Appendix A: Matrix Algebra Tutorial

Matrices and Their Basic Operations

A matrix is a two-dimensional ordered array of numbers. It can have any number of rows
and columns, and it can contain any type of numbers (e.g., positive, negative, real, imagi
nary). The only requirement is that there are no missing values. The order of a matrix is its
number of rows and columns. For example, the matrix

A=

2 3 -1
0L 4

is of order 2 x 3 because it has 2 rows and 3 columns. To enter this matrix into MATL AL,
at the command line (denoted by >>) type

A=[23-1:0.54]

Hitting the return key produces

A=
2.0000 3.0000 =1.0000
0 0.5000 4.0000

By convention, matrices are typically identified by capital letters, and the order is some
times expressed below this letter. For example, the 2 x 3 matrix A might be written as /\
A matrix in which the number of rows equals the number of columns is said to be \quuu
(i.e., the orderis n < n, for some value of n). A square matrix in which all entries not on the
main diagonal equal 0 is called a diagonal matrix. For example,

is a3 < 3 diagonal matrix.
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A matrix with one row or one column is called a vector. A column vector has a single
column, and a row veetor has a single row. Vectors are traditionally identified by lowercase

underhined letters. So, for example, a 3 < | column vector might be written as

| )

\ 7.
n
Fimally, within matrix algebra, single numbers are referred to as scalars.

A variety of mathematical operations can be performed on matrices and vectors. Al-
though addition and multiplication are included in this list, not all pairs of matrices can be
added or multiplied. In other words, certain conditions must be met before matrix addition
or multiplication is defined. These conditions are different for addition and multiplication.
PParrs o matrices that satisfy these conditions are said to be conformable for that operation.

Iwo matrices A and B are conformable for addition if and only if they have the same
order. Matrices of different orders cannot be added. If A and B have the same order, then

the sum € A+ Biis defined as the matrix containing the term-by-term sums of the entries
i Aand B. Thus, if A and B are both 2 x 2, then

oy dpy

b, b,

b 21 h::

a, +b, a, +b,
a, +b, ay,+b,

A4 B _

|

ERY oy, |
In MATLAB, the command A + B will compute the sum, provided it exists. Note that ma-
trix addition is commutative; that is, if A+ B = C, then A and B are also conformable for
the sum B+ A andB+A=A+B=C,

Suppose Ais of order 7 > m and B is of order p x ¢. Then A and B are conformable for
the product AB if and only if m = p; that is, if and only if the number of columns of the
pre-multiplier equals the number of rows of the post-multiplier. If this condition is met,
then the product C = AB is of order n x ¢. So C has the same number of rows as the pre-
multiplier and the same number of columns as the post-multiplier. If the product C = AB
exists, then the entry in row i and column j equals the sum of the term-by-term multiplica-
tion ol the entries in row i of the pre-multiplier and column j of the post-multiplier. For
example, ifAis 3 x 2 and B is 2 x 2, then the product is of order 3 x 2 and is defined as

@, a, b b ayb, +anb,  a,b, +a,b,
o D )
\ B a, a, ‘h b |~ ayb, +ayub, a,b,+a,b,|= 1(,j.
1w 2 ) - J - - - - - IXL
Uy
[ty Ay 2x2 ay, by, + ayb,, ayby, +a,b,,
12 Ix2

(A.1)
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and

30
[2 %4 J:no 1].

