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Appcndlx A: Matrix Algebra Tutorial

Matrices and Their Basic Operations

A matrix is a two-dimensional ordered array of numbers. It can have any number of rows
and columns, and it can contain any type of numbers (e.g., positive, negative, real, imagi-
nary). The only requirement is that there are no missing values. The order of a matrix is ite
number of rows and columns. For example, the matrix

lz 3 -llA:l I

[0 + 4l

is of order 2 x 3 because it has 2 rows and 3 columns. To enter this matrix into MATLAB,
at the command line (denoted by >>) fype

A: 12 3 -I;0 .5 4l

Hitting the return key produces

A-
A_

2.0000 3.0000 -1.0000
0 0.5000 4.0000

By convention, matrices are typically identified by capital letters, and the order is some.
times expressed below this letter. For example, the 2 x 3 matrix A might be written as A-.
A matrix in which the number of rows equals the number of columns is said to be tqu'iit
(i.e., the order is r x n, for some value of n). A square matrix in which all entries not on the
main diagonal equal 0 is called a diagonal matrix. For example,

Ir

o: lo

Io

isa3 x

001
-t2 0l

o+]
3 diagonal matrix.
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I rrrrrll.y. rvitlrirr tttittl'ix algcbra, single numbers are referred to as scalars.

A v'rrrie t-y ol' ltlittltcnratical operations can be performed on matrices and vectors. AI-
llt.tt;1lt rrtltliliorr ltrrcl rlultiplication are included in this list, not all pairs of matrices can bc
;rrlrlt'rl ol rlltlltilllicd. ln clther words, certain conditions must be met before matrix addition
()r rrrrrllrPlicirliotl is clcfined. These conditions are different for addition and multiplication.
l':trrs trl'tttrtlriccs tltat satisfy these conditions are said tobe conformable for that operation.

Itt'o tttitlt'iccs A and B are conformable for addition if and only if they have the same
ottlt't' Mrtlt'lccs ol-clilferent orders cannot be added. IfAand B have the same order, then
lltt'sttttt (' n I B is defined as the matrix containing the term-by-term sums of the entries
rn ,A rrrrtl l]. 'l'hLrs. il'A and B are both2 x 2, then

,\r, 1,,,r 
(/r,lrir, b,rl:lo, ,*b,, a,rtb,rl-,.

1,,,, u,.l ' lh, b"l la, t b^ arz I brl- -'

I rr l\4 A'l'l .n ll. the command A + B will compute the sum, provided it exists. Note that ma-
tr rr rrtltlilion is cornmutative; that is, if A * B : C, then A and B are also conformable for
llr(' sunt li I n, apd B *A:A+3 : g.

Stt;tltosc A is olorder n x mand B is oforder p x q.Then A and B are conformable for
lltt'ltttrtlttct n Il if and only if m:p; that is, if and only if the number of columns of the
l)r('rrrtrlliPliu'ccluals the number of rows of the post-multiplier. If this condition is met,
lltt'tt lltt'Pl'oclttct C:AB is of order nx Q. So C has the same number of rows as the pre-
tttrrllrlrliet'rtltcl the same number of columns as the post-multiplier. If the product C:AB
t'\rsls. llrcrl tlre entry in row i and column/ equals the sum of the term-by-term multiplica-
lr()rr ol'tlrc ctrtries in row i of the pre-multiplier and columnT of the post-multiplier. For
t'r:ttrtltlc.il'Ais3x2andBis2x2,thentheproductisoforder3x2andisdefinedas

Apgrrrttrlix A M,rlrlx Alpierbra Tuloli.tl

lntl

l: ol
12 ul . . l-- ilo rl.

14 rl

To perform the equation A.1 multiplication in
matrices

>> A : 12 3;4 -l);
>> B : [1 -1..2 0];

MATLAII. ollc first tlclirrc:s lltr" lrvrt

The semicolon at the end of each line suppresses printing. Next typo

>> A*B

Hitting the return key produces the result

ans :
8-2
2-4

Unlike addition, matrix multiplication is not commutative. In fact, if A is n nt rrrrtl ll is

ffi * p,then the productAB is defined (and is of order n , p),but note that BA is ttol tlt'lirrt'tl

unlessp : n.Even in this case, however, AB will generally not equal BA. Bccattse ol lltts.

great care must be taken about the order in which one writes the various lcrttts itt t'ltt'lt

product.

Any matrix can be multiplied by a scalar in an operation known as scalar rrrtrlti;llit'ltltott.

