
Appendix A: Review of the General
Linear Model

The general linear model is an important tool in many fMRI data analyses. As the

name “general” suggests, this model can be used for many different types of analyses,

including correlations, one-sample t -tests, two-sample t -tests, analysis of variance

(ANOVA), and analysis of covariance (ANCOVA). This appendix is a review of the

GLM and covers parameter estimation, hypothesis testing, and model setup for these

various types of analyses.

Some knowledge of matrix algebra is assumed in this section, and for a more

detailed explanation of the GLM, it is recommended to read Neter et al. (1996).

A.1 Estimating GLM parameters

The GLM relates a single continuous dependent, or response, variable to one or

more continuous or categorical independent variables, or predictors. The simplest

model is a simple linear regression, which contains a single independent variable.

For example, finding the relationship between the dependent variable of mental

processing speed and the independent variable, age (Figure A.1). The goal is to

create a model that fits the data well and since this appears to be a simple linear

relationship between age and processing speed, the model is Y= β0 +β1X1, where Y
is a vector of length T containing the processing speeds for T subjects, β0 describes

where the line crosses the y axis, β1 is the slope of the line and X1 is the vector of

length T containing the ages of the subjects. Note that if β0 is omitted from the

model, the fitted line will be forced to go through the origin, which typically does

not follow the trend of the data very well and so intercepts are included in almost all

linear models.

Notice that the data points in Figure A.1 do not lie exactly in a line. This is because

Y, the processing speeds, are random quantities that have been measured with some

degree of error. To account for this, a random error term is added to the GLM model

Y = β0 +β1X1 + ε
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Figure A.1. Example of data and model for a simple linear regression. The intercept, β0, is where the

line crosses the y axis and the slope, β1, describes the relationship between the dependent

variable, mental processing speed, and the independent variable, age.

where ε is a random vector of length T that describes the distribution of the error

between the true value of the dependent variable and the measured values that are

obtained for the study. The standard assumption is that ε is normally distributed

such that the vector has a mean of 0 and a variance of σ 2. Further, any two elements

of the error vector are assumed to be uncorrelated, Cor(εi ,εj) = 0. This is typically

written as ε ∼ N (0,σ 2I), where N is the multivariate normal distribution and I is

a T × T identity matrix, which only has 1s along the diagonal and 0s on the off

diagonal.

The interpretation of the model follows: If we were to know the true values of β0

and β1, then for a given age, say 20 years old, the expected mean processing speed

for this age would be β0 + β1 × 20. If we were to collect a sample of processing

speeds from 20 year olds, the distribution of the data would be normal with a mean

of β0 + β1 × 20 and a variance of σ 2. Although the mean processing speed would

change for different age groups, the variance would be the same. The distribution

for those with an age of 10 years would have a mean of β0 +β1 × 20 and a variance

of σ 2.

A.1.1 Simple linear regression

To find the estimates of the parameters β0 and β1, the method of least squares is

used, which minimizes the squared difference between the data,Y, and the estimates,

Ŷ = β̂0 + β̂1X1. This difference is known as the residual, and this is denoted by

e = Y− Ŷ and would be the horizontal distance between a point and the fitted line.

The estimate of the error variance, σ 2, is given by σ̂ 2 = e′e
T −2 , where T is the number
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of data points. The quantity T − 2 is the degrees of freedom for this model and

consists of the amount of information going into the model (T data points) minus

the number of parameters we had to estimate (two, β0 and β1). The line shown in

Figure A.1 illustrates the least squares fit of the model to the data where, for a given

age, the distribution of processing speed for that age is estimated to have a mean of

β̂0 +age× β̂1, and σ̂ 2 is the estimate of the variance of the data for that value of age.

Under the assumptions that the error has a mean of zero, constant variance and

correlation of 0, the least squares estimates of the β̂is have a nice property according

to the Gauss Markov theorem (Graybill, 1961), which is that β̂ is unbiased and

has the smallest variance among all unbiased estimators of β. In other words if we

were to repeat the experiment an infinite number of times and estimate β̂ each time,

the average of these β̂s would be equal to the true value of β. Not only that, but

the variance of the estimates of β̂ is smaller than any other estimator that gives an

unbiased estimate of β. When the assumptions are violated, the estimate will not

have these properties, and Section A.3 will describe the methods used to handle these

situations.