To perform the equation A.l multiplication in MATLAB, one first defines the two
matrices

>>A=[234-1];
>>B=[1-1;20];

The semicolon at the end of each line suppresses printing. Next type

>> A*B
Hitting the return key produces the result

ans =

Unlike addition, matrix multiplication is not commutative. In fact, il A is n‘ < ;nuI_H 15
m * p, then the product AB is defined (and is of order n * p), but note that BA is not lil‘.illlt'tl
unless p = n. Even in this case, however, AB will generally not equal B/\ Because .“I this,
great care must be taken about the order in which one writes the various terms i cach
product. o

Any matrix can be multiplied by a scalar in an operation known as scalar multiphication.
The scalar simply multiplies each entry in the matrix. For example,

1 2
30

5 10
150

This scalar multiplication is done in MATLAB via the following commands:

>>A=[12;30];
>> 5*A

Another useful operation is matrix transposition. The transpose of a matrix A, :Ia.;unlml
by A/, is created by switching the rows and columns of A. Specifically, the i row of A be
comes the i" column of A’ (for all /). So if A is n x m, then A’ is m x n. For example,

o 2 0
[2 ' }]ﬁ 1 4|
0 4 o
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MATLAB will produce the transpose of any matrix A stinply by typing
A’

Onc useful rule regarding transposes is that the transpose of a productequals the product

ol the transposes in reverse order. So, for example,

W
( A B J B A’
TR Jrem
Note that if the product AB is defined. then B’A’ must also be defined.

By convention, the transpose is also used to denote a row vector. Standard notation is (o
mterpreta vector v as a column vector. If so, then to denote a row vector one would write
h! r.

Matrix algebra is especially useful for simplifying and solving systems of simultancous
lnear equations, as, for example, one finds in the GLM. To see how this is done, consider

the equations

X=y+2z=2
Ixty—z=4
X+ 2y—z=9

Note that these equations can be rewritten in matrix form as

I 1 2 |[x 2
131 —1fy=[4],
i\ 2 ]‘ - 9

which we can rewrite in shorthand form as
Ax b (A.2)

where

A
(S

|
B
O

II"cquation A.2 was a univariate (i.e., scalar) algebraic equation, we would easily solve
lor x by dividing both sides by A. This does not work with matrix equations, though, be-
cause matrix division is not defined. However, note that dividing both sides of the scalar

cquation

ha
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ax=pH

by a is the same as multiplying both sides by the inverse ol a:

a'ax = a'b, which implies that x = a 'h.

Fortunately, the inverse of a matrix is defined, at least under certain special conditions,
The value 1/2 is the multiplicative inverse of 2 because their product is the identity ¢le
ment I, and [ is the multiplicative identity because

I xx=xx1=x,

for any value of x. So to define a matrix inverse, we must first define an identity matrix,
More specifically, we seek a matrix I such that

IA=Al=A. (A3)

Note that the only way that both products 1A and Al are defined and equal to cach other is
if A and I are both square and of the same order (i.e., n * n). For any value of #, it can be
shown that the only matrix I that satisfies equation A.3 is the /7 * n matrix

1 0 - 0
0 1 0
I:>‘. - |

which is a diagonal matrix (nonzero values only appear on the main diagonal) with every
entry on the main diagonal equal to 1. To see that [ satisfies equation A.3, note, for example,
that

10 offt -1 2| |I =1 241 0 0 1 -1 2

0O 1 03 1 —1f=13 1 =10 1 0[=[3 1 ~—1|.

00 15 2 =1 |5 2 =10 0 1] |5 2 ~—I

In MATLAB, the n * n identity matrix is constructed via the command eye(n). For exam
ple, to construct a 3 x 3 identity matrix, type the command

== =eye(3)

Hitting the return key produces
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Fhe identity matrix can be used to find the inverse of a matrix. 1A is 7 <, then we seek
another z< mmatrix, which we denote A ' for which

A'A-AA' =L (A

A s the 2 < 2 matrix

ay, (."I_.‘

[y

then it turns out that

A ——

oy, ”I_‘_”.‘.I

| ! typ —4,
(A5)

Ay

We can verily that this works, for example, by computing

A=A B | dy  —dp||d, dy
(hythy — Uy | =4y Gy [|dy dy
1 ay, Ay, — dy,d,y, 0
sy, —apdy, 0 ay Ay —apa,,

MATLAB computes the inverse of a matrix A, if it exists, via the command inv(A). For
example, to compute the inverse of the matrix