The scalar simply multiplies each entry in the matrix. For example,

_fr 2l Is rol
5l l:l 

I

13 ol lr5 ol

This scalar multiplication is done in MATLAB via the following commands:

>> A : ll 2;3 0l;
>> 5*A

Another useful operation is matrix transposition. The transpose of a matrix A. tlcttolt'tl

by A', is created by switching the rows and columns of A. Specifically, the i'r' row ol'A lrt'

comes the ith column ofA/ (for all i). So ifA is lt x //t, then A/ is m x n. For exatttltlc.

, l2 ol
12 t-31 I II l-l t 41.
[o 4 r] l^ .lL '] l-3 ll

1,,,,\ tr 
1,,,,

l"''

,\:; rrrlrrcl'ical examples, note that

' ,llr -rl fs _21

r ril: oJ-[z -41

I a,rb.,.,l

+ oi.-,b.-.l : a" "| 3^2

I arrbrrl

u..''llu,, b,,l fo"b"u:zll, , l: lo,b,,
u.rlLo" , ,bt') for,,u,,,

* arrb^ a,,b'

t arrb^ arrb,

t arrbr, 
,,r.orrb,

(A.1)
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MATLAB will produce the transpose of any mntrix A simply by typing

-'-t Al

Onc usefirl rule regarding transposes is that the transpose of a product equals the product
ot'the transposes in reverse order. So, for example,

r tl

In B ) - B/A/.
\rt. tn n< 1t I l,>\m mxn

Note that if the product AB is defined, then B/A/ must also be defined.
By convention, the transpose is also used to denote a row vector. Standard notation is to

interpret a vector v as a column vector. If so, then to denote a row vector one would writo
v',

Mutrix algebra is especially useful for simpli&ing and solving systerns of simultaneou'
linear equations, as, for example, one finds in the GLM. To see how this is done, considor
thc equations

,r-,v*22=2

3.r ly-z=4
5x+2v-z=9

Notc that these equations can be rewritten in matrix form as

lr -r zl['] lzlj: r -'llrl:lol,
ls z -,J[,J [nJ

wltich we can rewrite in shorthand form as

Al __b

whcrc

[r -r 2] ["] fz]n:lr I -ll, ":lyl, und U:l+1.
[s 2 - r] L,) [nJ

ll'cquation A.2 was a univariate (i.e., scalar) algebraic equation, we would easily solvo
lirr 1 by dividing both sides by A. This does not work with matrix equations, though, be.
ctll'lsc matrix division is not defined. However, note that dividing both sides of the scalar
crluation .

(A.2)

.=
Apprndlr Ar Mrtilr AlSrbrr Trrtorlal

ax=b

by a is the sarne as multiplying both sides by the inverse of a:

e-tax: a-1b, which implies thatx: a-tb.

Fortunately, the inverse of a matrix is defined, at least under certain special conditions.
The value Il2 is the multiplicative inverse of 2 because their product is the iderrtity ele-

ment 1, and 1 is the multiplicative identity because

l xr:xxl:x,

for any value ofx. So to define amatrix inverse, we must first define an identity matrix,
More specifically, we seek a matrix I such that

IA: AI : A. (A,3)

Note that the only way that both products IA and AI are defined and equal to each other in
if A and I are both square and of the same order (i.e., n x n). For any value of n, it can be

shown that the only matrix I that satisfies equation A.3 is the n x n matrix

fro ol
tll0 1...0tI: | . . l,l::'.:ltt100 1l

which is a diagonal matrix (nonzero values only appear on the main diagonal) with every
entry on the main diagonal equal to 1. To see that I satisfies equationA.3, note, flor example,
that

11 
o oll' -r 2l fr -r ,ll, o ol [' -r 2]

lo I oll3 I -tl: l, I -rllo I ol: 13 I -rl
[o o r]15 2 -rJ ls 2 -t][o o r] [r 2 -r]
In MAILAB, the n x n identity matrix is constructed via the command eye(n). For exam-
ple, to construct a3 x 3 identity matrix, type the command

>> I: eye(3)

Hitting the return key produces

1

0

0

301

00
l0
0l

I:
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The identity matrix can be used to find the inverse of a matrix. IfA is n x n, then we seok
another n x n matrix, which we denote O"t, fbr which

A rA=AA t=1.

