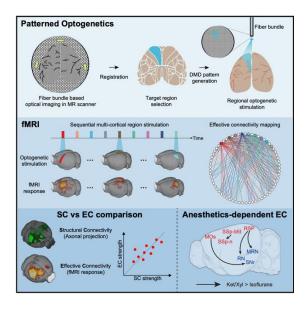

Sadegh Nabavi, Rocky Fox, Christophe D. Proulx, John Y. Lin, Roger Y. Tsien & Roberto Malinow □

Nature 511, 348–352 (2014) | Cite this article

78k Accesses | 633 Citations | 504 Altmetric | Metrics


Abstract

It has been proposed that memories are encoded by modification of synaptic strengths through cellular mechanisms such as long-term potentiation (LTP) and long-term depression (LTD)¹. However, the causal link between these synaptic processes and memory has been difficult to demonstrate². Here we show that fear conditioning ^{3,4,5,6,7,8}, a type of associative memory, can be inactivated and reactivated by LTD and LTP, respectively. We began by conditioning an animal to associate a foot shock with optogenetic stimulation of auditory inputs targeting the amygdala, a brain region known to be essential for fear conditioning ^{3,4,5,6,7,8}. Subsequent optogenetic delivery of LTD conditioning to the auditory input inactivates memory of the shock. Then subsequent optogenetic delivery of LTP conditioning to the auditory input reactivates memory of the shock. Thus, we have engineered inactivation and reactivation of a memory using LTD and LTP, supporting a causal link between these synaptic processes and memory.


OPTOGENETICS – EXAMPLES (1)

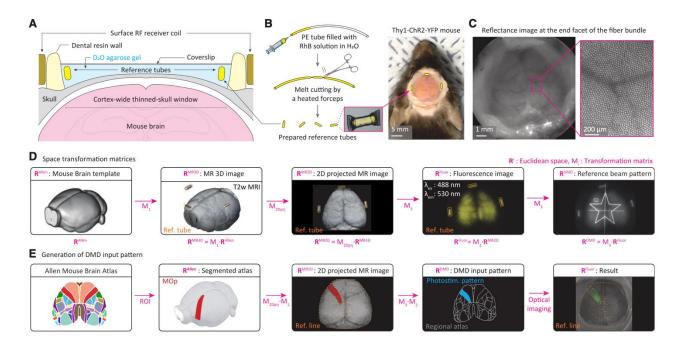
Can memories be controlled via optogenetics?

LTD Optogenetics protocol abolishes CS responses (erase fear memory)

LTP Optogenetics protocol re-establishes CS responses

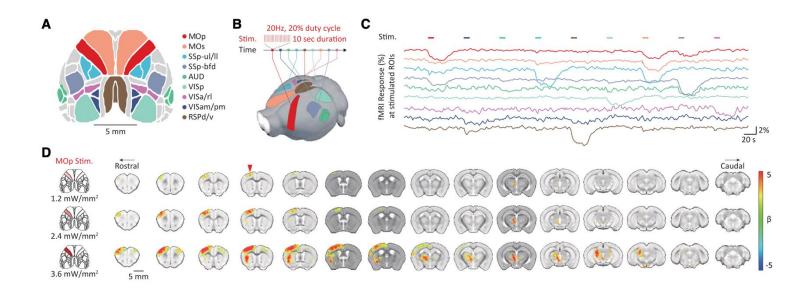
Neuron

Volume 111, Issue 11, 7 June 2023, Pages 1732-1747.e6


NeuroResource

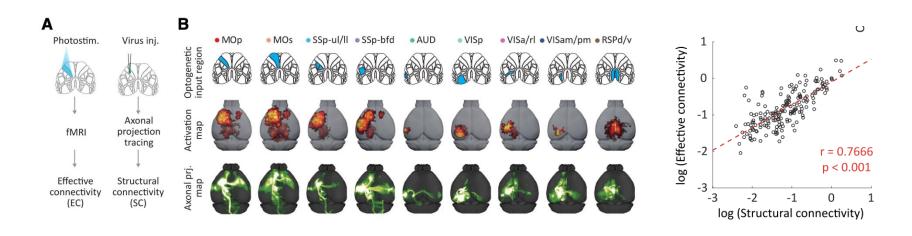
Whole-brain mapping of effective connectivity by fMRI with cortex-wide patterned optogenetics

Seonghoon Kim 126 , Hyun Seok Moon 1346 , Thanh Tan Vo 134 , Chang-Ho Kim 25 , Geun Ho Im 1 , Sungho Lee 2 , Myunghwan Choi 125 $\stackrel{\bigcirc}{\sim}$ $\stackrel{\bigcirc}{\bowtie}$, Seong-Gi Kim 1347 $\stackrel{\bigcirc}{\sim}$ $\stackrel{\bigcirc}{\bowtie}$


OPTOGENETICS – EXAMPLES (2)

Opto-fMRI to perform whole-brain mapping of effective connectivity?

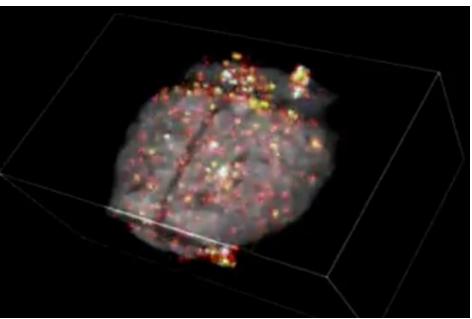
OPTOGENETICS - EXAMPLES (2)


Opto-fMRI to perform whole-brain mapping of effective connectivity?

