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Recap: Block Diagram of a Neural Interface: ADC
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Recap: ADC Basics
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Recap: 3-bit flash (parallel) ADC
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• An n-bit flash ADC uses 2n-1 
comparators, 2n resistors and a 
decode logic. 

• Pros: the fastest type of ADC.
• Cons: limited resolution, 

expensive, large power 
consumption and low accuracy

• Applications: Data acquisition, 
sampling oscilloscope and high-
density disk drives. 



Recap: Successive-approximation-register (SAR) ADC
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Successive-approximation-register (SAR) ADC
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ADC Architectures 
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§ Many different ADC architectures exist 
§ Successive Approximation Register (SAR)
§ Flash 
§ Pipeline
§ Delta-Sigma (∆Σ)
§ …



Speed and Resolution of ADC Types
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Optimized ADCs for Neuro Applications
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§ Complete re-construction not necessary
§ Information not distributed uniformly 

M. Judy, et al,, TBCAS’14



Optimized ADCs for Neuro Applications
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§ Higher resolution for identical number of output codes 



Optimized ADCs for Neuro Applications
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M. Judy, et al,, TBCAS’14



Multichannel Architectures
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Neural Interface: ADC and Compression
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F. Chen et al, JSSC’12

§ The typical circuit blocks used in sensors for medical monitoring and their associated 
energy cost and power consumption 

?



Data Compression
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On-Chip Compression of Neural Signal 
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§ Spike Detection



Compression of Neural Signal 
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§ Spike Detection
§ High compression ratio (CR)
× Losing the raw waveform
×Unreliable in long-time



Compression of Neural Signal 
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§Compressive Sensing (CS):
§ CS relies on the signal of interest being sparse in some basis, Ψ. 
§ Many biological signals of interest are sparse e.g. EEG, ECG, etc.



Digital Data Acquisition
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Data Reduction in Wireless Sensors
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What we want: 
§ Compression: minimize data, but retain the information 
§ Low cost: must be less than transmission savings
§ Generality: we don’t want to customize every sensor 

design 



Compressive Sensing
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§ In 2006, Candès and Donoho proved that given a signal’s sparsity, it may
be reconstructed with even fewer samples than the sampling theorem
requires

§ Low cost, generality

§ Random matrix with Gaussian or Bernoulli entries (random 0, 1) 
§ Recovery: a convex minimization problem



Compressive Sensing
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Compressive Sensing
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§ Sinusoid example: 



Compressive Sensing
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Compressive Sensing
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Compressive Sensing Hardware: Digital
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Compressive Sensing: Digital
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N = 1000
M = 50   
CR = 20

F. Chen, JSSC’12



Compressive Sensing: Digital
N

X-
42

2 

58



Compressive Sensing: Digital
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§ Significant data reduction
× Power: 1.9µW
× Large area: +0.1mm2/channel
§ Need for a more efficient approach

?



Single-Channel Compressive Sensing
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Channel 1

Channel 2

Channel 3

Channel N

CR = d/m



Spatial-Domain Compressive Sensing
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Channel N

Channel 1

Channel 2

Channel 3

CR = N/M
1 ≤ M < N

M. Shoaran, TBCAS’14



Spatial-Domain Compressive Sensing
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Spatial-Domain Compressive Sensing
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Measurements and Die Photo
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4x4 
Grid

ℓ1,2 recoveryℓ1 recovery

SNR = 28.04dB SNR = 21.3dB 



Spatial Compressive Sensing
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Average SNR

ü 16× increase in number of channels

ü No increase in transmission power


