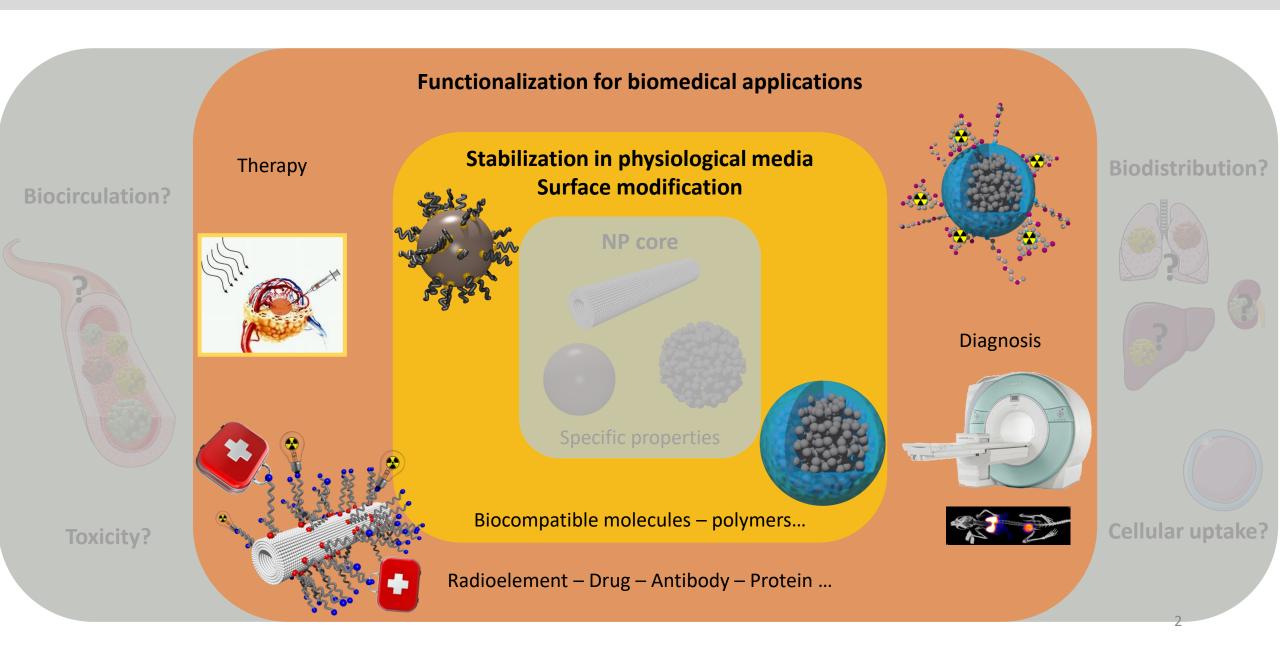
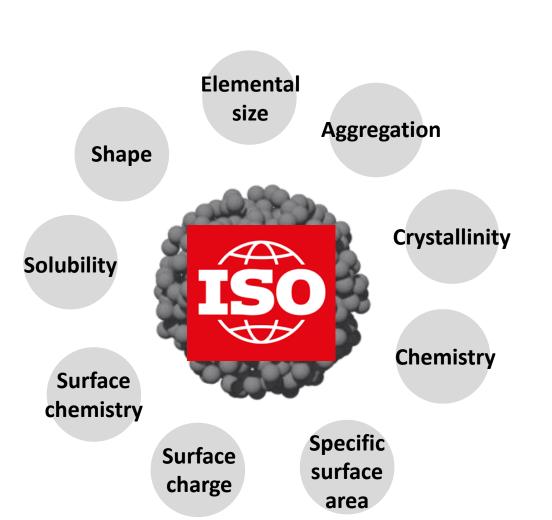
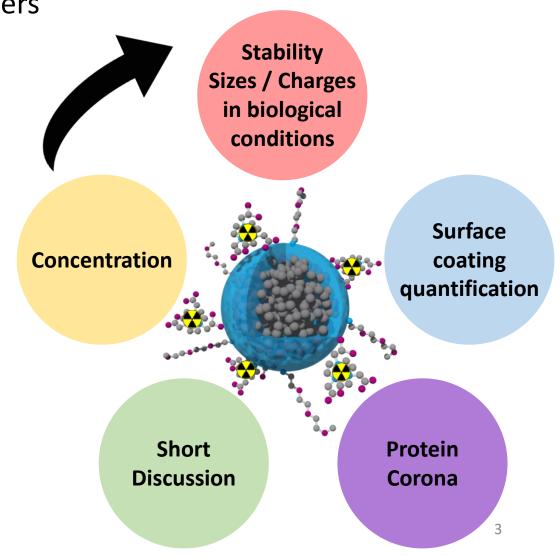
Summer School – Nanoparticles: from fundamentals to medical applications

Characterizations of inorganic NPs Focus on Bio-functionalization

Lionel Maurizi lionelmaurizi@gmail.com

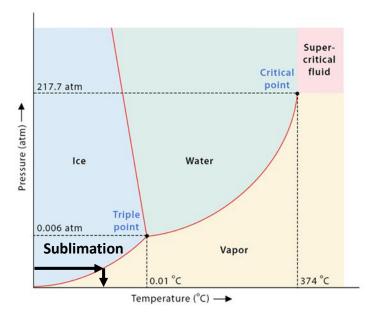



Nanoparticles for biology



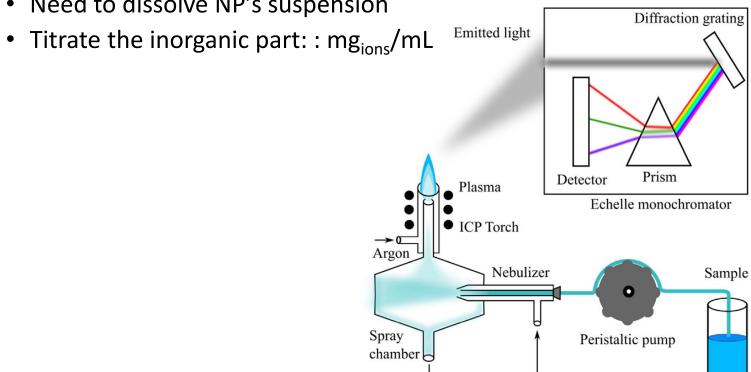
Nanoparticles

• 9 ISO parameters to study


• For biomedical applications: More parameters

Concentration

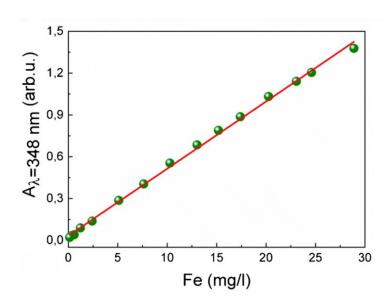
- (Freeze) Drying
 - NPs powder
 - Freeze Drying at low P and T increase stability of NPs compared to normal drying
 - Will quantify the whole sample (coatings and other element included): mg_{NP}/mL



Concentration

- (Freeze) Drying
- ICP Induced Coupled Plasma
 - Need to dissolve NP's suspension

To waste

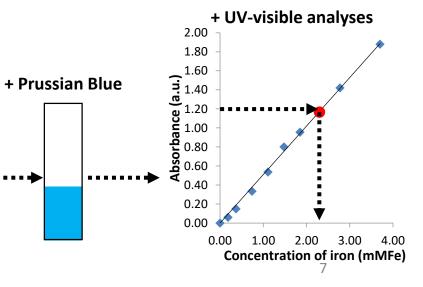

Argon

Concentration

- (Freeze) Drying
- ICP Induced Coupled Plasma
- UV-Visible
 - Suspension as such or diluted
 - For colored NPs
 - Depend on the NPs size so need reproducible NPs or preliminary other quantification (ICP or Freeze drying)

https://doi.org/10.1007/s00604-020-04454-w

Concentration


- (Freeze) Drying
- ICP Induced Coupled Plasma
- UV-Visible
 - Suspension as such or diluted
 - For colored NPs
 - Depend on the NPs size so need reproducible NPs or preliminary other quantification (ICP or Freeze drying)
 - With a reactants for titration (example Prussian Blue) + Dissolution or chemical titration (Redox): mg_{ions}/mL

 $HCI + Dissolved Fe₃O₄ + K₄Fe^{II}(CN)₆, 3 H₂O <math>\rightarrow$ [Fe^{III}₄(Fe^{II}(CN)₆]₃

of IONPs

IONPs

Concentration

Tomore The last of the last of

- (Freeze) Drying
- ICP Induced Coupled Plasma
- UV-Visible
- Magnetic Susceptibility

