Appendix A: Review of the General
Linear Model

The general linear model is an important tool in many fMRI data analyses. As the
name “general” suggests, this model can be used for many different types of analyses,
including correlations, one-sample ¢-tests, two-sample t-tests, analysis of variance
(ANOVA), and analysis of covariance (ANCOVA). This appendix is a review of the
GLM and covers parameter estimation, hypothesis testing, and model setup for these
various types of analyses.

Some knowledge of matrix algebra is assumed in this section, and for a more
detailed explanation of the GLM, it is recommended to read Neter et al. (1996).

A.1 Estimating GLM parameters
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The GLM relates a single continuous dependent, or response, variable to one or
more continuous or categorical independent variables, or predictors. The simplest
model is a simple linear regression, which contains a single independent variable.
For example, finding the relationship between the dependent variable of mental
processing speed and the independent variable, age (Figure A.1). The goal is to
create a model that fits the data well and since this appears to be a simple linear
relationship between age and processing speed, the model is Y = 8y + 81X, where Y
is a vector of length T containing the processing speeds for T subjects, By describes
where the line crosses the y axis, f; is the slope of the line and X; is the vector of
length T containing the ages of the subjects. Note that if By is omitted from the
model, the fitted line will be forced to go through the origin, which typically does
not follow the trend of the data very well and so intercepts are included in almost all
linear models.

Notice that the data points in Figure A.1 do not lie exactly in a line. This is because
Y, the processing speeds, are random quantities that have been measured with some
degree of error. To account for this, a random error term is added to the GLM model

Y=80+pB1X1+e€
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Figure A.1. Example of data and model for a simple linear regression. The intercept, o, is where the
line crosses the y axis and the slope, g1, describes the relationship between the dependent
variable, mental processing speed, and the independent variable, age.

where € is a random vector of length T that describes the distribution of the error
between the true value of the dependent variable and the measured values that are
obtained for the study. The standard assumption is that € is normally distributed
such that the vector has a mean of 0 and a variance of o'2. Further, any two elements
of the error vector are assumed to be uncorrelated, Cor(e;,€;) = 0. This is typically
written as € ~ N(0,0%I), where N is the multivariate normal distribution and I is
a T x T identity matrix, which only has 1s along the diagonal and 0Os on the off
diagonal.

The interpretation of the model follows: If we were to know the true values of 8y
and B, then for a given age, say 20 years old, the expected mean processing speed
for this age would be By + B1 x 20. If we were to collect a sample of processing
speeds from 20 year olds, the distribution of the data would be normal with a mean
of By + B1 x 20 and a variance of o2, Although the mean processing speed would
change for different age groups, the variance would be the same. The distribution
for those with an age of 10 years would have a mean of By + B x 20 and a variance
of 2.

A.1.1 Simple linear regression
To find the estimates of the parameters 8y and B, the method of least squares is
used, which minimizes the squared difference between the data, Y, and the estimates,
Y= ,30 + lel. This difference is known as the residual, and this is denoted by
e =Y — Y and would be the horizontal distance between a point and the fitted line.
€

. . . . ~ / .
The estimate of the error variance, o2, is given by 62 = T—fz, where T is the number
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of data points. The quantity T — 2 is the degrees of freedom for this model and
consists of the amount of information going into the model (T data points) minus
the number of parameters we had to estimate (two, By and ;). The line shown in
Figure A.1 illustrates the least squares fit of the model to the data where, for a given
age, the distribution of processing speed for that age is estimated to have a mean of
Bo+ age X B1,and 62 is the estimate of the variance of the data for that value of age.

Under the assumptions that the error has a mean of zero, constant variance and
correlation of 0, the least squares estimates of the ;s have a nice property according
to the Gauss Markov theorem (Graybill, 1961), which is that /§ is unbiased and
has the smallest variance among all unbiased estimators of S. In other words if we
were to repeat the experiment an infinite number of times and estimate 8 each time,
the average of these Bs would be equal to the true value of 8. Not only that, but
the variance of the estimates of 8 is smaller than any other estimator that gives an
unbiased estimate of 8. When the assumptions are violated, the estimate will not
have these properties, and Section A.3 will describe the methods used to handle these
situations.