OPTOGENETICS – EXAMPLES (2)

Valerio Zer

Opto-fMRI to perform whole-brain mapping of effective connectivity?


ENGINEERING NEURONS

Excellent agreement between effective FC and structural axonal connectivity (from the cortex)

OPTOGENETICS – EXAMPLES (2)

Opto-fMRI to perform whole-brain mapping of effective connectivity?

OPTOGENETICS – EXAMPLES (3)

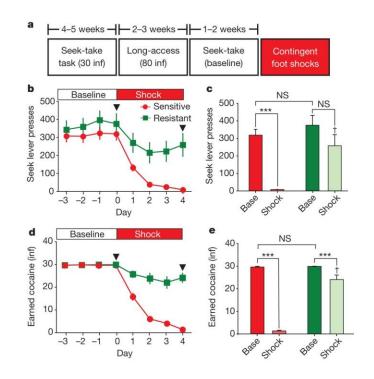
Optogenetics & addiction

nature

Explore content > About the journal > Publish with us >

nature > letters > article

Published: 03 April 2013

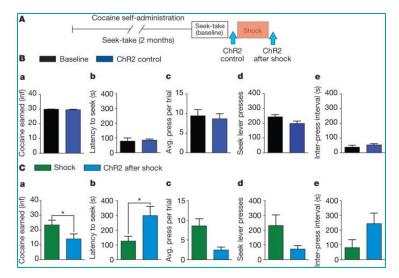

Rescuing cocaine-induced prefrontal cortex hypoactivity prevents compulsive cocaine seeking

Billy T. Chen ☑, Hau-Jie Yau, Christina Hatch, Ikue Kusumoto-Yoshida, Saemi L. Cho, F. Woodward Hopf & Antonello Bonci ☑

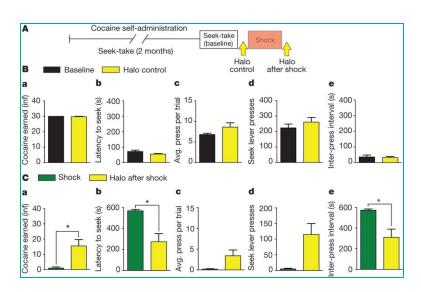
<u>Nature</u> **496**, 359–362 (2013) | <u>Cite this article</u>

32k Accesses | 348 Citations | 289 Altmetric | Metrics

OPTOGENETICS – EXAMPLES (3)



d Firing frequency (Hz) • Naive Naive Sensitive ★ Resistan Sensitive Resistant 100 200 300 400 500 ms Input (pA)


Some rats keep seeking cocaine despite foot shock

These rats have lower activity in inflarimbic cortical neurons

OPTOGENETICS – EXAMPLES (3)

In vivo optogenetic stimulation of prelimbic cortex suppresses compulsive cocaine seeking

In vivo optogenetic inhibition of prelimbic cortex enhances compulsive cocaine seeking

ENGINEERING NEURONS

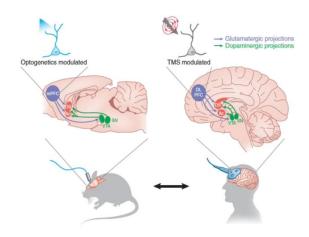
OPTOGENETICS – EXAMPLES (3)

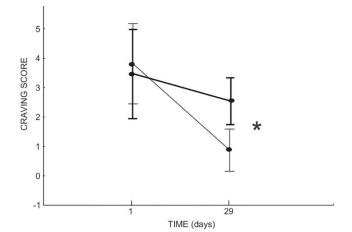
Clinical impact of optogenetics

Randomized Controlled Trial > Eur Neuropsychopharmacol. 2016 Jan;26(1):37-44. doi: 10.1016/j.euroneuro.2015.11.011. Epub 2015 Dec 4.

Transcranial magnetic stimulation of dorsolateral prefrontal cortex reduces cocaine use: A pilot study

Alberto Terraneo ¹, Lorenzo Leggio ², Marina Saladini ³, Mario Ermani ³, Antonello Bonci ⁴, Luigi Gallimberti ¹


Affiliations + expand


PMID: 26655188 PMCID: PMC9379076 DOI: 10.1016/j.euroneuro.2015.11.011

Free PMC article

Abstract

Recent animal studies demonstrate that compulsive cocaine seeking strongly reduces prelimbic frontal cortex activity, while optogenetic stimulation of this brain area significantly inhibits compulsive cocaine seeking, providing a strong rationale for applying brain stimulation to reduce cocaine consumption. Thus, we employed repetitive transcranial magnetic stimulation (rTMS), to test if dorsolateral prefrontal cortex (DLPFC) stimulation might prevent cocaine use in humans. Thirty-two cocaine-addicted patients were randomly assigned to either the experimental group (rTMS) on the left DLPFC, or to a control group (pharmacological agents) during a 29-day study (Stage 1). This was followed by a 63-day follow-up (Stage 2), during which all participants were offered rTMS treatment. Amongst the patients who completed Stage 1, 16 were in the rTMS group (100%) and 13 in the control group (81%). No significant adverse events were noted. During Stage 1, there were a significantly higher number of cocaine-free urine drug tests in the rTMS group compared to control (p=0.004). Craving for cocaine was also significantly lower in the rTMS group compared to the controls (p=0.038). Out of 13 patients who completed Stage 1 in the control

 École polytechnique fédérale de Lausanne