If A is the2 x 2 matrix

e:[o' ' a"f,

lurt azz)

then it turns out that

A,- t far, -o,rf.
u,ezz - drzozrl-o^ ar, l

(A.4)

(.{.5)

We can verify that this works, for example, by computing

A lA - --J-.l 
o" -o"flo,, o,,]

errozz - drzdzrl-o^ or, llo^ orrl

_ 1 lo'orr-orzezr 0 
Iotrazz-t"t"l o e,ezz-orrorrl

_t
-l

MATLAB computes the inverse of a matrix A, if it exists, via the command inv(A). For
example, to compute the inverse of the matrix

lt elA,=l I

[3 4l

'Ilpe

_,_'A = l7 9;3 4l;
>> inv(A)

'l'his produces the result

4.0000 -9.0000 
ans:

3.0000 7.0000

Note that the inverse defined by equationA.5 exists only if the denominator of the scalar
nrultiple is nonzero;that is, only if

Apprndlr Al Mrtdr Algrbn Ttrtorlrl

QtrOn- arrUrr*0,

This value is so importantthal it is given its own name, the determinant, which is written

as lAl. Specifically, the determinant of a2 x 2 matrix A is defined as

la.. o."l
lAl :| " ''l:o,.rorr.-otzazt.

laz, azzl

It turns out that every square matrix has a determinant, and every square matrix has an in'
verse if and only if its determinant is nonzero. For matrices 3 x 3 or largeq computing a

determinant or inverse can be time consuming and tedious. With MATLAB, however, theoo

computations are trivial. For any square matrix A, det(A) returns the determinant and

inv(A) returns the inverse (if it exists). For example, the determinant of the 3 x 3 matrix A

from equationA.2 is

Ir -r 2ltt
lAl :13 I -11 :5.

ttls 2 -11

Therefore A has an inverse.

The following commands compute this determinant in MATLAB:

>> A: [1 -l 2;3 | -l; 5 2 -l];
>> det(A)

which produces

ans :
5

The inverse of this matrix is computed from

>> inv(A)

which produces

ans :
.2 .6 -.2

-.44 -2.2 1.4

.2 -l.4 .8

In summary, any matrix A has an inverse if and only if two conditions are met. First, A

must be square, and second, the determinant of A must be nonzero. A matrix with an in'

verse is said to be nonsingular, whereas a square matrix without an inverse is singular, So

30t
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tt lnatrix A is ntlnsingular il'arrd only il'lAl * 0, Another irnpurtant property of the inverse
is that il'it does cxist, then it is unique. In other worcls, lirr n lnartrix A satisfying thcse two
corrclitions there exists only one nratrix A I for which

Arn'AAr=1.

Rank

A sct ol'vectors is said tobe linearly independent if and only if it is impossible to write any
ottc tll'them as a weighted linear combination of the others. A set of vectors that are not
lincurly independent are said to be linearly dependent For example,

lrl lri [:l
lzl. I'1, and lol

l,l ['] [']
are lincarly dependent because

As nnother example,

Itl lzlllnndll
l2l [3]

nre lirtcarly independent because neither one is a scalar multiple of the other.
livery matrix can be considered either as a collection of row vectors or column vectors.

A we ll-known result in matrix algebra is that the number of linearly independent columns
in ury tttatrix must equal the number of linearly independent rows. For example, consider
tltc nratrix

t 2l
3 tl

t.r 3l
2 -1]

(A.6)

As column 2 is not a scalar multiple of column 1, there are two linearly independent col-
llllllls in this matrix. Therefore, there must also be two linearly independent rows. The first
lwo rows are linearly independent because the second row is not a scalar multiple of the
lirst. Row 3, however, equals

til;TF-

Apprndlr Ar Mrtrlr Algcbrr nrtorlrl 30t

l- rl t tl tll

l,l:'lrl-[']'
so row 3 is not linearly independent of rows 1 and 2. Similarly, note that row 4 equals row

2 minus row 1. Therefore, there are also two linearly independent rows in this matrix'

The rankof a matrix equals the number of linearly independent rows or columns. So fbr

example, the rank ofA in the equation ,4..6 matrix is 2. Rank is a useful construct that has a

number of important applications. For example, as we will see, the number of solutions of

any set of simultaneous linear equations can be determined by comparing the ranks of two

appropriate matrices. computing the rank of any matrix in MAILAB is simple' For ex-

ample, the rank of the equation l\.6 matrix is computed via

>> A : ll 2;3 l;-l 3;2 -ll;
>> rank(A)

which produces

ans :
2

Computing the rank of a matrix by hand can be difficult. The following properties of

rank, however, can simplifu this process.