17 9
A

i
l'ype

A [79:34];
inv(A)

I'his produces the result

ans =
4.0000 —=9.0000
3.0000 7.0000

Note that the inverse defined by equation A.5 exists only if the denominator of the scalar
multiple is nonzero; that is, only if
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aydyy Ay 0,

This value is so important that it is given its own name, the determinant, which is written
as |A|. Specifically, the determinant of a 2 x 2 matrix A is defined as

GII al:

|Al= = Ay dy T Ay

ay dy

It turns out that every square matrix has a determinant, and every square matrix has an in
verse if and only if its determinant is nonzero. For matrices 3 x 3 or larger, computing a
determinant or inverse can be time consuming and tedious. With MATLAB, however, these
computations are trivial. For any square matrix A, det(A) returns the determinant and
inv(A) returns the inverse (if it exists). For example, the determinant of the 3 = 3 matrix A
from equation A.2 is

-1 2
Al=]3 1 -—1|=5.
5 2 -1

Therefore A has an inverse.
The following commands compute this determinant in MATLAB:

>>A=[1-1231-1;52-1];
== det(A)

which produces

ans =

5
The inverse of this matrix is computed from
== nv(A)

which producces

ans —
2 0 2
—.44 2.2 1.4
2 1.4 8

In summary. any matrix A has an inverse if and only if two conditions are met. First, A
must be square, and second, the determinant of A must be nonzero. A matrix with an in
verse is said to be nonsingular, whereas a square matrix without an inverse is singular. S0
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amatrix Ais nonsingular il all f
e wnsingular itand only i [A| 7 0. Another important property of the inverse
15 that LIS uni | .
._' it doces exist, then itis unique. In other words, for a matrix A satisfying these two
conditions there exists only one matrix A ' for which ah

ATA=AA"=],

Rank

I.\ H(il l‘II T Ta o 10 Ol » ; » v g 1F
: vectors is said to be linearly independent if and only if it is impossible to write any
me o . T _-\I, » 1 Sl i 1 H o ; :
one of them as a weighted linear combination of the others. A set of vectors that are not
ar ' » » * aAroe cnt ; ‘ ) l
lincarly independent are said to be linearly dependent. For example

I ||‘ 3]
|'| I, and |4
(3 ||| 5

1 |[| |!
|| ‘
A 21+ 21.
1§ 3 ‘||

\s another example,

N

|
and

are hinearly independent because neither one is a scalar multiple of the other
I VeIV atrty e 1de 1 1 '
\ ILIT_\ matrix can be considered either as a collection of row vectors or column vectors
W ' —— = - Ly e A
cll-known result in matrix algebra is that the number of linearly independent columns

I any matri it e > “li i
y m rix must equal the number of linearly independent rows. For example, consider
the matrix 1 .

| 2
} |
A | _
| 3 (A.G)
| 2 |

As ¢ 7 ig aa 1

Lnl.tlmn' 2 s not a scalar multiple of column 1, there are two linearly independent col-
1nns s matrix. The i

s i this matrix. Therefore, there must also be two linearly independent rows. The first

WO rows are inear i i
W t. s are lincarly independent because the second row is not a scalar multiple of the
irst. Row 3, however, equals
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o

so row 3 is not linearly independent of rows 1 and 2. Similarly, note that row 4 equals row
2 minus row 1. Therefore, there are also two linearly independent rows in this matrix.

The rank of a matrix equals the number of linearly independent rows or columns. S0 for
example, the rank of A in the equation A.6 matrix is 2. Rank is a useful construct that has a
number of important applications. For example, as we will see, the number of solutions of
any set of simultaneous linear equations can be determined by comparing the ranks of two
appropriate matrices. Computing the rank of any matrix in MATLAB is simple. For ex
ample, the rank of the equation A.6 matrix is computed via

2

|
2

A = [123 1:132-1];
>> rank(A)

which produces

ans =

Computing the rank of a matrix by hand can be difficult. The following propertics ol
rank, however, can simplify this process.