A.1.2 Multiple linear regression

It is possible to have multiple independent variables, X1,X2, . . . ,Xp, in which case

the GLM would be Y = β0 + β1X1 + β2X2 + ·· · + βpXp + ε. The error term, ε, is

distributed the same as before (ε ∼N (0,σ 2I)) and each parameter, βi , is interpreted

as the effect of Xi controlling for all other variables in the model. So, for example, if

age and gender were independent variables, the parameter estimate for age would be

the relationship of age on processing speed, adjusting for gender or holding gender

constant. Sometimes the parameters in a multiple linear regression are referred to as

partial regression coefficients since they reflect the effect of one predictor controlling

for all of the other predictors.

The multiple linear regression formula can be concisely expressed using matrix

algebra as

Y = Xβ + ε

whereX is aT×pmatrix with each column corresponding to anXi and β is a column

vector of length p+ 1, β = [β0,β1, · · · ,βp]′. The use of matrix algebra makes the

derivation of β̂ easy. Since X isn’t a square matrix, we can’t solve the equation

Y = Xβ by premultiplying both sides by X−1, because only square matrices have

inverses. Instead, if we first premultiply both sides of the equation by X′, we have

the so-called normal equations

X′Y = X′Xβ
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Table A.1. Two examples of rank deficient matrices
1 0 7

1 0 7

0 1 0

0 1 0




1 0 2

1 0 2

1 1 5

1 1 5



It can be shown that any β that satisfies the normal equations minimizes the sum-

of-squares of the residuals e′e, and thus it gives the least squares solution

β̂ = (X′X)−1X′Y (A.1)

assuming X′X is invertible.

The estimate for σ 2 is the same as before, σ̂ 2 = e′e
T−(p+1)

, where T is the number of

rows in X and p+ 1 is the number of columns, resulting in T − (p+ 1) the degrees

of freedom for multiple linear regression.

In order for the inverse ofX′X to exist,X must have full column rank, which means

no column is a linear combination of any of the other columns in the design matrix.

In Table A.1, the matrix on the left-hand side is rank deficient since multiplying

the first column by 7 yields the third column, and the matrix on the right is rank

deficient since twice the first column plus three times the second equals the third

column. If the design matrix is rank deficient there is not a unique solution for the

parameter estimates. Consider the matrix on the left of Table A.1, and estimate the

three corresponding parameters, β1, β2, β3, when Y = [14 14 0 0]′. It is easy to

show that not only are β1 = 0,β2 = 0, and β3 = 2 parameters that give an exact

solution since 
1 0 7

1 0 7

0 1 0

0 1 0


 0

0

2

 =


14

14

0

0

 (A.2)

but β1 = 14,β2 = 0, and β3 = 0 and an infinite number of other combinations will

also perfectly fit the data.

A.2 Hypothesis testing

The previous section described how to obtain the estimates of the parameters

β0,β1, . . . ,βp and σ 2, and this section describes how to carry out hypothesis tests on

linear combinations, or contrasts, of the βis. A row-vector of length p+ 1 is used to

define the contrast to be tested. The simplest contrast tests a single parameter in the

vector of parameters, β. For example, if there were four parameters in the model,

[β0,β1,β2,β3]′, then the contrast to test whether the first parameter, β0 was different

from 0,H0 : β0 = 0, would be c = [1 0 0 0], since cβ = β0. It is also possible to test
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whether two parameters are different from each other. To test,H0 : β2 = β3, which is

equivalent toH0 : β2 −β3 = 0, the contrast c = [0 1 − 1 0] would be used. In both

of these cases, the null hypothesis can be re-expressed asH0 : cβ = 0.