ProperQ I The rank of a matrix equals 0 if and only if every entry in the matrix is 0'

Property 2 If A is of order n x F/t, then rank(A) < min(n,m). This result fotlows because

the number of linearly independent rows equals the number of linearly independent col'

umns. So for example, if a matrix has fewer rows than columns (i.e., so n < *),then at mogt

there are n linearly independent rows, and therefore also at most n linearly independent

columns. A corollary to this result says that the maximum rank of an n x n square matrix ig

n. In this case, note that all rows and all columns are linearly independent. An n x n square

matrix with rank r is said tobefull rank.

property 3 If rank(A) : 7i then there must exist an r x r submatrix offull rank. A sub-

matrix is created by striking out any number of rows or columns. For example, the rank ol'

the matrix

isnogreaterthan3becausecolumn2isthesumofcolumnsland3.A3x3submatrixof
fu1l rank can be created by striking out row 2 and column 2. Note that this process leaves

the 3 x 3 identity matrix, which is full rank. Therefore, this matrix has rank 3'

11001
47301
o I I rl
00011
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Pntperty 4 Suppose A is n x n. Then rank(A) = n lf ancl only if lAlt'0. This is a very
important property. Note that it provides another way to determine whether a matrix is
nonsingular (i.e., has an inverse).

ln summary, ifA is a square n x n matrix, then the following statements are all equivalent.

I , rank(A): n.

2, lAl * o.

3, A is nonsingular (i.e., A-' exists).

Similarly, the following statements are also equivalent.

l. rank(A) < n.

2, lAl = o.

3. A is singular.

Solvlng Llnear Equations

Any set of sirnultaneous linear equations must have 0, 1, or an infinite number of solutions.
Examples of these three possibilities are shown in figure A. 1. For example, the equations

r+.y=0

r'I',v=2

huvc zero solutions because if x+y equals 0, it cannot also equal 2. Graphically, these

equations describe parallel lines with slope -1 and y-intercepts 0 and 2 (see the top panel
of figure A.l). A solution to these equations would be a point (*, y) that falls on both lines
nnd therefore simultaneously satisfies both equations. Of course, parallel lines share no
points in common, so these equations have no solution.

Simultaneous equations with no solutions are said to be inconsistent.If atleast one solu-
,ion cxists, then the equations are consistent With linear equations, there are only two
tossibilities if the equations are consistent. They either have one solution or they have an
nlinite number of solutions.

The middle panel of figure A.1 shows an example of equations with one solution:

t .y:0
;l.v:2.

itrlving these equations produces x: I andy: l, and figureA.1 shows that this is the point
vltcrc the two lines intersect. In contrast, the equations

:t y:)

'..r 
I 2y: 4

tril-IF

Apprndlr At Mrhlr Algrbrr TUtorlrl

Flgure A.1
Ttiree possihlc outoorne s when trying to solve a set of simultaneous linear equations. Either there are 0 solutione

(top), irne solution (rniddlc), or an infinite number of solutions (bottom).

t0t
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have an infinite number of solutions because they both describe the same line. Therefore,
any point on this line is a solution of both equations.

When faced with a set of simultaneous linear equations therefore, our first question is to
ask whether they are consistent. If not, then nothing more can be done. If they are consis-
tent, then the next question is to ask whether they have one solution or an infinite number.
The question of consistency can be answered by comparing the ranks of two different ma-
trices. Specifi cally, the equations

Ar=b

are consistent if and only if
rank(A) - rank(Aib), (A.7)

where A:b is the matrix A augmented with the vector b. For example, if A is n x Lt,then x
andbmustbothbenxl.ThematrixAtb,whichisofordernxn*l,containsAinitsfirst
n columns and b in column n + l.

ll'A is n x fi, then rank( A) < n, and adding another column to A cannot decrease its rank.
ThereFore, note that equation A.7 holds if b is linearly dependent on the columns ofA and
it is violated if b is linearlyindependentof the columns ofA. Furthermore, note thatby
rank property no. 2, rank(A'b) < n (because this augmented matrix has only n rows). So if
A is full rank [i.e., rank(A):nf,thenbecause adding b cannot reduce the rank of Aib,
equation A.7 must hold. In other words, the equations A4: b are always consistent ifA is
full rank. This means that if x and b are n x 1, then the only conditions under which the
oquations Ax : b are not consistent is if rank(A) < n.

To illustrate these results, consider our earlier examples. First, rewriting

r*y=6 and xIy:2
in matrix form produces

I rllrl lol
r rJ[yJ 

: 
[r]

\ote that

rrnk(A) - ru*l] ll: t and rank(Aib): ru*[l t o]:r.
1rJ [1 t2]

o these equations are not consistent. As another example, consider the equations

'l.v=2 and 2x+2y:4.

n matrix form these become

:#
Apprndlr Ar Mrtrlx Algcbrr Ttrtorlal t0t

l: ill;l: lil
Because

Irrllrt2lrankl I : rankl l: 1.

l22l 12241
these equations are consistent.