A.1.2 Multiple linear regression

It is possible to have multiple independent variables, X1,X;,...,Xp, in which case
the GLM would be Y = By + B1X1 + B2Xp + -+ - + BpXp + €. The error term, ¢, is
distributed the same as before (¢ ~ N (0,0%I)) and each parameter, f3;, is interpreted
as the effect of X controlling for all other variables in the model. So, for example, if
age and gender were independent variables, the parameter estimate for age would be
the relationship of age on processing speed, adjusting for gender or holding gender
constant. Sometimes the parameters in a multiple linear regression are referred to as
partial regression coefficients since they reflect the effect of one predictor controlling
for all of the other predictors.

The multiple linear regression formula can be concisely expressed using matrix
algebra as

Y=XB+e¢

where X isa T x p matrix with each column corresponding to an X; and f isa column
vector of length p+ 1, B = [Bo,B1,- - ,,BP]/. The use of matrix algebra makes the
derivation of ﬁ easy. Since X isn’t a square matrix, we can’t solve the equation
Y = X by premultiplying both sides by X!, because only square matrices have
inverses. Instead, if we first premultiply both sides of the equation by X', we have
the so-called normal equations

X'Y = X'XB
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It can be shown that any B that satisfies the normal equations minimizes the sum-
of-squares of the residuals €’e, and thus it gives the least squares solution

B=XX)"XY (A.1)

assuming XX is invertible.

The estimate for o2 is the same as before, 5% = %peﬂ), where T is the number of
rows in X and p + 1 is the number of columns, resulting in T — (p + 1) the degrees
of freedom for multiple linear regression.

In order for the inverse of X'X to exist, X must have full column rank, which means
no column is a linear combination of any of the other columns in the design matrix.
In Table A.1, the matrix on the left-hand side is rank deficient since multiplying
the first column by 7 yields the third column, and the matrix on the right is rank
deficient since twice the first column plus three times the second equals the third
column. If the design matrix is rank deficient there is not a unique solution for the
parameter estimates. Consider the matrix on the left of Table A.1, and estimate the
three corresponding parameters, 81, 82, 83, when Y = [14 14 0 0]'. It is easy to
show that not only are 8 = 0,8, = 0, and 83 = 2 parameters that give an exact
solution since

1 0 7 0 14
1 0 7 14
0 | = (A.2)
0 1 0 ) 0
01 0 0

but 8; = 14, 8, =0, and B3 = 0 and an infinite number of other combinations will
also perfectly fit the data.

A.2 Hypothesis testing

The previous section described how to obtain the estimates of the parameters
Bo B, .., Bp and o2, and this section describes how to carry out hypothesis tests on
linear combinations, or contrasts, of the §;s. A row-vector of length p+ 1 is used to
define the contrast to be tested. The simplest contrast tests a single parameter in the
vector of parameters, 8. For example, if there were four parameters in the model,
[Bo> B1> B2, B3], then the contrast to test whether the first parameter, By was different
from 0, Hy : Bo = 0, would be c =[1 0 0 0], since cf = By. It is also possible to test



195 Appendix A

whether two parameters are different from each other. To test, Hy : 8, = B3, which is
equivalent to Hy : 8, — 83 =0, the contrastc=[0 1 — 1 0] would be used. In both
of these cases, the null hypothesis can be re-expressed as Hy : ¢ = 0.

To test the hypothesis, the distribution of cﬁ under the null assumption, that the
contrast is equal to 0, must be known. It can be shown that the distribution of cﬁ
is normal with a mean of ¢ and a variance of ¢(X’X)~!c’02, so under the null
hypothesis, c/§ ~ N(0,c(X’X)"'/o?). Since we do not know the variance o2, we
cannot use the normal distribution to carry out the hypothesis test. Instead, we use
the ¢ statistic .