Property 1 The rank of a matrix equals 0 if and only if every entry in the matrix is 0.
Property 2 If A is of order n x m, then rank(A) < min(n,m). This result follows because
the number of linearly independent rows equals the number of linearly independent col
umns. So for example, if a matrix has fewer rows than columns (i.e., so # < m), then at mosi
there are n linearly independent rows, and therefore also at most 7 linearly independent
columns. A corollary to this result says that the maximum rank of an n * n square matrix is
. In this case, note that all rows and all columns are linearly independent. An n = n square
matrix with rank # is said to be full rank.

Property 3 If rank(A) = 1, then there must exist an r x r submatrix of full rank. A sub
matrix is created by striking out any number of rows or columns. For example, the rank ol
the matrix

10
7 3
11
0

==
- o O

0

is no greater than 3 because column 2 is the sum of columns 1 and 3. A 3 x 3 submatrix of
full rank can be created by striking out row 2 and column 2. Note that this process leaves
the 3 x 3 identity matrix, which is full rank. Therefore, this matrix has rank 3.



107
106 Appendix A: Matrix Algebra Tutorlal Appendix A Matrix Algebra Tutorlal

Property 4 Suppose A is n < n Then rank(A) — nif and only if |4 # 0. This is a very
important property. Note that it provides another way to determine whether a matrix is
nonsingular (i.c., has an inverse). 2
o : \ ‘ : =-X+2
Insummary, iFAis a square n > n matrix, then the following statements are all equivalent. y=-X y
Iorank(A) — n.

2. |Al#0.

A

i Ais nonsingular (i.e., A ' exists).

Stmilarly, the following statements are also equivalent.
Iorank(A) < n.

2. Al 0.

Y

Lo Ais singular.
Solving Linear Equations

Any set ol simultancous linear equations must have 0, 1, or an infinite number of solutions.
l'xamples of these three possibilities are shown in figure A.1. For example, the equations

nve zero solutions because if x +p equals 0, it cannot also equal 2. Graphically, these
squations describe parallel lines with slope —1 and y-intercepts 0 and 2 (see the top panel
o figure ALT). A solution to these equations would be a point (x, y) that falls on both lines L 4
md therefore simultaneously satisfies both equations. Of course, parallel lines share no
waints in common, so these equations have no solution. A

Simultancous equations with no solutions are said to be inconsistent. If at least one solu-
ton exists, then the equations are consistent. With linear equations, there are only two
wossibilities if the equations are consistent. They either have one solution or they have an 2Y

nfinite number of solutions. oy=-2x+4
I'he middle panel of figure A.1 shows an example of equations with one solution:

1

solving these equations produces x = 1 and y = 1, and figure A.1 shows that this is the point
vhere the two lines intersect. In contrast, the equations

Fy=2 Figure A.1 o ) . - e
Three possible outcomes when trying to solve a set of simultancous linear equations. Either there are 0 solutions

X '3-1' 4 (top), one solution (middle), or an infinite number of solutions (bottom).
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have an infinite number of solutions because they both describe the same line. Therefore,
any point on this line is a solution of both equations.

When faced with a set of simultancous linear equations therefore, our first question is (o
ask whether they are consistent. If not, then nothing more can be done. If they are consis-
tent, then the next question is to ask whether they have one solution or an infinite number.
I'he question of consistency can be answered by comparing the ranks of two different ma-
trices. Specifically, the equations

Ax b
are consistent if and only if
rank(A) - rank(A:b), (A7)

where At is the matrix A augmented with the vector b. For example, if A is n * n, then x
and b must both be # % 1. The matrix A:b, whichis of order n x n + 1, contains A in its first
rcolumns and b in column n + 1.