If the equations Ax : b are consistent, then they have either one solution or an inflnitc
number. The difference depends onA. IfA is square and full rank, then A-r exists and there

is only one solution, which is easily found by solving for x:

Ar: b

implies that

A-tAI: A-lb

and so

x : A-lb. (A.E)

For example, consider the three simultaneous equations described by equation A,2,
Using A.8 produces the following unique solution to these equations:

We can verifu that x: l, !:3, and z:2 is the solution by substituting these values back

into the original equations. MATLAB solves these equations via the commands

>> A: [1 -l 2;3 I -l;5 2 -ll;
>> b : 12;4;9);
)) 1: inv(A)*b

The result is

x-
1.0000

3.0000

2.0000

If the equations are consistent butA is not square and fulI rank, then there are an infinite
number of solutions. In this caseAhas no inverse and may not even be a square matrix, The

tr -l 2l-'l2l l.z .6 -.zllzl trl

':i; : -f [;J:l; -:1 lr][;l:[i
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infinite number of solutions that exist can be found by using a generalization of the inveruo
called the generalized inverse, which is often denoted by A . Every matrix has a general.
ized inverse, even matrices that are not square. For details on using the generalized invergo
to solve linear equations, see for example, Searle (1966).

Elgcnvalues and Eigenvectors

One other useful topic in matrix algebra, which forms the basis of PCA (see chapter 10) for
cxampleo is eigenvalues and eigenvectors.

Dcflnltlons
Consider an n x n matrixA. Suppose we are able to find an n x I vector v and a scalar d
such that

Ay.= dy., (A.9)

or in other words, when we post-multiply A by the vector g the result is still v, except
scaled by the constant d. In such a case, the vector v is called an eigenvector of Aand the
eonstant d is called an eigenvalue. At least at the level of mathematics considered in this
book, equation A.9 by itself does not offer any profound insights into the matrix A. So the
definition of eigenvalues and eigenvectors is not particularly illuminating. Even so, eigen-
vectors and eigenvalues have many properties that are extremely useful, and it is for these
properties, rather than for the definition, that eigenvectors and eigenvalues are so frequently
used in statistics.

Next we consider methods for finding the eigenvectors and eigenvalues of a matrix. If
equation A.9 holds, then

AY-dY:0,

where 0 is a vector of all zeroes. And therefore,

(A - r/l)y : 0. (A.10)

Note that we needed to add the matrix I to make the difference inside the parentheses
conformable.

An obvious solution to equationA.l0 is that v:0, but this is not interesting because it
is a solution no matter what the matrix A, and for this reason, it certainly cannot tell us
onything useful aboutA. Thus, the only solutions of equationA.l0 that could be of interest
ttrc when y + q. Now if (A - dI) is nonsingular (i.e., full rank), then v : 0 is the only solu-
tion. For this reason, we are interested in finding values of d that make (A- dI) singular.
As we saw earlier, a square matrix is singular if and only if its determinant is zero. There-
firre, our task is to find values of dtor which

ffi'
Apptndh Ar Mrtrlx Algcbru'lUtorlrl

lA-dt; =9.

This is called the characteristic equation of the matrix A.

Note that unlike equation A.10, both sides of equation A.l I are scalars (rathor than v€0.

tors). In fact, if A is n x n, then its characteristic equation is an nth order polynomial, FOf

example, in the case of the matrix

lr llA _l In-t t-

[1 3]'

the characteristic equation is

:(3_d)r-r

: dt -6d +8

: (d - 4)(d -2).

The two roots of this quadratic equation and, consequently, the two eigenvaluog of A fru
d: 4 and d: 2. MAILAB will produce these eigenvalues in response to tho commrnd

eig(A). For example, the commands

>> A : [3 1;1 3];
>> eig(A)

produce

ans:
2

4

Once the eigenvalues are computed, the eigenvectors can be determined by solving

equations A.10. In the current example

[:]:[[i ]l tl :ll[;l
lz- a I l[u,l:l ll l.

I t 3-d)lv,l

u
ut

(A,11)

':lI l] t3 :ll
lz-a 1 I

-ttI r 3-dl
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Wt' bepiirr hy srrbslilutirrg ilr tlrc lirst cigcnvlltrc r/ .l:
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(4. r2)

A;lporrrltx A M,rlrlx Algcllr.r Trrlori,rl

JI
J:l

Properties

As previously mentioned, the definitions ol'cigcnvalttcs iutrl eil1r'ttvt't'lor', rlu ttr'l lrrtrl lo
any immediate insights into the matrix A. llowcvcr, cigcnvllrres irrrtl n1-',t'rr\r'r lor', lrirvr'

many properties thatare extremely useful in a wiclc varicty ol'rrpplr('llr()ns. itttrl tl t:.i lirt
these properties that eigenvalues and eigenvectors arc corrsirlcrcrl cort'loprr'', nr nr,lln\ ot

linearalgebra.As we saw in chapter 10, several ol'thosc propcrties lie irt lltc ltt'tttl ol l'('A
This section describes a few of the most importarrt propcrties ol'r'ige ttvirlut", ntt,l .'t1'1'11

vectors. Any text on linear algebra will include a variety tll'otltct's.