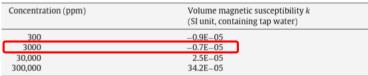
Concentration

- (Freeze) Drying
- ICP Induced Coupled Plasma
- UV-Visible
- Magnetic Susceptibility
 - Suspension as such or diluted
 - For magnetic NPs
 - Depend on the NPs size so need reproducible NPs
 and preliminary other quantification (ICP or Freeze drying)

https://doi.org/10.3390/magnetochemistry8090107

https://doi.org/10.1016/j.heliyon.2023.e16601

		Magnetic NPs							
	Me	Me-O	MFe ₂ O ₃	Doped					
	Fe	Fe ₃ O ₄	Cu	Zn ⁺² , Ni ⁺² , Al ⁺³ , Mn ⁺² , Ag ⁺					
8	Со	γ-Fe ₂ O ₃	Со	Y ⁺³ , Nd ⁺³ , Ti ⁺⁴ , Cd ⁺² , Dy ⁺³					
	Ni		Mn	Gd ⁺³ , Cu ⁺² , Yb ⁺³ , Eu ⁺³ , Zr ⁺⁴					
	CoPt		Zn	In ⁺³ , Cr ⁺² , Pr ⁺³ , Sm ⁺³ , Ho ⁺³					
	FePt		Ni	Er ⁺³ , Mg ⁺² , La ⁺³ or Ce ⁺³					


5

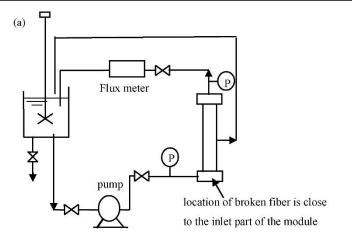
Concentration

- (Freeze) Drying
- ICP Induced Coupled Plasma
- UV-Visible
- Magnetic Susceptibility
 - Suspension as such or diluted
 - For magnetic NPs
 - History of this method

https://doi.org/10.1016/j.memsci.2009.12.025

Magnetic susceptibilities of FeCl₃ solutions.

FeCl₃ solutions were diluted with tap water, k (tap water) = -0.9E-5.

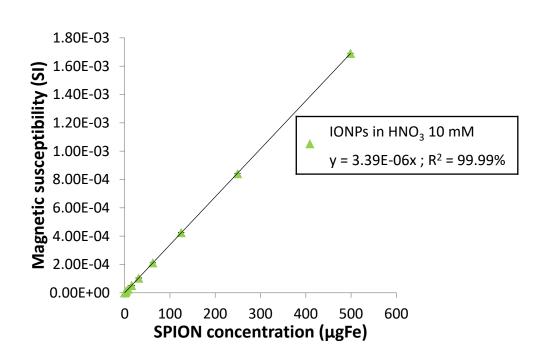

Magnetic susceptibilities of Fe₃O₄ suspensions (b).

Up to 10⁴ X more

Up to 10⁴ X more sensitive to magnetic NPs than Fe

Diluted times	Concentration (ppm)	Volume magnetic susceptibilit	Volume magnetic susceptibility k (SI unit)			
		Diluted with tap water	Diluted with tap water			
		k (containing tap water)	k	k (containing canal water)	k	
100	12.69	0.2E-05	1.1E-05	0.3E-05	1.2E-05	
1000	1.269	-0.4E-05	0.5E - 05	-0.3E-05	0.6E-05	
2000	0.6345	-0.6E+00	0.3E-05	-0.6E-05	0.3E-05	
4000	0.3173	-0.7E-05	0.2E - 05	-0.7E-05	0.2E-05	
6000	0.2115	-0.7E-05	0.2E-05	-0.7E-05	0.2E-05	
7000	0.1813	-0.8E-05	0.1E-05	-0.8E-05	0.1E-05	
8000	0.1586	-0.9E-05	0.0E+00	-0.9E-05	0.0E+00	

Initial concentration is 1.269 g L⁻¹, k (tap water) = -0.9E-5 SI unit, k (canal water) = -0.9E-5 SI unit

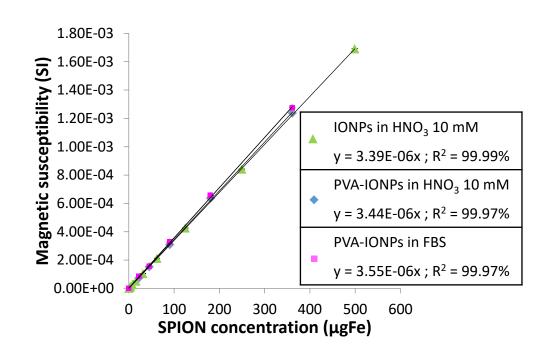


Concentration

The state of the s

- (Freeze) Drying
- ICP Induced Coupled Plasma
- UV-Visible
- Magnetic Susceptibility
 - Suspension as such or diluted
 - For magnetic NPs
 - History of this method
 - Not destructive, fast (< 5 s) and reproducible

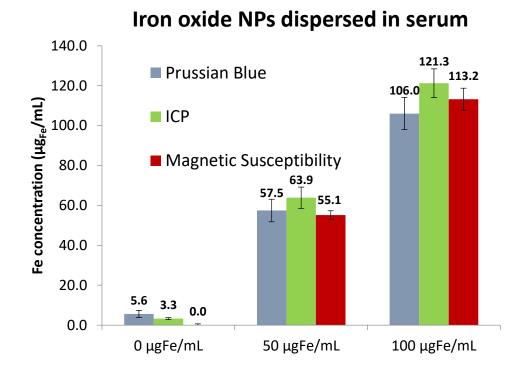

https://doi.org/10.1039/C3AN02153J



Concentration

Orning The Control of the Control of

- (Freeze) Drying
- ICP Induced Coupled Plasma
- UV-Visible
- Magnetic Susceptibility
 - Suspension as such or diluted
 - For magnetic NPs
 - History of this method
 - Not destructive, fast (< 5 s) and reproducible
 - Not influenced by environment (coatings and solvent)

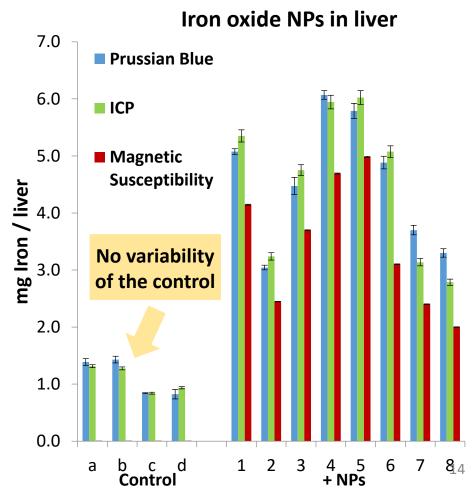


Concentration

Remove The last

- (Freeze) Drying
- ICP Induced Coupled Plasma
- UV-Visible
- Magnetic Susceptibility
 - Suspension as such or diluted
 - For magnetic NPs
 - History of this method
 - Not destructive, fast (< 5 s) and reproducible
 - Not influenced by environment (coatings and solvent)
 - Not sensitive to endogenous iron (for biological samples)

https://doi.org/10.1039/C3AN02153J

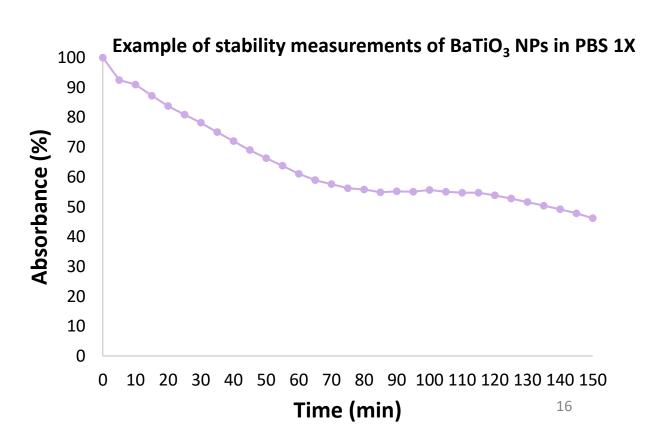


Concentration

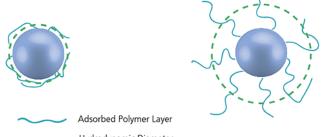
- (Freeze) Drying
- ICP Induced Coupled Plasma
- UV-Visible
- Magnetic Susceptibility
 - Suspension as such or diluted
 - For magnetic NPs
 - History of this method
 - Not destructive, fast (< 5 s) and reproducible
 - Not influenced by environment (coatings and solvent)
 - Not sensitive to endogenous iron (for biological samples)

https://doi.org/10.1039/C3AN02153J

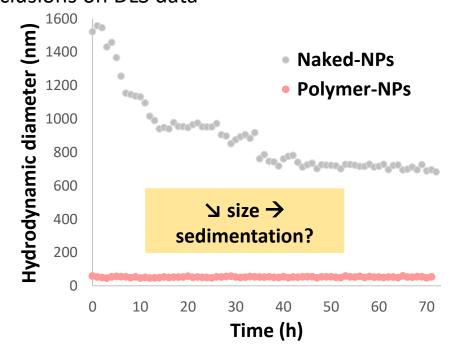
Concentration

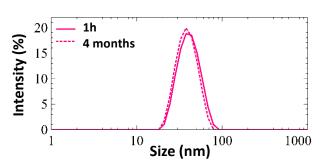

- (Freeze) Drying
- ICP Induced Coupled Plasma
- UV-Visible
- Magnetic Susceptibility

	Concentration							
	Pros	Cons						
(Freeze) Drying	Easy to use	Sensitive to whole sample						
F. D.	Good to store sample?	Need powder form						
	Accurate (ppb)	Destructive						
dOI	Chemistry possible (see previous lecture)	Not for organic						
ible	Fast	Destructive						
UV-visible	0.1 ppm	Complicated for complex colored system						
netic tibility	Very fast and non destructive	Only for magnetic NPs + need preliminary quantification						
Magnetic susceptibili	Not influenced by endogenous ions and environment	2 ppm						


Methods for biological samples (cells, organs...)