ITA s i i, then rank(A) < 1, and adding another column to A cannot decrease its rank.
Iherefore, note that equation A.7 holds if b is linearly dependent on the columns of A and
115 violated if b is linearly independent of the columns of A. Furthermore, note that by
tank property no. 2, rank(A :b) < n (because this augmented matrix has only 1 rows). So if
Ais full rank [i.e., rank(A) = n], then because adding b cannot reduce the rank of Ab,
cquation A7 must hold. In other words, the equations Ax = b are always consistent if A is
full rank. This means that if x and b are n x 1, then the only conditions under which the
cuations Ax = b are not consistent is if rank(A) < n.

l'o illustrate these results, consider our earlier examples. First, rewriting

vy 0 and x+ypy=2
nomatrix form produces

Lotflx] o
Call] L)

Note that

11 ;
ank(A) r;mk’I 1:] and rank(A:b) = rank

110
= 2,
11
o these equations are not consistent. As another example, consider the equations
v 2 and 2x+2y=4.

nmatrix form these become

-
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(K 2
2 2ly] 4]
Because
K K 1 2
= ran =1,
ran r 2 2 4

these equations are consistent. |

If the equations Ax = b are consistent, then they have either one solution or an mfinite
number. The difference depends on A. If A is square and full rank, then A " exists and there
is only one solution, which is easily found by solving for x:

Ax=b

implies that
ATAx=A""b
and so

x=A"b. (AK)

For example, consider the three simultaneous equations described by cquation A2,
Using A.8 produces the following unique solution to these equations:

1 -1 2]'2] [2 6 =2|2] |1
x=[3 1 -] [4=|-4 22 14|4|=]3|
5 2 -1 (9 [2 -14 89 |2

We can verify that x = 1, y = 3, and z = 2 is the solution by substituting these values back
into the original equations. MATLAB solves these equations via the commands

S=A=[1-1231-1:52-1];
>>b=[2;4;9]:
>>x = inv(A)*b

The result is

X =
1.0000
3.0000
2.0000

If the equations are consistent but A is not square and full rank, then there arc an infinite
number of solutions. In this case A has no inverse and may not even be a squarc matrix. The
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mfinite number of solutions that exist can be found by using a generalization of the inverse
called the generalized inverse, which is often denoted by A . Every matrix has a general
ized inverse, even matrices that are not square. For details on using the generalized inverse

to solve lincar equations, sce for example, Searle (1966).
Eigenvalues and Eigenvectors

One other useful topic in matrix algebra, which forms the basis of PCA (see chapter 10) for
example, is eigenvalues and eigenvectors.

Definitions
Consider an > n matrix A. Suppose we are able to find an n % 1 vector v and a scalar
such that

Av = dv, (A.9)

or in other words, when we post-multiply A by the vector v, the result is still v, except
scaled by the constant d. In such a case, the vector v is called an eigenvector of A and the
constant d is called an eigenvalue. At least at the level of mathematics considered in this
book, cquation A.9 by itself does not offer any profound insights into the matrix A. So the
definition of eigenvalues and eigenvectors is not particularly illuminating. Even so, eigen-
vectors and eigenvalues have many properties that are extremely useful, and it is for these
propertics, rather than for the definition, that eigenvectors and eigenvalues are so frequently

used in statistics.

Next we consider methods for finding the eigenvectors and eigenvalues of a matrix. If

cquation A9 holds, then

Av o dv =0,

where 0 1s a vector of all zeroes. And therefore,
(A dhy =0. (A.10)

Note that we needed to add the matrix I to make the difference inside the parentheses
conformable.