Property I An n x n matrix has n eigenvalues, soma d'whit'lt nt(t,t'('.lttttl 0,trt,l tttntc'ttl

which moy be repeated. This follows because the charactclislic ctlutll()n ol nn ,, n

matrix is an nth order polynomial, which has n roots. In our earlior rrtutrt'r'it'rrl crrtttlrlr', llrr'
2 x 2 matrix

Ir ll
^ -l 

In-t I

11 3l

has two eigenvalues; namely, 4 and2.

Property 2 The number of nonzero eigenvalues of A equals the rank of'rl. 'l'ltis ptogrcttt'

is extremely useful because it can be quite tedious to compute the rank of a nrirtt'ir lry tlt'

termining the number of linearly independent rows or columns. Notc thll irtt itttgrotlitttl

corollary to this property is thatA is singular if and only if A has at lcast one e igettvitlttt'

equal to 0. In our earlier numerical example, A had two eigenvalues d - 4 attrl r/ L l'lrcsc

are both nonzcro, so the rank ofA is 2 and therefore A is nonsingular.

Propcrl.v 3 Thc determinanl of A equals the product of its eigenvaluas. So itt ottl'tttt

merical cxarnplc, the determinant of Amust equal 4x2:8. Because A is 2 ' l. tlris rs

easily vcrilicd:

l: rl
I I (.i,.1; (lxl)-9.
ll 3l

With rnrrclr llrgcr rnertrices, however, computing the determinant dircctly is it litttt'
consurnirrg pll)ccss. ll'the eigenvalues are known, property no. 3 makes this cotnpttlrtltott

sinrplc. Nolc irlso that if one of the eigenvalues of A is 0, then their procluct will lrt' zt'to.

ancl hurcc llrc tlctcrnrinant of A will be 0. In other words, ifA has one or n'loro cigc'nvrtlttr':,

ccpral lo 0, thcrr A nrust be singula result that also followed from proporly rto. 2.

l)nt1x'r'ty.l 'l'ltc trtrct,of'A equals the sum of its eigenvalues. The tracc ttl'it ttutltir t:'

oc;trirl lo llrc strrrr ol'all elements on the main diagonal. So

llll'',
r r ll'"

Iol

l,,l'

n lriclr lc:rtls [o two ccluations and two unknowns

f 'r I r'., 0 altcl v, - vr:0.

Nolt' lltitl tltcsc twcl equations have an infinite number of solutions. Of course, this was
tttt'r,illtblc bccausc we selected the eigenvalues d: 4 and d:2 precisely because they arc
lltt' ottly possiblc values of d that lead to an infinite number of solutions of equations A.10.

Att.y strt 1vl'v', and vrthat satisfy equations A.l2 define a legitimate eigenvector of thc
rrrrlrix A. Nol.c tlrat all such solutions fall on the line

l" l'r '

z\tt.y vector can be considered as a directed line segment beginning at the origin (0,0) and
t'rrtlirrpi irl tlrc vector coordinates. Thus, although there are an infinite number of solutions
lr r r'r;ttitlirxts A. 12, they all point in the same direction. They differ only in length. The con-
t'r.'nlirttt is to choose a solution so that the resulting eigenvector has a length of 1; that is, to
t'lroosc r', and u, so that v/v: 1.

An citsy way to do this is to choose any solution, compute v/v, and then divide both v,

rttttl t', by tlrc square root of this value. In the example of equations A.12,we could choose
l'r I irntl tr, - I

l lrcrr

trl\'\ |I lll.l:2,
lrl

;rrrtl srr tlrc cigenvector associated with the eigenvalue d: 4 is

lJ I\, I I

I J'l

Wc ttsc thc subscript I to signifu that this is the eigenvector associated with the first, or
l;tt1rcsl, cigenvalue. We can verify that the length of this eigenvector is I via

llv rr sirtrilar process, we can determine that the eigenvector associated with the second
,'r1t,r'rrvlluc cl : 2 ts