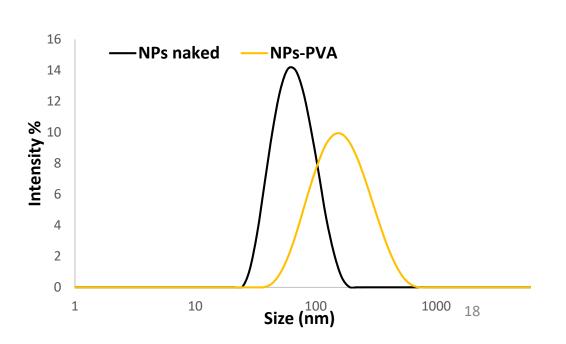
Concentration


- UV-Visible
 - Evolution of absorbance vs time
 Quantification of sedimentation

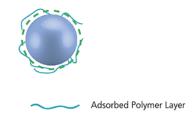


Concentration

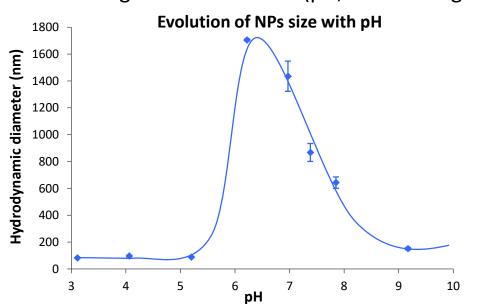
- UV-Visible
- DLS Dynamic Light Scattering or NTA Nanoparticle Tracking Analysis
 - For NPs in suspension
 - Evolution of size over time (hours or several days/weeks)
 Be careful with conclusions on DLS data



Concentration



- UV-Visible
- DLS Dynamic Light Scattering or NTA Nanoparticle Tracking Analysis
 - For NPs in suspension
 - Evolution of size over time (hours or several days/weeks)
 - Polydispersity influenced by:
 - Coatings

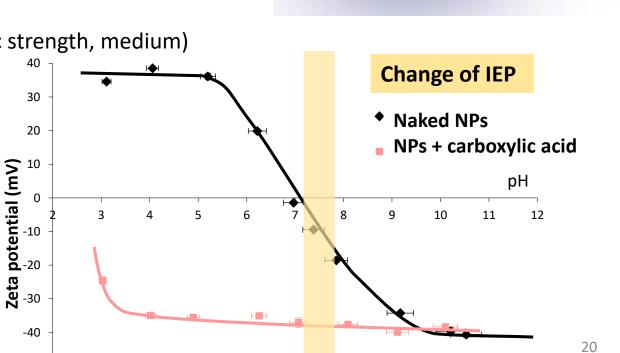

Concentration

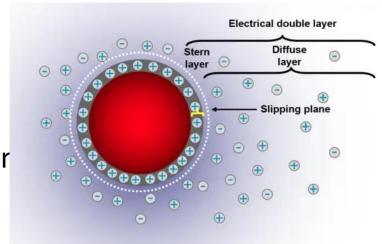
Stability / Sizes / Charges

- UV-Visible
- DLS Dynamic Light Scattering or NTA Nanoparticle Tracking Analysis
 - For NPs in suspension
 - Evolution of size over time (hours or several days/weeks)
 - Polydispersity influenced by:

Coatings or Environment (pH, ionic strength, medium...)

→ Medium in size measurements

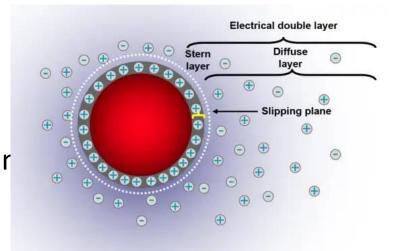

Concentration


Stability / Sizes / Charges

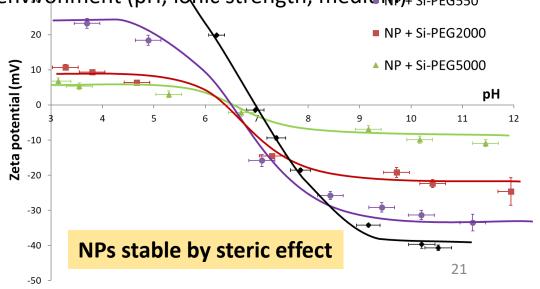
- UV-Visible
- DLS Dynamic Light Scattering or NTA Nanoparticle Trackir
- Zeta potential
 - For NPs in suspension
 - Dependent on environment (pH, ionic strength, medium)

-50

• Can prove correct functionalization



Concentration


Stability / Sizes / Charges

- UV-Visible
- DLS Dynamic Light Scattering or NTA Nanoparticle Trackir
- Zeta potential
 - For NPs in suspension
 - Dependent on environment (pH, ionic strength, medium)
 - Can prove correct functionalization Dependent on environment (pH, ionic strength, medium)+ Si-PEG550
 - "Stability" = f(Zeta) not totally correct

Zeta Potential (mV)	hility
0 to ± 10	ghly stable - rapid coa ulation/flocculation
± 10 to 20	imited stable
± 20 to 30	oderately stable
> ± 30	High, table

• NP naked

Concentration

- UV-Visible
- DLS or NTA
- Zeta potential

	Stability / Sizes / Charges						
	Pros	Cons					
JV-visible	Easy to use and quantification possible	Complicated for long stability quantification					
UV.	Not destructive						
DLS	For short and long stability measurements	Biased observation possible due to technique ~ d ⁶					
	Not destructive + Can prove coatings	Sensitive to environment					
Zeta	For short and long stability measurements	Complicated in very saline media					
Ze	Not destructive + Can prove coatings	Sensitive to environment					

Concentration

Stability / Sizes / Charges Coating quantification

- Coatings can be proven by stability and/or size and charge measurements
- However, quantification of surface coatings is crucial for bio-applications
 - In this part, coatings are assumed to be well washed out
- For this quantification, it is important to have SSA of naked NPs before coatings:
 - Via BET (see first lecture)
 - If not possible, a calculation can be done from sizes of the naked NPs

Concentration

Stability / Sizes / Charges Coating quantification

- FTIR Fourier transform infrared spectroscopy
 - 2-5 mg of powder in KBr pellet or droplet (vibration of inorganic NP not present)
 - Show vibration of chemical bonds and so molecules on surface of NPs
 - Not really quantitative + difficult for complex system with no specific bond
 - From my point of view does not prove grafting

 $v_{C=O} = 1720 \text{ cm}$ $v_{NH} = 1500 \text{ cm}^{-1}$

Wave number (cm⁻¹)

mPEG₂₀₀₀- IONPs

 $v_{CH} = 2900 \text{ cm}^{-1}$

3400

mPEG₂₀₀₀-Si

3900

 $= 500-700 \text{ cm}^{-1}$

 $v_{C-O} = 1120 \text{ cm}^{-1}$

24

Absorbance (a.u.)

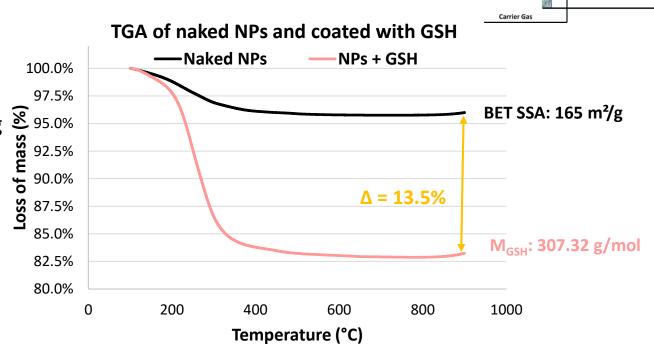
Concentration

Stability / Sizes / Charges Coating quantification

- FTIR Fourier transform infrared spectroscopy
- TGA Thermogravimetric analysis
 - 1-5 mg of powder
 - Mass of molecules on NPs surface
 - Quantitative for one type of grafting

Equation linking TGA to organic molecules on the surface of NPs:

$$n_{molecules} = rac{\Delta}{M_{molecule}} \times N_A \ rac{(100 - \Delta) * S_{BET} \times 10^{18}}$$

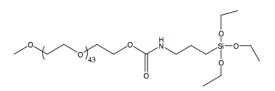

n_{molecules}: molecule per nm² NPs

 Δm : loss of mass (%)