To test the hypothesis, the distribution of cβ̂ under the null assumption, that the

contrast is equal to 0, must be known. It can be shown that the distribution of cβ̂
is normal with a mean of cβ and a variance of c(X′X)−1c′σ 2, so under the null

hypothesis, cβ̂ ∼ N (0,c(X′X)−1c′σ 2). Since we do not know the variance σ 2, we

cannot use the normal distribution to carry out the hypothesis test. Instead, we use

the t statistic

t = cβ̂√
c(X′X)−1c′σ̂ 2

(A.3)

which, under the null, is distributed as a t -distribution with T − (p + 1) degrees

of freedom. A P-value for a one-sided alternative hypothesis, such as HA : cβ > 0

is given by P(TT−(p+1) ≥ t ), where TN−(p+1) is a random variable following a

t -distribution with T − (p + 1) degrees of freedom, and t is the observed test

statistic. The P-value for a two-sided hypothesis test, HA : cβ �= 0, is calculated

as P(TT−(p+1) ≥ |t |).
In addition to hypothesis testing of single contrasts using a t -statistic, one can

also simultaneously test multiple contrasts using an F-test. For example, again using

the model with four parameters, to test whether all of the βs are 0, H0 : β1 = β2 =
β3 = β4 = 0, one would specify a set of contrasts in the form of a matrix. Each row

of the contrast corresponds to one of the four simultaneous tests, in this case that a

particular βi is 0, and looks like the following:

c =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 (A.4)

The F-statistic is then given by

F = (cβ̂)′[rc
(

Ĉov(β̂)
)
c′]−1(cβ̂) (A.5)

where r is the rank of c and typically is equal to the number of rows in c . The

F-statistic in Equation (A.5) is distributed as an F with r numerator and T − (p+1)

denominator degrees of freedom (Fr ,T−(p+1)).

A.3 Correlation and heterogeneous variances

One of the important assumptions of the GLM, mentioned at the beginning of this

appendix, is that the elements of the error vector, ε are uncorrelated, Cor(εi ,εj) = 0

for i �= j and that they all have the same variance, Var(εi) = σ 2 for all i. There are
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many cases when this assumption is violated. For example, imagine that the dataset

on age and processing speed included sets of identical twins; in this case, some

individuals will be more similar than others. More relevant to fMRI, this can also

occur when the dependent variable Y includes temporally correlated data. When

this occurs, the distribution of the error is given by Cov(ε) = σ 2V, where V is the

symmetric correlation matrix and σ 2 is the varaince.

The most common solution to this problem is to prewhiten the data, or to remove

the temporal correlation. Since a correlation matrix is symmetric and positive defi-

nite, the Cholesky decomposition can be used to find a matrixK such thatV−1 =K′K
(see Harville (1997) for more details on matrix decomposition). To prewhiten the

data, K is premultiplied on both sides of the GLM to give

KY = KXβ +Kε (A.6)

Since the errors are now independent,

Cov(Kε) = KCov(ε)K′ = σ 2I

we can rewrite Equation (A.6) as

Y∗ = X∗β + ε∗ (A.7)

where Y∗ = KY, X∗ = KX, and ε∗ = Kε. Most important, since Cov(ε∗) = σ 2I, the

previously stated assumptions hold, and we can use least squares to estimate our

parameters and their variances. The parameter estimates would be

β̂ = (X∗′
X∗)−1X∗′

Y∗ (A.8)

which can be also written as β̂ = (X′V−1X)−1X′V−1Y. The covariance of β̂ is given

by

Ĉov(β̂) = (X∗′
X∗)−1σ̂ 2 (A.9)

or Ĉov(β̂) = (XV−1X)−1σ̂ 2 and σ̂ 2 is estimated as shown earlier.

If the error terms are uncorrelated, Cor(ε) = I, but the assumption of equal

variances is violated, Var(εi) �= Var(εj), i �= j , the variances are said to be hetero-

geneous, and the GLM is estimated as shown in Equations (A.8) and (A.9), with

K = diag(1/σ1,1/σ2, . . . , 1/σT ). The expression diag(1/σ1, . . . , 1/σT ) simply refers

to a matrix with 0s on the off diagonal and 1/σ1,1/σ2, . . . , 1/σT along the diagonal.

This is known as weighted linear regression. In both the prewhitening approach

and the weighted linear regression approach, the necessary variance and covariance

parameters are estimated from the data and then used to get the contrast estimates

and carry out hypothesis testing.
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A.4 Why “general” linear model?