Irl,lllrl I,l_,
r'll+l t-r: ''

lvr I
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Ittttl rttrlc tlrat tho sunr ol'thc cigcnvalues of this rnatrix is also (r (i.c., 4 +2).

l'rrtltt't'l.t' 5 Diugrtnal Reprcsentation oJ'a Symmetric Matrix. Suppose A is a symmelrit'
tt " tt ttttrlrix. Construct the n x n diagonal matrix D that has the eigenvalues oJ'A on ill;
t,t.titt tliugontrl (e.g., in descending order of magnitude). Construct the n x n square matrix
l't'lrtt,t't'r'olumns are the eigenvectors of A (so that the i'h column of V is the eigenvector
llttrl t'rtrra,sponds wilh the eigenvalue in row i and column i of the matrix D). Then A : VDV/.

lrr our numerical example, the diagonal representation ofA is given by

lr rltl.lr 3l

A Irratrix in which all eigenvalues are positive is said tobe positive definite, and a matrix in
wlrich all eigenvalues are non-negative (e.g., some may be zerc) is said tobe positive semi-
tl<'f inila. Note that, in this example, A is positive definite. PCA works on the eigenvalues
Ittttl cigenvectors of the sample variance-covariance matrix. All variance-covariance
rrrltrices are symmetric and positive semidefinite.

MATLAB computes eigenvectors (and eigenvalues) using a similar form. Specifically,
llrc cornmand

lV,l)l =eig(A)

t'ctttt'tts a matrix V whose columns are the eigenvectors of A and a diagonal matrix D con-
tirirrirrg the eigenvalues ofA. For example, the commands

A ,[3 1;1 3];

lV,l)l : eig(A)

prrxlucc the output

V_
0.707 t 0.7071
0.101I 0.707t

0

4

Appendix B: Multivariate Probability Distributions

Arandom vector is a vector in which every entry is a randottt vlriirhlc. lrol t'rnrrrplr', r'orr

sider the vector

If x is a random vector, then eachx, is a random variable. Let./',(x,) dcrrote llte lttrtlutlrlltty
density.function (pdf) of x,. This function specifies the likelihood that t rirrrrkrrrr srrrrrplt.

drawn from the x, population exactly equals any specific numerical valuc.r I l',r', is rrolrrrrrllv
distributed, then.f',(x,) is the familiar bell-shaped curve. With respect to thc llntlorrr vt'r'lot'

x, the pdf.s./,(.r,) are known as the marginal distributions.
The nrarginal clistributions of x provide much information about the sanrpling belrrrvirrr

of x, but thcy do rrot tell us everything. In particular, they provide no infbrnratiorr irlrorrl rurv

statistical rclationships that might exist among the various x,. Complete inlilnrraliolt rrlxrrrl

x is catalogucd irr the joint probability densityfunction (or joint distribution)

.f'(x,, .rr,. . , .\',.) /8).

This lirnctiott spccifies the likelihood that a random sample from the x popullliorr will
procltrcc lrry spccilic r x I numerical vector.

ll'tlrcrcr is tto statistical relationship among any of the x,,then all informatiorr irr lhe ,joirrl
pdl'is spccilictl by thc marginal pdfs. More specifically, the random variables.r1,.\'.,, , , . . \,
arc l;lttli,vlit'ttll.r itulcltcndent if and only if

l. 'l'lris ttolrrliorr is slo;rpy bccause it does not discriminate between the name of the random variable rl'l'itrrthrrrr
vectot' irttrl llrc spccilic nrrtrcrical values that the random variable or vector can take. The current trotltiolr is srrrr

plct'. itttrl lropclully it is obvious from the context which interpretation is intended.

f ",l
l,"l

4: I 
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and the variance-covariance matrix is a record of all varialtccs ittttl t'ovrtttittt('(",.

lirr lrll possiblc valucs ol'.\.,, .r':r, . , .r',.. ll'cquation l|.1 lirils lirr arry cornbirurliorr ol'.r,,
\,. . . . , t,, lltctt a statistical dcpcnclcrtcc cxists anrong thcsc rarrcklrn variablcs.

Multivariate Normal Distributions

Ilrc ttrrrllirturiale normal clistributio,n is, by far, the most widely used multivariate distribu-
Itott rt statistics. For exanrple, it serves as the error model in the GLM and as the model that
ttttrlt't'lics PCA. A multivariate nonnal distribution has three assumptions: (l) the rnarginal
rlrslrilrtrLit)ns are all normal; (2) the only possible relationships among the x,are linear; ancl

1 l;rrll tlopcndencies among the xican be expressed as a function of the dependencies bc-
l\\'cctl lrll possible pairs of-r, (i.e., there are no dependencies that depend on three-way or
lriglrcr ilrtcractions). Thus, even if thex, are each normally distributed, the random vector
r is ttot ttecessarily multivariate normally distributed. In addition, it must also be truc
llrrrl thr; only possible statistical dependencies that exist among the x,are pairwise linear
rclirtiolrships.