M_{molecule}: Molecular weight of organic molecule g/mol

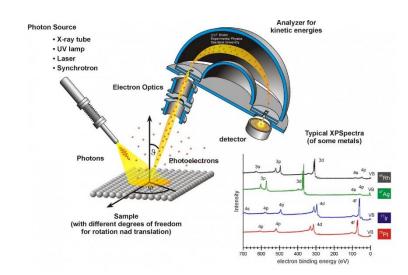
 S_{RFT} : SSA of naked NPs in m²/g

N_Δ: Avogadro number



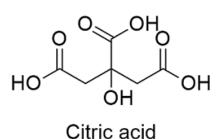
$$n_{GSH} = \frac{\frac{\Delta}{M_{molecule}} \times N_A}{(100 - \Delta) * S_{BET} \times 10^{18}} = 1.85 \frac{GSH}{nm^2}$$

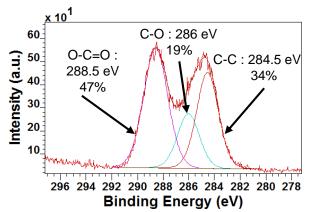
Concentration


Stability / Sizes / Charges Coating quantification

- FTIR Fourier transform infrared spectroscopy
- TGA Thermogravimetric analysis
- XPS X-Ray photoelectron spectroscopy
 - Quantitative for element on surface

m-PEG₂₀₀₀-Si


	Area ratio	С	0	N	Si
∞DΓC C:	Theoretical	65.5%	33%	0.75%	0.75%
mPEG ₂₀₀₀ -Si	XPS measured	66%	32%	1%	1%


Concentration

Stability / Sizes / Charges Coating quantification

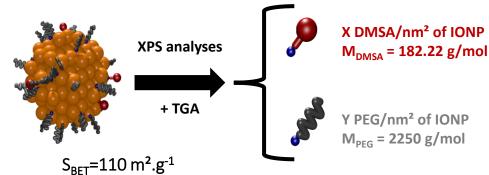
- FTIR Fourier transform infrared spectroscopy
- TGA Thermogravimetric analysis
- XPS X-Ray photoelectron spectroscopy
 - > 10 mg of powder
 - Quantitative for element on surface
 - Peaks deconvolution for different chemical bonds

Deconvolution of Carbon peaks of citric acid

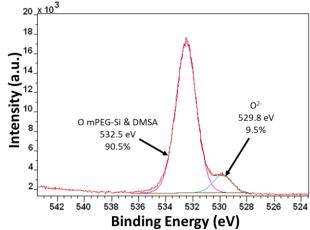
hoton Source				zer for energies	
X-ray tube	(c) Ex	F. Müller perimental Physics arland University		=	
• UV lamp					
Laser					
Synchrotron					
Electron	Optics				
	1. 19.	(Typical XF	Spectra
	· [👸 . ·	detector		(of some	
The state of the s	. 9:				
Photons	Photoelectron	s	3р	3d	
400	C6888888888	-	-35 U_		4s ^{4p} VB
and the same of th	The state of the s		3p	3d	
311111/A	0	£		-1	4s ^{4p} VB
	00000	Intensity	. 4p	, 4d	4f
Sample		= 4	s 4P		VB 77
(with different degrees	s of freedom		4p 4p	. a 4d	41
for rotation nad tra		-			VB 78

Area ratio	С-Н	C-O	O-C=O
Theoretical	33.3%	16.7%	50%
XPS measured	34%	19%	47%

Concentration


Stability / Sizes / Charges Coating quantification

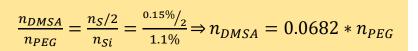
https://doi.org/10.1166/jnn.2019.16796


Quantification

Example of co-functionalization of SPION with DMSA & PEG

- FTIR Fourier transform infrared spectroscopy
- TGA Thermogravimetric analysis
- XPS X-Ray photoelectron spectroscopy
 - > 10 mg of powder
 - Quantitative for element on surface
 - Peaks deconvolution for different chemical bonds
 - Coupled with TGA, quantification of 2 molecules on NPs' surface

Deconvolution of O1s peak in XPS


HOOC -	CH	- CH	- соон
	I	1	
	SH	SH	

DMSA

\ 0\(\psi\)	0 H SI-	0—
	m-PEG ₂₀₀₀ -Si	

Element	O1s	(calcula	ted)	Fe2p	C1	s (calculate	ed	S1s	N1s	Si2p
Sample	IONP	PEG	DMSA	rezp	IONP	PEG	DMSA	212	MT2	Sizp
mPEG ₂₀₀₀ -Si- IONPs-DMSA	3.1	29.1	0.3	1.45	5.3	58.2	0.3	0.15	1.1	1.1

- XPS is quantitative for surface molecules
 - N and Si from PEG & S from DMSA
 - O from IONPs from deconvolution of O1s peak
 - Thus O1s and C from DMSA calculated = 2 * S
 - O from DMSA and PEG calculated
 - C for PEG calculated from O from PEG
 - Rest of C pollution

28

Concentration

Stability / Sizes / Charges Coating quantification

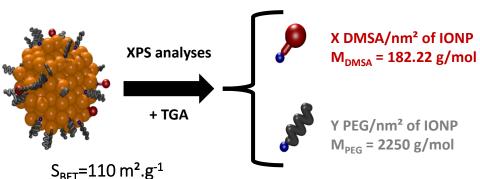
https://doi.org/10.1166/jnn.2019.16796

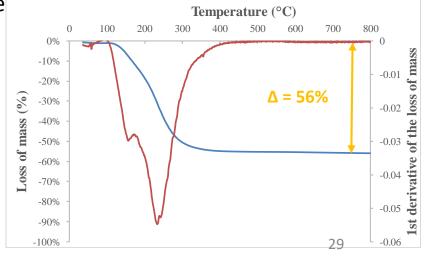
Example of co-functionalization of SPION with DMSA & PEG

Quantification

- FTIR Fourier transform infrared spectroscopy
- TGA Thermogravimetric analysis
- XPS X-Ray photoelectron spectroscopy
 - > 10 mg of powder
 - Quantitative for element on surface
 - Peaks deconvolution for different chemical bonds
 - Coupled with TGA, quantification of 2 molecules on NPs' surface

$$\frac{n_{DMSA}}{n_{PEG}} = \frac{n_S/2}{n_{Si}} = \frac{0.15\%/2}{1.1\%} \Rightarrow n_{DMSA} = 0.0682 * n_{PEG}$$


- TGA loss of mas is 56%
 - Loss of mass due to naked IONP neglected
 - Approximation the whole molecules burned


$$m_{\text{molecules}}(g) = n_{PEG_{2000}} \times (M_{PEG_{2000}}) + n_{DMSA} \times (M_{DMSA}) = 56\% \times 100g$$

3.1 PEG/nm² 0.2 DMSA/nm²

$$m_{\text{molecules}}(g) = n_{PEG_{2000}} \times [(M_{PEG_{2000}}) + 0.0682 \times n_{PEG_{2000}} \times (M_{DMSA})]$$

$$n_{PEG_{2000}} = \frac{56 \text{ g}}{[(2250 \times 98\%) + 0.0682 \times 182.22 \times 98\%]} = 0.02526 \text{ mol } \& n_{DMSA} = 2.1 \cdot 10^{-3} \text{mol}$$

Concentration

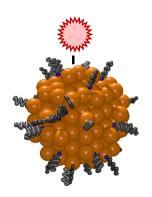
Stability / Sizes / Charges Coating quantification

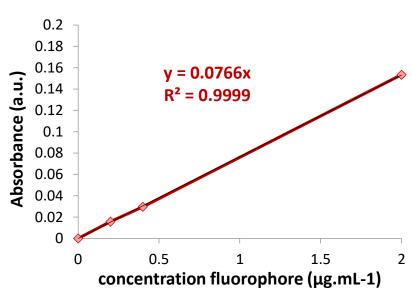
- FTIR Fourier transform infrared spectroscopy
- TGA Thermogravimetric analysis
- XPS X-Ray photoelectron spectroscopy
- UV-visible
 - Direct detection of colored or fluorescent molecules

Equation linking UV-visible to florescent molecules on the surface of NPs:

$$n_{fluorophore} = \frac{c_{fluorophore} * V_{suspension} * \frac{Na}{M_{fluorophore}}}{c_{NP} * V_{suspension} * S_{BET} \times 10^{18}}$$

n_{fluorophore}: molecules of fluorophore per nm² of NPs

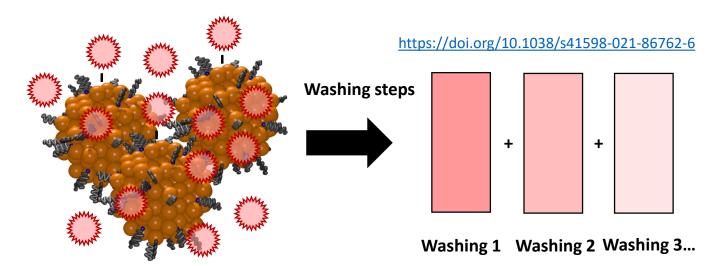

 $c_{fluorophore}$ or c_{NP} : concentration of fluorophore and NPs in g/L


V_{suspesnsion}: Volume of suspension in L

 $M_{fluorophore}$: Molecular weight of the fluorophore in g/mol

S_{BET}: SSA of naked NPs in m²/g

N_∆: Avogadro number



Concentration

Stability / Sizes / Charges Coating quantification

- FTIR Fourier transform infrared spectroscopy
- TGA Thermogravimetric analysis
- XPS X-Ray photoelectron spectroscopy
- UV-visible
 - Direct detection of colored or fluorescent molecules
 - Indirect detection of colored or fluorescent molecules