An obvious solution to equation A.10 is that v = 0, but this is not interesting because it
i5 a solution no matter what the matrix A, and for this reason, it certainly cannot tell us
anything useful about A. Thus, the only solutions of equation A.10 that could be of interest
are when v # 0. Now if (A — d1) is nonsingular (i.e., full rank), then v = 0 is the only solu-
tion. For this reason, we are interested in finding values of d that make (A — 1) singular.
As we saw earlier, a square matrix is singular if and only if its determinant is zero. There-
fore, our task is to find values of d for which
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|A~ dl| = 0. (A1)

This is called the characieristic equation ol the matrix A.
Note that unlike equation A.10, both sides of equation A.T1 are scalars (rather than ve
tors). In fact, if A is 1 % n, then its characteristic equation is an n" order polynomial. F'or

example, in the case of the matrix

31
13

the characteristic equation is

0 3 1] [d 0
i o3 o dl
PBd 1
1 3-d
=3-d)} -1
=d*—6d+8
=(d—4)(d—2).

The two roots of this quadratic equation and, consequently, the two cigenvalues of A are
d=4 and d=2. MATLAB will produce these eigenvalues in response to the command
eig(A). For example, the commands

==A=(31:13];
== eig(A)

produce
ans

2

4

Once the eigenvalues are computed, the eigenvectors can be determined by solving
equations A.10. In the current example

ol ([3 1] ¢ ollly

, .

of |1 3] o d])jv
3-d | ”'.'I

I3 d‘r,‘
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We begin by substituting in the first cigenvalue - 4
‘ Lo o
| 1 l{v,| (0]

which leads to two equations and two unknowns

v b, 0 and v

= v, =0. (A.12)

Note that these two equations have an infinite number of solutions. Of course, this was
inevitable because we selected the eigenvalues ¢ = 4 and d = 2 precisely because they are
the only possible values of o that lead to an infinite number of solutions of equations A.10.

Any set of v, and v, that satisfy equations A.12 define a legitimate eigenvector of the
matrix Ao Note that all such solutions fall on the line

Any vector can be considered as a directed line segment beginning at the origin (0,0) and
ending at the veetor coordinates. Thus, although there are an infinite number of solutions
to cquations A.12, they all point in the same direction. They differ only in length. The con-
vention is to choose a solution so that the resulting eigenvector has a length of 1; that is, to
choose v, and v, so that v'v = 1.

An casy way to do this is to choose any solution, compute v'v, and then divide both v,
and v, by the square root of this value. In the example of equations A.12, we could choose
v land v, = 1.

I'hen

' [l I||]l 2

vy R
1]

and so the cigenvector associated with the eigenvalue d = 4 is

We use the subscript 1 to signify that this is the eigenvector associated with the first, or
largest, cigenvalue. We can verify that the length of this eigenvector is 1 via

3y a similar process, we can determine that the eigenvector associated with the second
cipenvalue d =2 is
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Properties
As previously mentioned, the definitions of eigenvalues and cigenvectors do not lead to
any immediate insights into the matrix A. However, cigenvalues and cipenvecton have
many properties that are extremely useful in a wide varicty of apphcations, and 115 for
these properties that eigenvalues and eigenvectors are considered core topics i matrix ot
linear algebra. As we saw in chapter 10, several of these propertics he at the heart of PCA
This section describes a few of the most important propertics ol cigenvalues and cipen
vectors. Any text on linear algebra will include a variety of others.

Property 1~ An n x n matrix has n eigenvalues, some of which mav cqual 0 and some of
which may be repeated. This follows because the characteristic equation ol an = n
matrix is an n" order polynomial, which has » roots. In our earliecr numerical example, the
2 x 2 matrix

i

has two eigenvalues; namely, 4 and 2.

Property 2 The number of nonzero eigenvalues of A equals the rank of A, This property
is extremely useful because it can be quite tedious to compute the rank of a matrix by de
termining the number of linearly independent rows or columns. Note that an important
corollary to this property is that A is singular if and only if' A has at least onc cigenvalue
equal to 0. In our earlier numerical example, A had two eigenvalues ¢ = 4 and /-~ 2. These
are both nonzero, so the rank of A is 2 and therefore A is nonsingular.

Property 3 The determinant of A equals the product of its eigenvalues.  So in our nu
merical example, the determinant of A must equal 4 x 2 =8. Because A is 2 = 2, this 15

easily verilied:

(32 3) (I x1)=8.