S (A.3)

VeX'X)" g2

which, under the null, is distributed as a ¢-distribution with T'— (p + 1) degrees
of freedom. A P-value for a one-sided alternative hypothesis, such as Hy : cf8 > 0
is given by P(Tr—(p+1) > t), where TN_(p4+1) is @ random variable following a
t-distribution with T — (p + 1) degrees of freedom, and ¢ is the observed test
statistic. The P-value for a two-sided hypothesis test, Hy : ¢f # 0, is calculated
as P(Tr—p+1y = [t]).

In addition to hypothesis testing of single contrasts using a t-statistic, one can
also simultaneously test multiple contrasts using an F-test. For example, again using
the model with four parameters, to test whether all of the s are 0, Hy: 81 = 8, =
B3 = B4 = 0, one would specify a set of contrasts in the form of a matrix. Each row
of the contrast corresponds to one of the four simultaneous tests, in this case that a
particular §; is 0, and looks like the following:

1 0 0 O
_|oroo (A4)
0 01 0
0 0 0 1
The F-statistic is then given by
F=(cB)Ire(Covih)) 17 (ch) (A5)

where r is the rank of ¢ and typically is equal to the number of rows in c¢. The
F-statistic in Equation (A.5) is distributed as an F with r numeratorand T — (p+1)
denominator degrees of freedom (F; 17— (pt1))-

A.3 Correlation and heterogeneous variances

One of the important assumptions of the GLM, mentioned at the beginning of this
appendix, is that the elements of the error vector, € are uncorrelated, Cor(€;,€j) = 0
for i # j and that they all have the same variance, Var(¢;) = o2 for all i. There are
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many cases when this assumption is violated. For example, imagine that the dataset
on age and processing speed included sets of identical twins; in this case, some
individuals will be more similar than others. More relevant to fMRI, this can also
occur when the dependent variable Y includes temporally correlated data. When
this occurs, the distribution of the error is given by Cov(e) = o2V, where V is the
symmetric correlation matrix and o2 is the varaince.

The most common solution to this problem is to prewhiten the data, or to remove
the temporal correlation. Since a correlation matrix is symmetric and positive defi-
nite, the Cholesky decomposition can be used to find a matrix K such that V-! = K’'K
(see Harville (1997) for more details on matrix decomposition). To prewhiten the
data, K is premultiplied on both sides of the GLM to give

KY = KX + Ke (A.6)
Since the errors are now independent,
Cov(Ke) = KCov(e)K =01
we can rewrite Equation (A.6) as
Y* = X*B + € (A7)

where Y* = KY, X* = KX, and €* = Ke. Most important, since Cov(e*) = o2, the
previously stated assumptions hold, and we can use least squares to estimate our
parameters and their variances. The parameter estimates would be

B =(X*X*)TIX¥Y* (A.8)

which can be also written as ,é = X'V IX)~IX'V~1Y. The covariance of ﬁ is given
by

Cov(B) = (X¥'X*) 7142 (A.9)

or C/()\\f(ﬁ) = (XV~!'X)~162 and 62 is estimated as shown earlier.

If the error terms are uncorrelated, Cor(e) = I, but the assumption of equal
variances is violated, Var(e;) # Var(e;), i # j, the variances are said to be hetero-
geneous, and the GLM is estimated as shown in Equations (A.8) and (A.9), with
K =diag(1/01,1/02,...,1/07r). The expression diag(1/o1,...,1/or) simply refers
to a matrix with Os on the off diagonal and 1/07,1/09,...,1 /o7 along the diagonal.
This is known as weighted linear regression. In both the prewhitening approach
and the weighted linear regression approach, the necessary variance and covariance
parameters are estimated from the data and then used to get the contrast estimates
and carry out hypothesis testing.
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A.4 Why “general” linear model?