 $n_{grafted} = n_{initial} - n_{washings}$

Concentration

Stability / Sizes / Charges Coating quantification

- FTIR Fourier transform infrared spectroscopy
- TGA Thermogravimetric analysis
- XPS X-Ray photoelectron spectroscopy
- UV-visible
- Other method to detect coatings
 - ICP if molecule has a different element but destructive
 - Radiodetection for radioactive molecule
 - NPs in suspension

 Instant thin layer chromatography to separate radioactive molecule and check it is still in its macrocycle

• AR-2000 radiochromatograph to quantify fluorescent

https://doi.org/10.2967/jnumed.108.051243 https://doi.org/10.3390/cancers11121962

Concentration

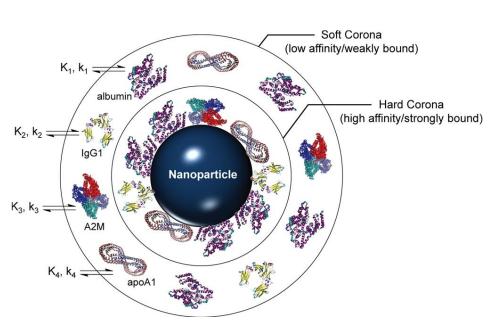
Stability / Sizes / Charges Coating quantification

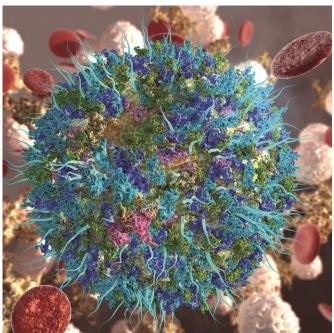
- FTIR Fourier transform infrared spectroscopy
- TGA Thermogravimetric analysis
- XPS X-Ray photoelectron spectroscopy
- UV-visible
- Other method to detect coatings
 - ICP if molecule has a different element but destructive —
 - Radiodetection for radioactive molecule

Complementary methods

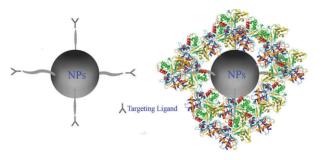
	Coating quantification							
	Pros	Cons						
- R	Fast first answer	Powder / destructive						
FTIR		Grafting difficult to prove						
TGA	Quantification possible	Powder / destructive						
S	Quantitative	Powder						
XPS	Deconvolution possible for multi molecules	Important mass						
ible	Fast	Color / fluorescence						
UV-visible	Indirect or direct detection	Careful of interference						
ICP + Radio	Direct or indirect	ICP destructive						
ICI Ra	Fast and not destructive	Only for radioelement						

Protein Corona


Concentration


Stability / Sizes / Charges Coating quantification

Protein Corona

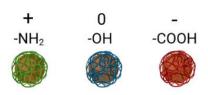

PC Protein Corona

- Nanoparticles (NPs) used for biomedical purposes will be coated by proteins immediately upon contact with a physiological environment leading to different biological behaviors.
- PC is influenced by surface chemistry of NPs and influences their biological behaviors

https://doi.org/10.1021/ar500190q http://dx.doi.org/10.1021/acsnano.7b08008 https://doi.org/10.1039/C3CC37307J

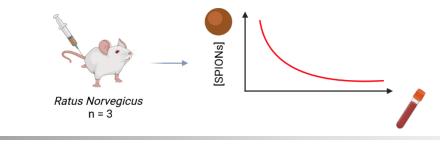
Protein Corona

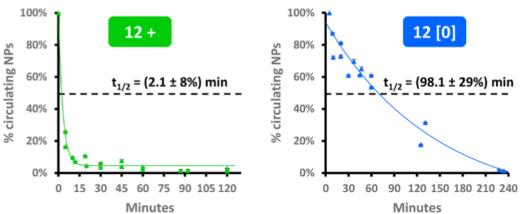
Concentration

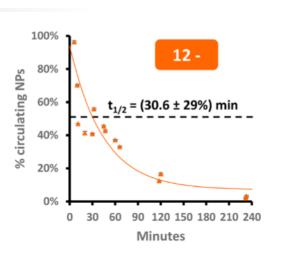

Stability / Sizes / Charges Coating quantification

Protein Corona

- PC Protein Corona
- Example of role of PC


https://doi.org/10.1021/acsnano.3c02041

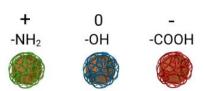

Biocirculation half-lives



NPs functionalized with PVA Different sizes: 12 & 31 kDa Different charges

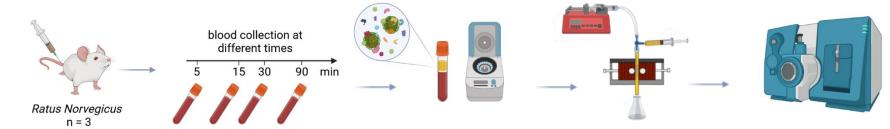
	Size (nm)	Charge pH 7 (mV)
PVA	90 ± 31	+8 ± 2
	95 ± 18	1 ± 3
	91 ± 22	-7 ± 2

Protein Corona


Concentration

Stability / Sizes / Charges Coating quantification

Protein Corona


- PC Protein Corona
- Example of role of PC

Identification of proteins adsorbed on PVA-SPIONs at different times

NPs functionalized with PVA Different sizes: 12 & 31 kDa **Different charges**

	Size (nm)	Charge pH 7 (mV)
PVA	90 ± 31	+8 ± 2
	95 ± 18	1 ± 3
	91 ± 22	-7 ± 2

Magnetic elution of proteins Centrifugation (>Hard Corona) (>plasma)

LC-MS/MS

Alpha-2-HS-glycoprotein	Fibrinogen alpha chain	Ig kappa chain C region, B allele
Apolipoprotein A-I	Fibrinogen beta chain	Lipoprotein lipase
Apolipoprotein A-II	Fibrinogen gamma chain	Matrix Gla protein
Apolipoprotein C-I	Fibronectin	Metalloproteinase inhibitor 3
Apolipoprotein E	Ficolin-1	Murinoglobulin-1
Coagulation factor VII	Hemoglobin subunit alpha-1/2	Osteopontin
Complement C3	Hemoglobin subunit beta-1	Secreted phosphoprotein 24
Extracellular matrix protein 1	Hemoglobin subunit beta-2	Serine protease inhibitor A3K

□ circulation time

https://doi.org/10.1021/acsnano.3c02041

→ circulation time

Effect on biocirculation:

√ 24 proteins with 8 essential Protein corona influenced:

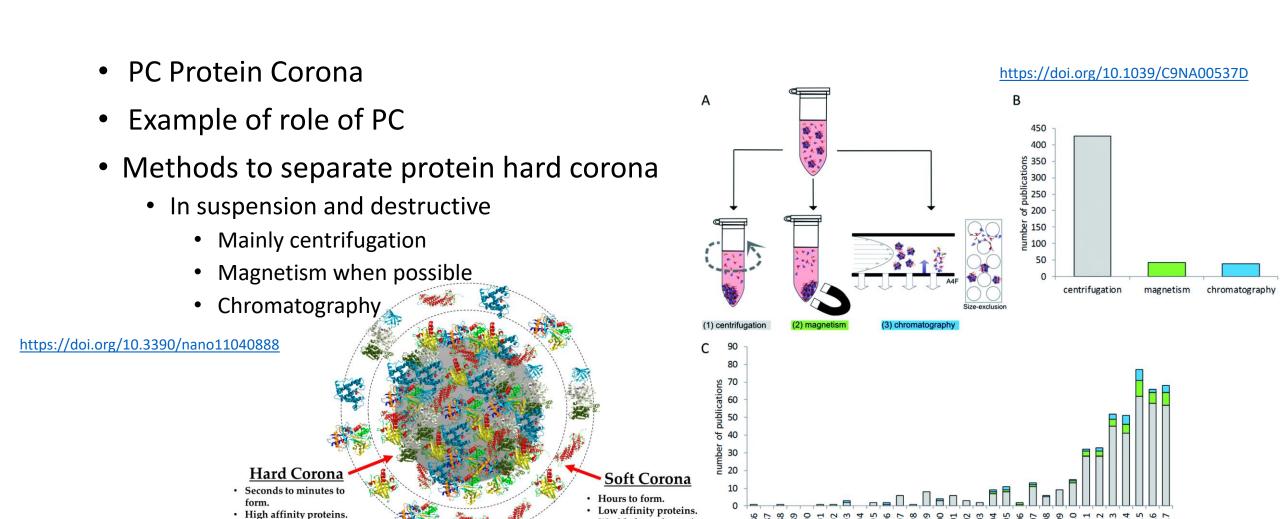
- **✗** Polymer size
- √ Surface charge

36

Concentration

· Strongly bound proteins.