'l'hc wcll-known Pearson correlation coefficient (i.e., the Pearson's r) measures linear
rc:lrttionships between pairs of variables. This is the model of statistical dependence that
trrrtlcrlies the multivariate normal distribution. Uncorrelated random variables have no
littcrtr relationship, but they could have a nonlinear relationship, in which case they would
ttol bc statistically independent (i.e., equation B.1 would not hold). Statistical indepen-
tlcttcc implies zero coffelation, but uncorelated random variables are not necessarily inde-

1te tttlcrrt. In a multivanate normal distribution, however, the only possible relationships are
lirrcirr, so uncorelated is equivalent to independent.

lrr thc multivariate normal distribution, there is a mean and variance associated with
t'rrt'lt (random) variable and a correlation associated with each pair of variables. Let 1t", and,
,r,'tlerrt)te the mean andvariance of.r,, respectively. The corelation between random vari-
;rlrles.r, and x, is defined as the standardized covariance:

r1- ( ll ,l 
)

Because cov/: covyi: note that this is a symmetric matrix. lt is also positivt' st'ttttrlt'lttttlr'

(i.e., no eigenvalues can be negative; see appendix A).

Once numerical values are specified for the mean vector ancl tltc vitt'iiutt'r' ('ovirtt;rn('t'

matrix, then the likelihood of any vector x can be computed fionr thc ltrrtltivrttrtlc trrtttrtirl

pdf:

I-f(D:CC;Wexp[-](l-p)'t-'G-t)l' (lr '')

Figure 8.1 shows an example of this pdf for a bivariate normal distributiotr wltct't' lltt't'nt
relation between x, and x, is positive. The bottom panel shows sotlto cttlttottt's ol t'rlttltl
likelihood from this distribution, which are created by slicing through tho ptll'sltotvtt ttt lltt'

top panel fiom different heights above the (;r,, xr)plane and looking dowrt lrl llrt'tt'sttllr,

from above. Note that these contours all have the same shape and differ only itt sizc. A st':tl

terplot of random samples from the distribution shown in the top pancl wottltl ltitvt' lltt'

same overall shape as these contours. The positive correlation causes thc tttitiot'itxis ol lltt'

contours to have a positive slope. Note that random samples from the distribtrtiolt lltrtl ltrtl't'

a large x, value will also tend to have a large xrvalue.
A special oase of the multivariate normal distribution that is widely usccl tlttrrttgltottl lltt:'

book assLurlos that all variables are independent and all variances are cclttitl. ltt lltis t':t:rt'.

note that

t-
0l

I

0tl: o'I.
.t..1

I

1l

Thc rnultivariatc z-clistribution is a special case of this inwhich the mcatt vectot'r'tlttrtl:. (l

ancl thc variitncc-covariance matrix equals I.

oi cov12

cov21 o|
::

covrl covr2

covlr

cov2r

2or

covt2
l'r ' otoz

ll llrc rrreans andvariances are known, then note that it makes no difference whetherwe
t'ltrtt'rtctcrize the associations of a multivariate normal distribution in terms of correlations
t 't t'ovllt'iances. From either one, equation B.2 allows us to solve for the other. The standard
('()nvcntion is to record the covariances.

'l'lrc parameters of any multivariate normal distribution are catalogued in two structures:
ir rf)cirrr vector p and avariance-covariance matrix D. The mean vector is a record of the
r r r('rn ol' each marginal distribution,

Ir o

,lo 1:o-1.
t::
loo

0

0

2o
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Flgure 8.1
('lirp)'l-hc pdf of a bivariate normal distribution. (Bottom) Contours of equal likelihood from the pdf shown in the
lrrp prrrtcl. Note the positive correlation between x, and xr.
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Frequently in probability and statistics, and also in this book, we are interested in the

distribution of a linear transformation of a random vector. More specifically, supposc tr iE

an r x I random vector, A is an m \ r matrix of constants, and b is an m x I vector of con.

stants. Now consider the m x I random vector

y:Ax+b.

Then regardless ofthe distribution of x, the mean vector and variance-covariance matrix of
y are equal to

Fr:AP*+b

and

E, : AX*A/.

Furthermore, if x has a multivariate normal distribution then y will also have a multivari.
ate normal distribution (because linear transformations of normal random variables are

normal).