The GLM is a powerful tool, since many different types of analyses can be carried out
using it including: one-sample ¢-tests, two-sample t-tests, paired ¢-tests, ANOVA,
and ANCOVA. The first section illustrated simple linear regression in the example
where processing speed was modeled as a function of age. Figure A.2 shows some
common analyses that are carried out using the GLM where the top example is
the simplest model, a one-sample ¢-test. In this case, we have one group and are
interested in testing whether the overall mean is 0. The design is simply a column of
Is and the contrastis ¢ = [1].

The next design shown in Figure A.2 is a two-sample ¢-test, where the data either
belong to group 1 (G1) or group 2 (G2). In the outcome vector, Y, all G1 observations
are at the beginning, and G2 observations follow. The design matrix has two columns,
where the parameter for each column corresponds to the means for G1 and G2,
respectively. The contrast shown tests whether the means of the two groups are
equal, but it is also possible to test the mean of each group using the separate
contrasts, ¢ =[1 0] and ¢ =[0 1]. Note that there are alternative ways of setting up
the design for a two-sample ¢-test, which are not illustrated in the figure. Two other
examples of design matrices for the two-sample ¢-test are given as X1 and Xr; in
Equation (A.10).

1 0 1 1
1 0 1 1
X11 = X1 = A.10
T1 L1 [Fr L1 (A.10)
1 1 1 -1

In Xy, the first column models the mean of the baseline or unmodeled group mean.
In this case, the mean of group 1 is not explicitly modeled and so the parameter
corresponding to the first column would be the mean for group 1, and the parameter
associated with the second column would be the difference in means between groups
1and 2.

In the case of Xt the first column corresponds to the overall mean of the
data and the second column is the difference between the means of group 1 and
group 2. It is often the case that there are multiple ways of setting up a design
matrix, so it is important to understand what the parameters for the columns
of the design correspond to. For Xr1, for example, X118 would yield the vector,
Y= [Bo>Bos---»Bo>Bo+ B1>--->Bo+ P11, and so it is clear to see that By corresponds
to the mean of group 1 and By + B is the mean for group 2, hence B is the difference
between the two means. Similarly, X128 gives a value of By + f; for the group 1
entries and By — B for the group 2 entries, meaning Sy is the overall mean and p;
is the difference in means between the two groups.
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Test Description Order XB Hypothesis Test
of data
One-sample t-test. G, 1 [B]] H,: Overall mean=0
6 observations G, 1 H:B,=0
G, 1 H,:cf=0
G, 1 c=[1]
G, 1
G, 1
Two-sample t-test. G1, 10)(p H,: mean of G1 different from G2
5 subjects in group 1 Gl, 10 B‘” Hy: B, —B,=0
(G1) and 5 subjects in Gl, 10 o H:cf=0
group 2 (G2) Gl, 10 c=[1-1]
Gl, 10
G2, 01
G2, 01
G2, 01
G2, 01
G2, 01
Paired t-test. A, / 1100 o 0\ B H,: A is different from B
5 paired measures of A By, 1100 0 0 By, H:B,=0
and B. A, L0100 0 Bsz Hi:cf=0
By, 1010 0 0 |[Bs c=110000 0]
gsa 1001 0 o ||B
N 1001 0 0 |{Bs
B 4 1000 1 0
AS“ -1 000 1 O
B S5 100 0 0 1
s &1 000 0 1/
Two way ANOVA. AlBIL, /I L1 o 1 (N 5 F-tests for all contrasts
Factor A has two levels AlBL, 1110 10 B"’““
and factor B has 3 levels. AlB2, L1101 0 1 B’“ H,: Overall mean=0
There are 2 observations AlB2, 1101 0 1 B“‘ Hy:Ben=0
for each A/B Al1B3, L1l -1 BBZ Hy:cp=0
combination. A1B3, 114444 B"“” c=[1000 0 0]
AzBl AlB2
A2B1; i i i 8 :i 8 H,: Main A effect=0
A2B2, 11010 -1 Ho:Bm:O
A2B2, 1-1010-1 Hy: B =0
A2B3, . :1 11 71 c=[01 00 0 0]
A2B3,
) \1 1-1-11 1/ : Main B effect = 0