13

With much larger matrices, however, computing the determinant directly is a time
consuming process. I the eigenvalues are known, property no. 3 makes this computation
simple. Note also that if one of the eigenvalues of A is 0, then their product will be zero,
and hence the determinant of A will be 0. In other words, if A has one or more cigenvalues

Al

equal to 0, then A must be singular—a result that also followed from property no. 2.

Properiy 4 The trace of A equals the sum of its eigenvalues.  The trace of a matrix s
equal to the sum ol all elements on the main diagonal. So
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lrace

3o
313 6,
3

and note that the sum of the cigenvalues of this matrix is also 6 (i.c., 4 + 2).

Property 5 Diagonal Representation of a Symmetric Matrix. Suppose A is a svmmetric
nonmatrix. Construct the n > n diagonal matrix D that has the eigenvalues of A on its
main diagonal (e.g., in descending order of magnitude). Construct the n * n square matrix
I whose columns are the eigenvectors of A (so that the i" column of V is the eigenvector
that corresponds with the eigenvalue in row i and column i of the matrix D). Then A = VDV,

In our numerical example, the diagonal representation of A is given by

I I | 1

/ =14 05 FH
A vl. _lv 0 2 _J‘L j_

|\".' J2 V2 J2

R

I3

A matrix in which all eigenvalues are positive is said to be positive definite, and a matrix in
which all cigenvalues are non-negative (e.g., some may be zero) is said to be positive semi-
definite. Note that, in this example, A is positive definite. PCA works on the eigenvalues
and eigenvectors of the sample variance-covariance matrix. All variance-covariance
matrices are symmetric and positive semidefinite.

MATLAB computes eigenvectors (and eigenvalues) using a similar form. Specifically,
the command

[V.D] = ecig(A)

returns a matrix V whose columns are the eigenvectors of A and a diagonal matrix D con-
taining the eigenvalues of A. For example, the commands

-A=[31;13];
[V.D] = eig(A)

produce the output

0.7071 0.7071
0.7071 0.7071

Appendix B: Multivariate Probability Distributions

A random vector is a vector in which every entry is a random variable. F'or example, con
sider the vector

If x is a random vector, then each x, is a random variable. Let //(x,) denote the probabilin
density function (pdf) of x. This function specifies the likelihood that a random sample
drawn from the x; population exactly equals any specific numerical value." 11"y is normally
distributed. then f/(x)) is the familiar bell-shaped curve. With respect to the random vecton
X, the pdfs /(x)) are known as the marginal distributions.

The marginal distributions of x provide much information about the sampling behavion
of x, but they do not tell us everything. In particular, they provide no information about any
statistical relationships that might exist among the various x,. Complete information aboul
x is catalogued in the joint probability density function (or joint distribution)

S, oo x) - f(x).

This function specifies the likelihood that a random sample from the x population will
produce any specific = 1 numerical vector.

[ there is no statistical relationship among any of the x;, then all information in the joint
pdlis specified by the marginal pdfs. More specifically, the random variables x, v, .. ., 1
are statistically independent if and only if

1. This notation 1s sloppy because it does not discriminate between the name of the random variable or random
veetor and the specific numerical values that the random variable or vector can take. The current notation 15 s
pler, and hopetully it s obvious from the context which interpretation is intended.
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J0, X X)) = () X () X - X f(x,), (B.1)
for all possible values of x,, x,, ... .. v, I equation BUI fails for any combination of v,
Ky o s . v, then a statistical dependence exists among these random variables.

Multivariate Normal Distributions

Ihe multivariate normal distribution is, by far, the most widely used multivariate distribu-
tion in statistics. For example, it serves as the error model in the GLM and as the model that
underlies PCA. A multivariate normal distribution has three assumptions: (1) the marginal
distributions are all normal; (2) the only possible relationships among the x, are linear; and
() all dependencies among the x; can be expressed as a function of the dependencies be-
tween all possible pairs of x, (i.e., there are no dependencies that depend on three-way or
higher interactions). Thus, even if the x; are each normally distributed, the random vector
A is not necessarily multivariate normally distributed. In addition, it must also be true
that the only possible statistical dependencies that exist among the x, are pairwise linear
relationships.