Low dissociation constant.


· Interaction Protein-

Nanoparticle.

Stability / Sizes / Charges Coating quantification

Protein Corona

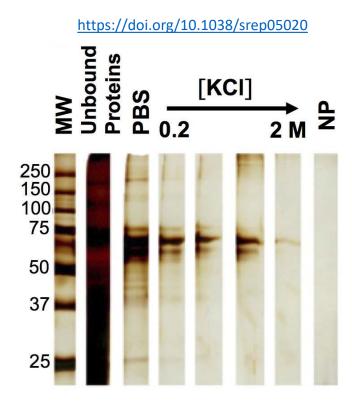
□ centrifugation □ magnetism □ chromatography

· Weakly bound protein

· Interaction Protein-

· High dissociation

Protein.


constant.

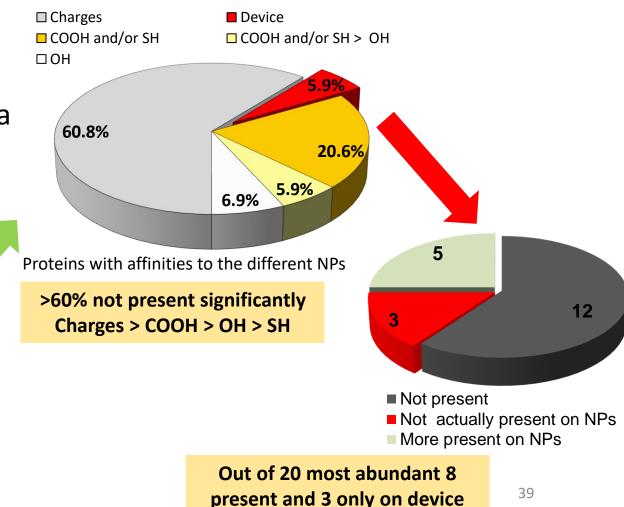
Concentration

Stability / Sizes / Charges Coating quantification

Protein Corona

- PC Protein Corona
- Example of role of PC
- Methods to separate protein hard corona
- Methods to quantify protein corona
 - NPs in suspension or powder and destructive
 - PC could be indirectly observed via methods presented before
 - Protein assays like ICP for cysteine or UV-visible titration
 - Sodium dodecyl sulfate–polyacrylamide gel electrophoresis SDS page
 - Separate by size and / or charge (1D vs 2D): not really quantitative with many proteins
 - Liquid Chromatography coupled to Mass Spectroscopy
 - Separation by size then semi-quantitative analysis

Concentration

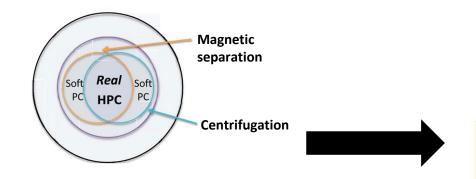

Stability / Sizes / Charges Coating quantification

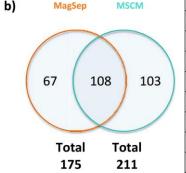
Protein Corona

https://doi.org/10.1021/acs.bioconjchem.8b00554

- PC Protein Corona
- Example of role of PC
- Methods to separate protein hard corona
- Methods to quantify protein corona
- Needs of robust methods
 - Importance of replicates & controls

	Surface	Size (nm)	Z-Potential pH 7 (mV)			
	СООН	93 ± 17	-29 ± 3			
Silica	COOH/SH	104 ± 20	-29 ± 3		_	
	ОН	88 ± 18	-25 ± 3	7	ıntly	38%
45 AS	# 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	79.	NPs in se 2.8 mL / m + cont	n ² NPs	s significantly present	
HS CO	₹ Q _F COOH		+ triplic		Proteins pr	62%


Concentration


Stability / Sizes / Charges Coating quantification

Protein Corona

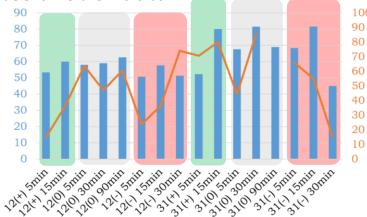
https://doi.org/10.1039/C7AN00646B

- PC Protein Corona
- Example of role of PC
- Methods to separate protein hard corona
- Methods to quantify protein corona
- Needs of robust methods
 - Importance of replicates & controls
 - Importance of separation methods

	MagSep	MSCM
1	Serum albumin	Apolipoprotein B-100
2	Complement C3	Complement C3
3	Fibrinogen gamma chain	Serum albumin
4	Fibrinogen beta chain	Complement C4-A
5	Complement factor H	Complement C4-B
6	Complement C4-A	Apolipoprotein A-l
7	Complement C4-B	Apolipoprotein E
8	Apolipoprotein B-100	Antithrombin-III
9	Apolipoprotein A-l	Alpha-2-macroglobulin
10	lg gamma-1 chain C region	Histidine-rich glycoprotein
11	Complement component C9	Plasminogen
12	Ceruloplasmin	Isoform 3 of Plasma protease C1 inhibitor
13	Fibrinogen alpha chain	Complement factor H
14	Fibronectin	Complement C1q subcomponent subunit C
15	C4b-binding protein alpha chain	Kininogen-1
16	lg kappa chain C region	Plasma kallikrein (Fragment)
17	Complement C1r subcomponent	Alpha-1-antitrypsin
18	lg gamma-3 chain C region	Coagulation factor V
19	Complement C1s subcomponent	Inter-alpha-trypsin inhibitor heavy chain H2
20	Beta-2-glycoprotein 1	Gelsolin

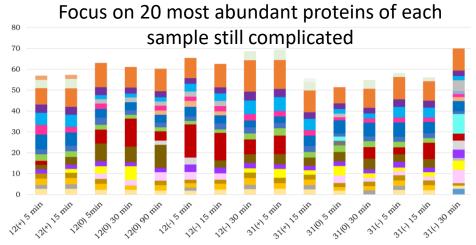
Different PC after centrifugation and magnetic separation

Concentration


Stability / Sizes / Charges Coating quantification

Protein Corona

- PC Protein Corona
- Example of role of PC
- Methods to separate protein hard corona
- Methods to quantify protein corona
- Needs of robust methods.
- Data management


 PC generates a lot of data 80

Number of different proteins found on various NPs and percentage of common proteins per replicate

6 NPs x 3 replicates x 3 time points x 70 proteins \approx 4000 variables

- Actin, cytoplasmic 1
- Alpha-1-inhibitor 3 Apolipoprotein A-I
- Arginase-1

Transthyretin

- Fibrinogen alpha chain
- Fibronectin ■ Hemoglobin subunit beta-2
- Histone H4 ■ Ig lambda-2 chain C region
- Murinoglobulin-2
- Serine protease inhibitor A3K Serum albumin

- Alpha-1-antiproteinase
- Alpha-1-macroglobulin
- Apolipoprotein A-II
- Complement C3
- Fibrinogen beta chain
- Hemoglobin subunit alpha-1/2
- Hemopexin ■ Ig gamma-2A chain C region
- Matrix Gla protein Peroxiredoxin-1
- Serine protease inhibitor A3L T-kininogen 1
- Vitamin D-binding protein

- Alpha-1B-glycoprotein
- Alpha-2-HS-glycoprotein
- Apolipoprotein E Ficolin-1
- Fibrinogen gamma chain
- Hemoglobin subunit beta-1
- Histidine-rich glycoprotein
- Ig kappa chain Č region, B allele ■ Murinoglobulin-1
- Secreted phosphoprotein 24 ■ Serotransferrin
- T-kininogen 2

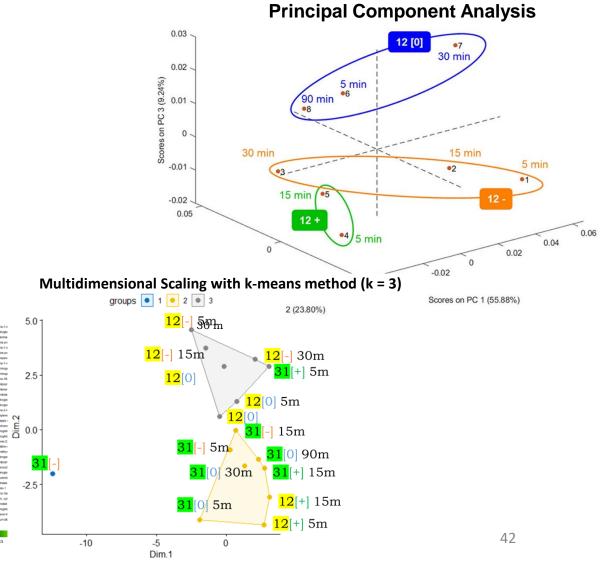
Concentration

Stability / Sizes / Charges Coating quantification

Heat map to improve

readability

Protein Corona


- Example of role of PC
- Methods to separate protein hard corona
- Methods to quantify protein corona