1 cf=0
C:[O 0100 0]
000100
: A/B interaction effect=0

: BAIBIZBAIEZZO
1 cf=0

c=[000010]
000001

HD
HO: BBI = BBZ: 0
HU

Examples of GLM models for popular study designs including: One-sample t-test, two-sample
t-test, paired t-test, and two-way ANOVA. The first column describes the model, the second
column describes how the data are ordered in the outcome vector, the third column shows
the design matrix, and the last column illustrates the hypothesis tests and corresponding
contrasts. Note, in the ANOVA example F-tests are used for all contrasts, whereas t-tests are
used for the other examples.
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The paired t-test is the third example in Figure A.2, where there are N groups of
paired observations. For example, we could have N subjects scanned on two sessions
and want to compare session 2 to session 1. In the outcome vector, Y, observations
are ordered by subject, session 1 followed by session 2. The first column of the design
matrix is modeling the difference and the last N columns of the design matrix are
modeling subject-specific means. By adjusting for the subject-specific means, the
difference refers to the difference in the centered or demeaned pairs of data points.
To test the paired difference, the contrast only includes the first parameter, the rest
of the parameters related to the subject-specific means are considered “nuisance,”
since we do not typically test them, but they are necessary to include in the model
to pick up extra variability due to each subject having a different mean.

The last example illustrates a two-way ANOVA, with two levels for the first factor
and three levels for the second factor. There are a couple of ways to set up this model,
but the one illustrated here is a factor effects setup and is used when the interest is in
testing the typical ANOVA hypotheses of overall mean, main effects, and interaction
effects. In general, the format used to create the regressors is as follows: For each
factor the number of regressors is equal to one less than the number of levels for
that factor. So our first factor, call it A, will have one regressor associated with it and
the second factor, call it B, will have two. Each regressor is modeling the difference
between a level of the factor to a baseline level. For example, the second column of X
in the ANOVA panel of Figure A.2 is the regressor for factor A and takes a value of 1
for rows corresponding to level 1 of A (A1), and since the second level is the reference
level, all rows corresponding to A2 are —1. The third and fourth columns are the
regressors for factor B and the third level, B3, is the reference so both regressors are
—1 for those corresponding rows. The third regressor compares B1 to B3, so it is 1
for level B1 and 0 for level B2. The fourth regressor compares B2 to B3 and so it is
0 for Bl and 1 for B2. The last two columns make up the interaction and are found
by multiplying the second and third and second and fourth columns, respectively.
All contrasts are tested using an F-test, since this is standard for ANOVA. To test
the main effects, we simply include a contrast for each regressor corresponding to
that factor, and to test the interaction we would include a contrast for each regressor
corresponding to an interaction. The other option is to use a cell means approach,
where we simply have six regressors, one for each of the six cells of the 2 x 3 ANOVA.
It is an extension of the two-sample #-test model shown in Figure A.2 and is more
convenient when we are interested in testing hypothesis that compare the means
between cells of the ANOVA.

It should be noted that in some cases it is possible to use a linear regression model
when there are repeated measures. For example, the two-sample ¢-test can be thought
of as a one-way ANOVA with two levels and repeated measures across the levels. In
a similar fashion, the two-factor ANOVA model in the bottom panel of Figure A.2
can be extended to a repeated measures case, where measures are repeated for all
factors in the model, say a subject is studied before and after a treatment (factor A)
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for three types of memory tasks (factor B). In this case, the single mean column
would be broken up into separate subject means, and these columns of the design
matrix would be treated as nuisance. A very important note when using the linear
model for repeated measures ANOVA designs is that it only works in the case when
the measures are balanced across the factor levels. So, for example, if a subject was
missing measurements for the second and third levels of factor B after treatment, this
linear regression approach cannot be used. In cases such as this, more complicated
models and estimation strategies are necessary to achieve appropriate test statistics
and hypothesis test results.