The well-known Pearson correlation coefficient (i.e., the Pearson’s ») measures linear
relationships between pairs of variables. This is the model of statistical dependence that
underlies the multivariate normal distribution. Uncorrelated random variables have no
lincar relationship, but they could have a nonlinear relationship, in which case they would
not be statistically independent (i.e., equation B.1 would not hold). Statistical indepen-
dence implies zero correlation, but uncorrelated random variables are not necessarily inde-
pendent. In a multivariate normal distribution, however, the only possible relationships are
linear, so uncorrelated is equivalent to independent.

In the multivariate normal distribution, there is a mean and variance associated with
cach (random) variable and a correlation associated with each pair of variables. Let /, and
o denote the mean and variance of x,, respectively. The correlation between random vari-
ables v, and x, is defined as the standardized covariance:

covy,  BI0y —p)(x, — )]
172 9,9, .

LT

(B.2)

T

I the means and variances are known, then note that it makes no difference whether we
characterize the associations of a multivariate normal distribution in terms of correlations
or covariances. From either one, equation B.2 allows us to solve for the other. The standard
convention is to record the covariances.

I'he parameters of any multivariate normal distribution are catalogued in two structures:
i mean vector pand a variance-covariance matrix Y. The mean vector is a record of the
mean ol cach marginal distribution,
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s (1)

and the variance-covariance matrix is a record of all variances and covarances,

2

oy cov, -+ COv,,
2
o |Va Oz o COVy | (B.A)
2
cov,, cov, - O,

= isi >tric i is also positive semidelinite

Because cov, = cov,, note that this is a symmetric matrix. It is also pos 0
(i.e., no eigenvalues can be negative; see appendix A).

Once numerical values are specified for the mean vector and the variance-covarimnee

matrix, then the likelihood of any vector x can be computed from the multivariate norimal

pdf:

JLe e———" TR R )] (11.5)
(2m)"* : -

Y
Figure B.1 shows an example of this pdf for a bivariate normal distribution where the co
relation between x, and x, is positive. The bottom panel shows some contours ol cqual
likelihood from this distribution, which are created by slicing through the pdlshown i the
top panel from different heights above the (x,, x,) plane and looking down at the results
from above. Note that these contours all have the same shape and differ only in size. A scal
terplot of random samples from the distribution shown in the top panel would have the
same overall shape as these contours. The positive correlation causes the major axis of the
contours to have a positive slope. Note that random samples from the distribution that have
a large x, value will also tend to have a large x, value.
A special case of the multivariate normal distribution that is widely used throughout this
book assumes that all variables are independent and all variances are cqual. In this case,

note that

o0 0 10 0

0 o 0 (01 0 )
2= =0 |. =gl

0 0 - o 00 - 1

The multivariate z-distribution is a special case of this in which the mean vector equals 0
and the variance-covariance matrix equals 1.
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Figure B.1
(lop} The pdlof a bivariate normal distribution. (Bottom) Contours of equal likelihood from the pdf shown in the
top panel. Note the positive correlation between x, and x,.
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Frequently in probability and statistics, and also in this book, we are iterested i the
distribution ol a linear transformation of a random vector. More specilically, suppose x 14
an = | random vector, A is an m > matrix of constants, and b is an m = 1 vector ol con

stants. Now consider the m = | random vector

y=Ax+b.

Then regardless of the distribution of x, the mean vector and variance-covariance matrix ol
y are equal to

ty = Ap, b
and
L, =AY A

Furthermore, if x has a multivariate normal distribution then y will also have a multivar
ate normal distribution (because linear transformations of normal random variables are
normal).