Needs of robust methods

Data management

PC generates a lot of data

Presentation of data

Concentration

Stability / Sizes / Charges Coating quantification

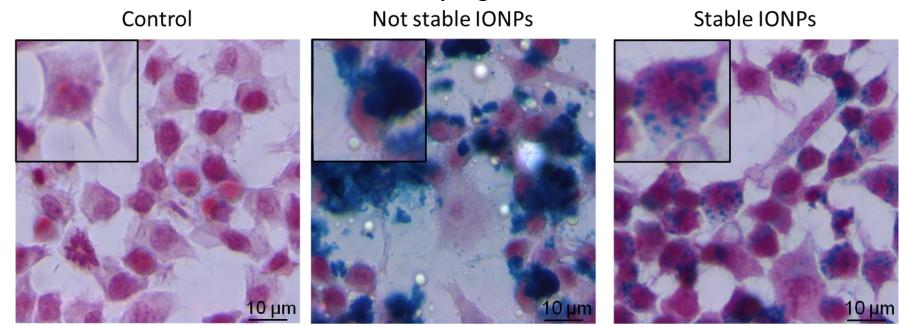
Protein Corona

Short Discussion

- Interactions of NPs with bio-characterizations (stability, color, quenching...)
- Optimization of synthesis methods: Biocompatibility / Reproducibility / Scale-up

Concentration

Stability / Sizes / Charges Coating quantification


Protein Corona

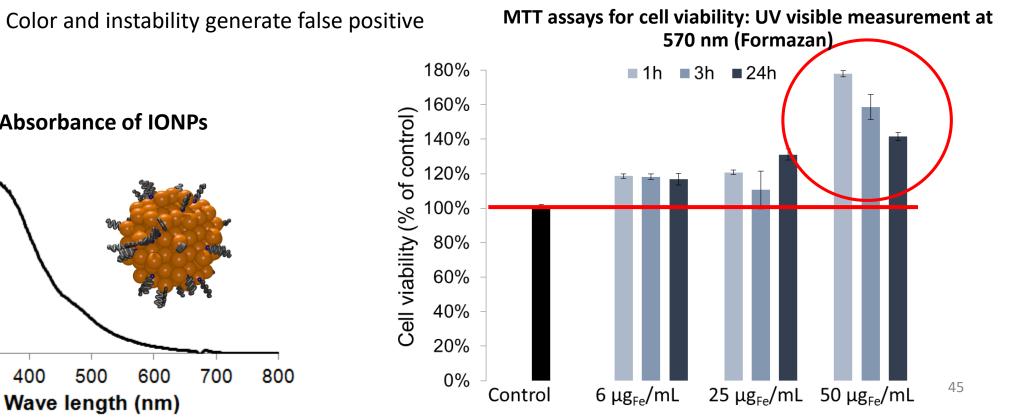
Short Discussion

- Interactions of NPs with bio-characterizations
 - Stability of NPs influence bio-characterizations

https://doi.org/10.1166/jbn.2015.1996

IONPs internalization macrophages revealed in Prussian Blue

Concentration


Stability / Sizes / Charges Coating quantification

Short Discussion

Interactions of NPs with bio-characterizations

- Stability of NPs influence bio-characterizations
- NPs have UV-visible absorbance influencing biological measurements

Absorbance of IONPs Absorbance (a.u.) 300 400 500 600 700 200 800 Wave length (nm)

https://doi.org/10.1166/jbn.2015.1996

Concentration

Stability / Sizes / Charges Coating quantification

g quantification Protein Coron

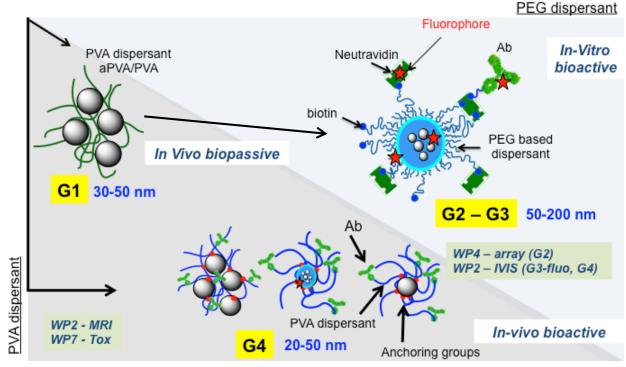
Short Discussion

- Interactions of NPs with bio-characterizations
 - Stability of NPs influence bio-characterizations
 - NPs have UV-visible absorbance influencing biological measurements
 - NPs generates quenching

https://doi.org/10.1021/nl0480969

Quantum efficiency of Cy5 fluorescent molecule as a function of their distance to the gold nanoparticle surface

Concentration


Stability / Sizes / Charges Coating quantification

Protein Corona

Short Discussion

- Interactions of NPs with bio-characterizations
- Optimization of synthesis methods
 - Less toxic chemical used: easier it will be for bio-applications
 - Working with well characterized Master Batch

Example of NPs developed during a European project involving many biological partners

Concentration

Stability / Sizes / Charges Coating quantification

Protein Corona

Short Discussion

- Interactions of NPs with bio-characterizations
- Optimization of synthesis methods
 - Less toxic chemical used: easier it will be for bio-applications
 - Working with well characterized Master Batch
 - Reproducibility
 - Electronic Lab-book
 - SOPs (Standard Operating Procedures)
 - CofA (certificate of analysis)

Example of production follow-up during the European project Nanodiara

Certificate of Analysis

	Acceptance criteria	Results		
Colloid characterization- Ferroflu	uid in water			
Raw Materials	SPION MB4			
	PVA-OH Merck 4.88 Lot 1.41350.1000			
	AminoPropyl Triethoxy Silane (99%) from SigmaAldrich (440140)			
Appearance	Dark brown liquid	Dark brown liquid		
pH	6-8	7.6		
Iron [mg/mL] (Mag Susc.)	4-6	4.0		
Particle size [nm] (TEM)	7-8	7.74 ± 2.05 (counting 478		
		particles) (MB4 SPION)		
Mean hydrodynamic diameter	30-100	50 ±10 (obtained for 10µL in		
[nm] (PCS)		1.5mL DI water)		
PVA content	17%-30%	23.5%		
Charge [mV] (ZetaPALS)	20-50 mV better < 25mV	+21.3 ± 2.0 (obtained for 10µl		
		in 1.5mL DI water)		

Concentration

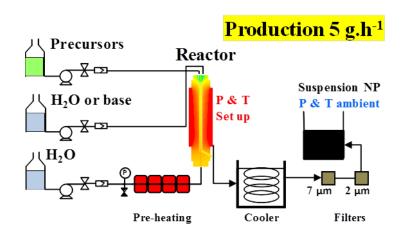
Stability / Sizes / Charges Coating quantification

Protein Corona

Short Discussion

- Interactions of NPs with bio-characterizations
- Optimization of synthesis methods
 - Less toxic chemical used: easier it will be for bio-applications
 - Working with well characterized Master Batch
 - Reproducibility
 - Scale-up?
 - Robust protocols?
 - New methods to synthesize NPs?

Production of NPs before and after synthesis optimization for Merck Serono pharmacokinetic studies during the Nanodiara project


	SPIONs	PVA-SPION	Silica SPIONs
Before scale-up (per day)	1-3 g	1-3 g	0.08 g
After scale-up (per day)	30-100 g	30-100 g	2-10 g

SEVENTH FRAMEWORK PROGRAMME

NanoDiaRA

Particles, Molecules & Cells · Diagnosis in-vitro & in-vivo · Rheumatoid Arthritis & Osteoarthritis

https://doi.org/10.1039/C1CC15470B

Concentration

Stability / Sizes / Charges Coating quantification

Protein Corona

Short Discussion

- Interactions of NPs with bio-characterizations
- Optimization of synthesis methods
 - Less toxic chemical used: easier it will be for bio-applications
 - Working with well characterized Master Batch
 - Reproducibility
 - Scale-up
 - Pharmaceutical formulation?
 - Think earlier to avoid re-characterizing again all the samples? Discussion with other speakers?

Summary

Concentration

Stability / Sizes / Charges Coating quantification

Protein Corona

Short Discussion

Parameters	Techniques presented
Concentration	Freeze Drying, ICP, UV-Visible, Magnetic Susceptibility
Stability / Sizes / Charges	UV-Visible, DLS or NTA, DCSa, Zeta potential
Coating quantification	FTIR, TGA, XPS, UV-visible, ICP, Radiodetection
Protein Corona	PC influences biological behaviors of NPs Separation of protein hard corona: • Centrifugation, Magnetism, Chromatography Methods to quantify protein corona: • SDS page, LC-MS/MS, Protein assays Needs of robust methods Data management
Short Discussion	 Interactions of NPs with bio-characterizations Stability, UV-visible absorbance, quenching Optimization of synthesis methods Less toxic chemical, less steps, reproducibility, Scale-up, Pharmaceutical formulation?