The GLM is a powerful tool, since many different types of analyses can be carried out

using it including: one-sample t -tests, two-sample t -tests, paired t -tests, ANOVA,

and ANCOVA. The first section illustrated simple linear regression in the example

where processing speed was modeled as a function of age. Figure A.2 shows some

common analyses that are carried out using the GLM where the top example is

the simplest model, a one-sample t -test. In this case, we have one group and are

interested in testing whether the overall mean is 0. The design is simply a column of

1s and the contrast is c = [1].
The next design shown in Figure A.2 is a two-sample t -test, where the data either

belong to group 1 (G1) or group 2 (G2). In the outcome vector,Y, all G1 observations

are at the beginning, and G2 observations follow. The design matrix has two columns,

where the parameter for each column corresponds to the means for G1 and G2,

respectively. The contrast shown tests whether the means of the two groups are

equal, but it is also possible to test the mean of each group using the separate

contrasts, c = [1 0] and c = [0 1]. Note that there are alternative ways of setting up

the design for a two-sample t -test, which are not illustrated in the figure. Two other

examples of design matrices for the two-sample t -test are given as XT1 and XT2 in

Equation (A.10).

XT1 =



1 0
...

...

1 0

1 1
...

...

1 1


XT2 =



1 1
...

...

1 1

1 −1
...

...

1 −1


(A.10)

In XT1, the first column models the mean of the baseline or unmodeled group mean.

In this case, the mean of group 1 is not explicitly modeled and so the parameter

corresponding to the first column would be the mean for group 1, and the parameter

associated with the second column would be the difference in means between groups

1 and 2.

In the case of XT2 the first column corresponds to the overall mean of the

data and the second column is the difference between the means of group 1 and

group 2. It is often the case that there are multiple ways of setting up a design

matrix, so it is important to understand what the parameters for the columns

of the design correspond to. For XT1, for example, XT1β would yield the vector,

Ŷ= [β0,β0, . . . ,β0,β0 +β1, . . . ,β0 +β1]′, and so it is clear to see that β0 corresponds

to the mean of group 1 and β0 +β1 is the mean for group 2, hence β1 is the difference

between the two means. Similarly, XT2β gives a value of β0 + β1 for the group 1

entries and β0 − β1 for the group 2 entries, meaning β0 is the overall mean and β1

is the difference in means between the two groups.
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β1
1
1
1
1
1
1

1   0
1   0
1   0
1   0
1   0
0   1
0   1
0   1
0   1
0   1

βG1
βG2

βdi�
βS1
βS2
βS3
βS4
βS5

1    1    1    0     1     0
1    1    1    0     1     0
1    1    0    1     0     1
1    1    0    1     0     1
1    1   -1   -1   -1   -1
1    1   -1   -1   -1   -1  
1   -1    1    0   -1    0
1   -1    1    0   -1    0
1   -1    0     1    0   -1
1   -1    0     1    0   -1
1   -1   -1   -1    1    1
1   -1   -1   -1    1    1

βmean
βA1
βB1
βB2
βA1B1
βA1B2

A1B11
A1B12
A1B21
A1B22
A1B31
A1B32
A2B11
A2B12
A2B21
A2B22
A2B31
A2B32

AS1
BS1
AS2
BS2
AS3
BS3
AS4
BS4
AS5
BS5

G11
G12
G13
G14
G15
G21
G22
G23
G24
G25

G1
G2
G3
G4
G5
G6

One-sample t-test.
6 observations

Two-sample t-test. 
5 subjects in group 1 
(G1) and 5 subjects in 
group 2 (G2)

Paired t-test.
5 paired measures of A 
and B.

Two way ANOVA.  
Factor A has two levels 
and factor B has 3 levels.  
#ere are 2 observations 
for each A/B 
combination.

Test Description Order 
of data

Xβ

H0 : Overall mean=0
H0 : β1= 0
H0 : cβ = 0
c = [1]

H0 : mean of G1 di�erent from G2
H0 : βG1−βG2= 0
H0 : cβ =0
c = [1  -1]

H0 : A is di�erent from B 
H0 : βdi� = 0
H0 : cβ = 0
c = [1  0   0   0   0   0]

Hypothesis Test

F-tests for all contrasts

H0 : Overall mean=0 
H0 : βmean = 0
H0 : cβ = 0
c = [1  0   0   0   0   0]

H0 : Main A e�ect=0 
H0 : βA1 = 0
H0 : cβ = 0
c = [0  1   0   0   0   0]

H0 : Main B e�ect = 0 
H0 : βB1 = βB2 = 0
H0 : cβ=0
c =    0   0   1   0   0   0
        0   0   0   1   0   0

