

Synthesis of Colloidal Inorganic Nanoparticles

Theory of Nucleation, Growth and Case Studies

Jari Leemans

Laboratory of Nanoparticles for Energy (Prof. R. Buonsanti)

EPFL-Valais

Who am I?

Jari Leemans

Post-doc at Buonsanti group (Cu nanocrystals for electrocatalysis)

Studies and PhD at Ghent University with Prof. Zeger Hens (InAs QDs for opto-electronics)

Nanoparticle synthesis, surface chemistry, and demonstrator devices

The Buonsanti Lab @ EPFL

Nanoparticles for Energy applications

Colloidal synthesis of novel materials

Applicability of new materials in electrocatalysis (CO2RR, CORR, NO3RR)

EPFL Presentation Overview

Introduction

Nanoparticles, surfaces and potential exploitation

How Do We Make Inorganic Nanoparticles

Chemical transformations

Classical Nucleation Theory

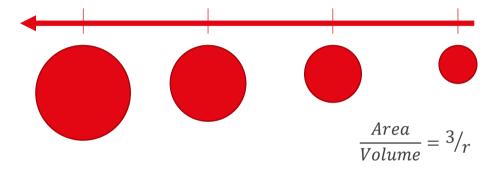
Size and Shape control

Growth, Size focusing, Ostwald ripening Kinetic control, Oriented Attachment, Preferential Growth

- How Do We Study Syntheses
 In-situ and ex-situ analysis techniques
- What Entails a Good Synthesis

Nanoparticles

Why NPs??


EPFL Introduction

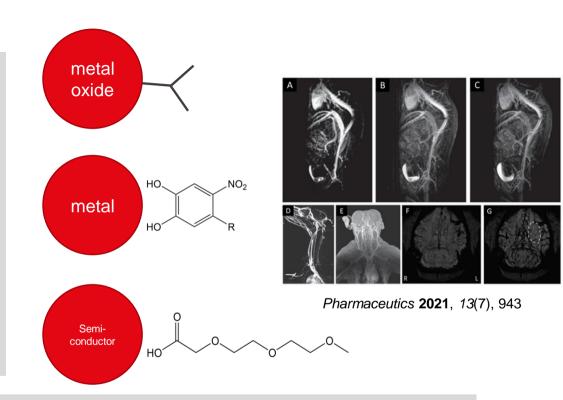
Nanoparticles

From bulk materials to the nano-regime

Surfaces (Area / Volume)

Size dependent properties

Nanomaterials access a material's intrinsic properties whilst providing an adjustable interaction with environment (surface functionalization)

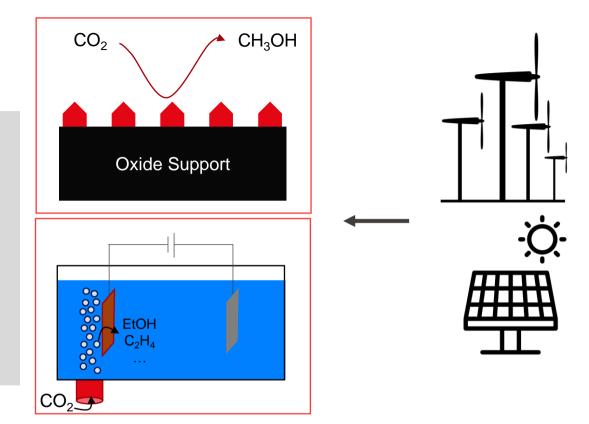

EPFL Medicine

Oxides, Metals or Semiconductors

Therapeutics, Contrast Agents, Fluorescence Imaging

Dispersion in medium

Interaction through surface functionalization


Nanomaterials access a material's intrinsic properties (structure) whilst modifying the interaction with environment (surface functionalization)

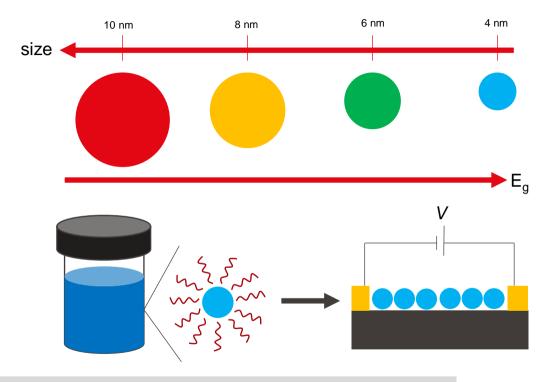
EPFL Catalysis

Facet-specific reactivity

Enhancement of surface area (activity per gram!)