Techniques	Sample preparation / quantity ¹	Destructive? ²
DCS	Suspension as such or diluted (100 μL)	Yes
DLS	Suspension as such or diluted (40 μL)	No
Freeze drying	Powder (few mg)	Yes
FTIR	Powder (2-5 mg) in KBr or Droplet	Yes or No
ICP	Suspension dissolved (ppm)	Yes
Mag. Susc.	Suspension as such or diluted (200-800μL)	No
NTA	Suspension as such or diluted (100 μL)	No
Protein Corona	Separation in suspension (few µL) Quantification in suspension of powder	Yes Yes
Radiodetection	10 μL of suspension	Yes
TGA	1-5 mg of powder	Yes
UV-Visible	Suspension as such or diluted 1mL	No
XPS	100 mg of powder	Yes
ZETA	Suspension as such or diluted 1mL	No

Thank you!

^a Not presented but also possible

¹ Quantity is sometimes difficult to estimate as it will depend on NPs parameters (size, color ...)

²I assumed the technique is destructive if you have to dry powder or you change a parameter (T, vacuum, chemical...)

Bibliography

Abedin, M. R.; Powers, K.; Aiardo, R.; Barua, D.; Barua, S. Antibody–Drug Nanoparticle Induces Synergistic Treatment Efficacies in HER2 Positive Breast Cancer Cells. Sci. Rep. 2021, 11 (1), 7347. https://doi.org/10.1038/s41598-021-86762-6.

Böhmert, L.; Voß, L.; Stock, V.; Braeuning, A.; Lampen, A.; Sieg, H. Isolation Methods for Particle Protein Corona Complexes from Protein-Rich Matrices. Nanoscale Adv. 2020, 2 (2), 563–582. https://doi.org/10.1039/C9NA00537D.

Bonvin, D.; Chiappe, D.; Moniatte, M.; Hofmann, H.; Ebersold, M. M. Methods of Protein Corona Isolation for Magnetic Nanoparticles. Analyst 2017, 142 (20), 3805–3815. https://doi.org/10.1039/C7AN00646B.

Carrillo-Carrion, C.; Carril, M.; Parak, W. J. Techniques for the Experimental Investigation of the Protein Corona. Curr. Opin. Biotechnol. 2017, 46, 106–113. https://doi.org/10.1016/j.copbio.2017.02.009.

Dulkeith, E.; Ringler, M.; Klar, T. A.; Feldmann, J.; Muñoz Javier, A.; Parak, W. J. Gold Nanoparticles Quench Fluorescence by Phase Induced Radiative Rate Suppression. Nano Lett. 2005, 5 (4), 585–589. https://doi.org/10.1021/nl0480969.

Fleischer, C. C.; Payne, C. K. Nanoparticle-Cell Interactions: Molecular Structure of the Protein Corona and Cellular Outcomes. Acc. Chem. Res. 2014, 47 (8), 2651–2659. https://doi.org/10.1021/ar500190q.

Galmarini, S.; Hanusch, U.; Giraud, M.; Cayla, N.; Chiappe, D.; von Moos, N.; Hofmann, H.; Maurizi, L. Beyond Unpredictability: The Importance of Reproducibility in Understanding the Protein Corona of Nanoparticles. Bioconjug. Chem. 2018, 29 (10), 3385–3393. https://doi.org/10.1021/acs.bioconjchem.8b00554.

Guo, H.; Wyart, Y.; Perot, J.; Nauleau, F.; Moulin, P. Application of Magnetic Nanoparticles for UF Membrane Integrity Monitoring at Low-Pressure Operation. J. Membr. Sci. 2010, 350 (1), 172–179. https://doi.org/10.1016/j.memsci.2009.12.025.

Ke, P. C.; Lin, S.; Parak, W. J.; Davis, T. P.; Caruso, F. A Decade of the Protein Corona. ACS Nano 2017. https://doi.org/10.1021/acsnano.7b08008.

Lee, H.-Y.; Li, Z.; Chen, K.; Hsu, A. R.; Xu, C.; Xie, J.; Sun, S.; Chen, X. PET/MRI Dual-Modality Tumor Imaging Using Arginine-Glycine-Aspartic (RGD)—Conjugated Radiolabeled Iron Oxide Nanoparticles. J. Nucl. Med. 2008, 49 (8), 1371–1379. https://doi.org/10.2967/jnumed.108.051243.

Loiseau, A.; Boudon, J.; Oudot, A.; Moreau, M.; Boidot, R.; Chassagnon, R.; Said, N. M.; Roux, S.; Mirjolet, C.; Millot, N. Titanate Nanotubes Engineered with Gold Nanoparticles and Docetaxel to Enhance Radiotherapy on Xenografted Prostate Tumors. Cancers 2019, 11 (12), 1962. https://doi.org/10.3390/cancers11121962.

Marets, C. Elaboration de nanoparticules inorganiques pour l'étude des interactions nanoparticules-protéines. Phd thesis, Université Bourgogne Franche-Comté, 2023. https://theses.hal.science/tel-04427957 (in French sorry)

Bibliography

Marques, C.; Hajipour, M. J.; Marets, C.; Oudot, A.; Safavi-sohi, R.; Guillemin, M.; Borchard, G.; Jordan, O.; Saviot, L.; Maurizi, L. Identification of the Proteins Determining the Blood Circulation Time of Nanoparticles. ACS Nano 2023, 17 (13), 12458–12470. https://doi.org/10.1021/acsnano.3c02041.

Maurizi, L.; Bouyer, F.; Paris, J.; Demoisson, F.; Saviot, L.; Millot, N. One Step Continuous Hydrothermal Synthesis of Very Fine Stabilized Superparamagnetic Nanoparticles of Magnetite. Chem. Commun. 2011, 47 (42), 11706–11708. https://doi.org/10.1039/C1CC154708.

Maurizi, L.; Sakulkhu, U.; Gramoun, A.; Vallee, J.-P.; Hofmann, H. A Fast and Reproducible Method to Quantify Magnetic Nanoparticle Biodistribution. Analyst 2014, 139 (5), 1184–1191. https://doi.org/10.1039/C3AN02153J.

Maurizi, L.; Papa, A.-L.; Dumont, L.; Bouyer, F.; Walker, P.; Vandroux, D.; Millot, N. Influence of Surface Charge and Polymer Coating on Internalization and Biodistribution of Polyethylene Glycol-Modified Iron Oxide Nanoparticles. J. Biomed. Nanotechnol. 2015, 11 (1), 126–136. https://doi.org/10.1166/jbn.2015.1996.

Maurizi, L.; Sallem, F.; Boudon, J.; Heintz, O.; Bisht, H.; Bouyer, F.; Millot, N. Efficient Quantification by X-Ray Photoelectron Spectroscopy and Thermogravimetric Analyses of the One-Pot Grafting of Two Molecules on the Surface of Iron Oxide Nanoparticles. J. Nanosci. Nanotechnol. 2019, 19 (8), 4920–4929. https://doi.org/10.1166/jnn.2019.16796.

Mirshafiee, V.; Mahmoudi, M.; Lou, K.; Cheng, J.; Kraft, M. L. Protein Corona Significantly Reduces Active Targeting Yield. Chem. Commun. 2013, 49 (25), 2557–2559. https://doi.org/10.1039/C3CC37307J.

Mittal, A.; Roy, I.; Gandhi, S. Magnetic Nanoparticles: An Overview for Biomedical Applications. Magnetochemistry 2022, 8 (9), 107. https://doi.org/10.3390/magnetochemistry8090107.

Sakulkhu, U.; Mahmoudi, M.; Maurizi, L.; Salaklang, J.; Hofmann, H. Protein Corona Composition of Superparamagnetic Iron Oxide Nanoparticles with Various Physico-Chemical Properties and Coatings. Sci. Rep. 2014, 4, 5020. https://doi.org/10.1038/srep05020.

Salih, S. J.; Mahmood, W. M. Review on Magnetic Spinel Ferrite (MFe2O4) Nanoparticles: From Synthesis to Application. HELIYON 2023, 9 (6), e16601. https://doi.org/10.1016/j.heliyon.2023.e16601.

Torras, M.; Moya, C.; Pasquevich, G. A.; Roig, A. Accurate Iron Quantification in Colloids and Nanocomposites by a Simple UV-Vis Protocol. Microchim. Acta 2020, 187 (9), 488. https://doi.org/10.1007/s00604-020-04454-w.

Trenkenschuh, E.; Friess, W. Freeze-Drying of Nanoparticles: How to Overcome Colloidal Instability by Formulation and Process Optimization. Eur. J. Pharm. Biopharm. 2021, 165, 345–360. https://doi.org/10.1016/j.ejpb.2021.05.024.

53