H0 : A/B interaction e�ect=0 
H0 : βA1B1=βA1B2=0
H0 : cβ=0
c =    0   0   0   0   1   0
        0   0   0   0   0   1

 1    1    0    0     0     0
–1     1    0    0     0     0
 1    0    1    0     0     0
–1    0    1    0     0     0
 1    0    0    1     0     0
–1    0    0    1     0     0  
 1    0    0    0     1     0
–1    0    0    0      1     0  
 1    0    0    0     0     1
–1    0    0    0      0     1

Figure A.2. Examples of GLMmodels for popular study designs including: One-sample t-test, two-sample

t-test, paired t-test, and two-way ANOVA. The first column describes the model, the second

column describes how the data are ordered in the outcome vector, the third column shows

the design matrix, and the last column illustrates the hypothesis tests and corresponding

contrasts. Note, in the ANOVA example F -tests are used for all contrasts, whereas t-tests are

used for the other examples.
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The paired t -test is the third example in Figure A.2, where there are N groups of

paired observations. For example, we could haveN subjects scanned on two sessions

and want to compare session 2 to session 1. In the outcome vector, Y, observations

are ordered by subject, session 1 followed by session 2. The first column of the design

matrix is modeling the difference and the last N columns of the design matrix are

modeling subject-specific means. By adjusting for the subject-specific means, the

difference refers to the difference in the centered or demeaned pairs of data points.

To test the paired difference, the contrast only includes the first parameter, the rest

of the parameters related to the subject-specific means are considered “nuisance,”

since we do not typically test them, but they are necessary to include in the model

to pick up extra variability due to each subject having a different mean.

The last example illustrates a two-way ANOVA, with two levels for the first factor

and three levels for the second factor. There are a couple of ways to set up this model,

but the one illustrated here is a factor effects setup and is used when the interest is in

testing the typical ANOVA hypotheses of overall mean, main effects, and interaction

effects. In general, the format used to create the regressors is as follows: For each

factor the number of regressors is equal to one less than the number of levels for

that factor. So our first factor, call it A, will have one regressor associated with it and

the second factor, call it B, will have two. Each regressor is modeling the difference

between a level of the factor to a baseline level. For example, the second column of X

in the ANOVA panel of Figure A.2 is the regressor for factor A and takes a value of 1

for rows corresponding to level 1 of A (A1), and since the second level is the reference

level, all rows corresponding to A2 are −1. The third and fourth columns are the

regressors for factor B and the third level, B3, is the reference so both regressors are

−1 for those corresponding rows. The third regressor compares B1 to B3, so it is 1

for level B1 and 0 for level B2. The fourth regressor compares B2 to B3 and so it is

0 for B1 and 1 for B2. The last two columns make up the interaction and are found

by multiplying the second and third and second and fourth columns, respectively.

All contrasts are tested using an F-test, since this is standard for ANOVA. To test

the main effects, we simply include a contrast for each regressor corresponding to

that factor, and to test the interaction we would include a contrast for each regressor

corresponding to an interaction. The other option is to use a cell means approach,

where we simply have six regressors, one for each of the six cells of the 2×3 ANOVA.

It is an extension of the two-sample t -test model shown in Figure A.2 and is more

convenient when we are interested in testing hypothesis that compare the means

between cells of the ANOVA.

It should be noted that in some cases it is possible to use a linear regression model

when there are repeated measures. For example, the two-sample t -test can be thought

of as a one-way ANOVA with two levels and repeated measures across the levels. In

a similar fashion, the two-factor ANOVA model in the bottom panel of Figure A.2

can be extended to a repeated measures case, where measures are repeated for all

factors in the model, say a subject is studied before and after a treatment (factor A)
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for three types of memory tasks (factor B). In this case, the single mean column

would be broken up into separate subject means, and these columns of the design

matrix would be treated as nuisance. A very important note when using the linear

model for repeated measures ANOVA designs is that it only works in the case when

the measures are balanced across the factor levels. So, for example, if a subject was

missing measurements for the second and third levels of factor B after treatment, this

linear regression approach cannot be used. In cases such as this, more complicated

models and estimation strategies are necessary to achieve appropriate test statistics

and hypothesis test results.