Electronic effects at the interface

Nanomaterials access the material's intrinsic properties (structure) whilst modifying the interaction with environment (surface functionalization)


EPFL Quantum Dots – Nobel Prize 2024

Material = Semiconductor

Variable band gap with same material

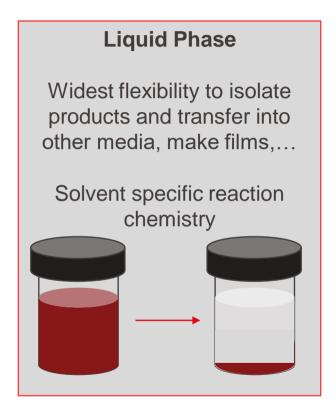
Surface functionalization for electrical conductivity

Phosphors, LEDs, Photodetectors

Nanomaterials access the material's intrinsic properties (structure) whilst modifying the interaction with environment (surface functionalization)

■ École polytechnique fédérale

EPFL How Do We Make Nanoparticles?


Top-down, Bottom-up

EPFL How Do We Make Nanoparticles?

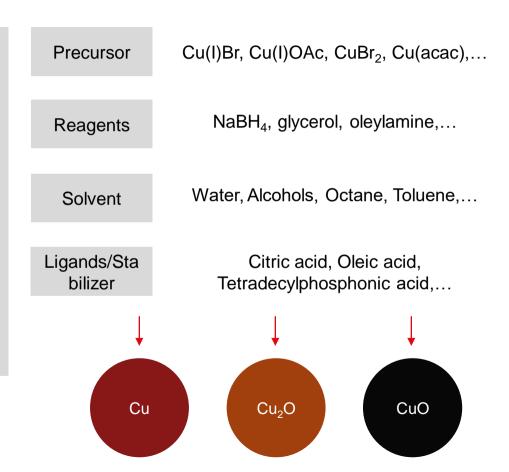
Top-down, Bottom-up gas liquid Molecular **Precursors Bulk Material** solid/powder

EPFL Bottom-up synthesis Methods

Gas Phase Synthesis Substrate required More suited for coating nanoparticle films Epitaxial quantum dots InP

Solid State Ball-milling of nanoparticles to form new phases Long processing times, limited control of size and shape Inexpensive!

 Ecole polytechnique fédérale de Lausanne

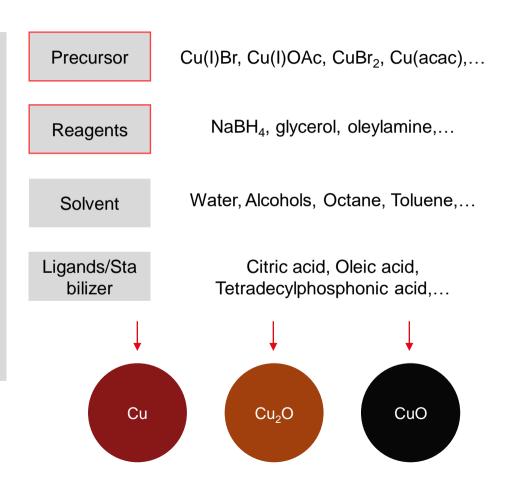

EPFL How Do We Make Nanoparticles?

1) A Viable Chemical Route

Chemical transformations from commercially available starting materials

Breadth of Inorganic Chemistry

Condensation, Hydrolysis, Pyrolysis, Reduction, Precipitation,...


EPFL How Do We Make Nanoparticles?

1) A Viable Chemical Route

Chemical transformations from commercially available starting materials

Breadth of Inorganic Chemistry

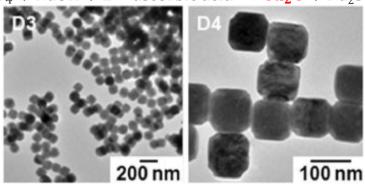
Condensation, Hydrolysis, Pyrolysis, Reduction, Precipitation,...

École polytechnique fédérale de Lausanne

EPFL Obtaining Cubes with the Desired Copper Phase

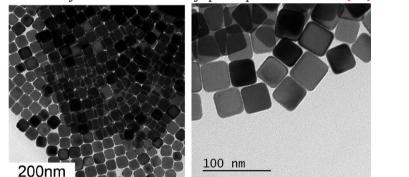
Think about the oxidation state

Cu₂O


Aqueous, precipitation, surfactantfree

Cu

Schlenk line, apolar solvent, ligand stabilized, reduction


Phase and Pourbaix Diagrams are your friend

 $CuSO_4 + NaOH + L - ascorbic acid \rightarrow Cu_2O + Na_2SO_4 + \cdots$

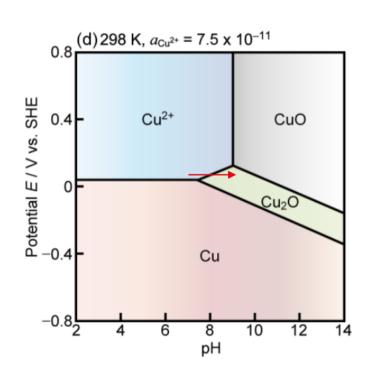
Adv. Funct. Mater. 2007, 17. 3773-3780

CuBr + oleylamine + trioctylphosphine \rightarrow Cu (m) + ...

J. Am. Chem. Soc. 2019. 141, 16312-16322

EPFL Obtaining Cubes with the Desired Copper Phase

Think about the oxidation state


Cu₂O

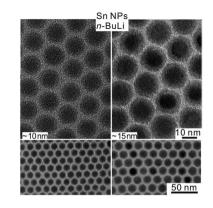
Aqueous, precipitation, surfactantfree

Cu

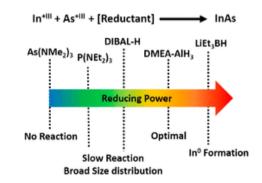
Schlenk line, apolar solvent, ligand stabilized, reduction

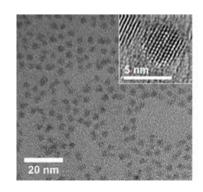
Phase and Pourbaix Diagrams are your friend

EPFL Reduction Reactions for NPs


Think about the oxidation state

Sn NPs


Oxophilic – stringent air-free conditions to maintain metallic speciation after synthesis


InAs QDs

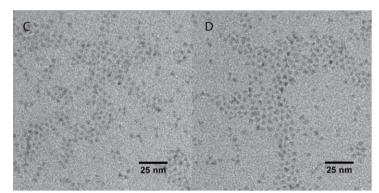
Reducing power dictates product quality

$$SnCl_2 + n - BuLi + DIBAL - H + Oleylamine \rightarrow Sn (m) + ...$$
Chem. Mater. 2015, 27,
635-647

$$InCl_3 + As(NMe_2)_3 + DMEA - AlH_3 + oleylamine \rightarrow InAs + ..$$
Chem. Mater. 2018, 30,
3623–3627

EPFL A few more examples

Au NPs


Fast and slow reduction for shape control

InAs QDs

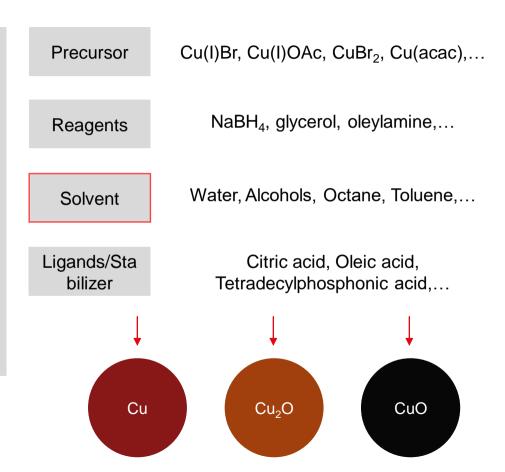
highly reactive Asprecursor Direct decomposition to target phase

J. Am. Chem. Soc. 2013, 135, 18238-18247

InOAc₃ + As(SiMe₃)₃ \rightarrow InAs + ...

J. Am. Chem. Soc. 2012,
134, 20211–20213

 École polytechnique fédérale de Lausanne


EPFL How Do We Make Nanoparticles?

1) A Viable Chemical Route

Chemical transformations from commercially available starting materials

Breadth of Inorganic Chemistry

Condensation, Hydrolysis, Pyrolysis, Reduction, Precipitation,...

École polytechnique fédérale de Lausanne

EPFL How to choose a solvent?

EPFL How to choose a solvent?

Solubility

Precursor solubility for effective wet-chemical reactivity

Product dispersibility – desired or undesired

Application

Nanoparticle dispersibility

Consequence of ligand stabilization

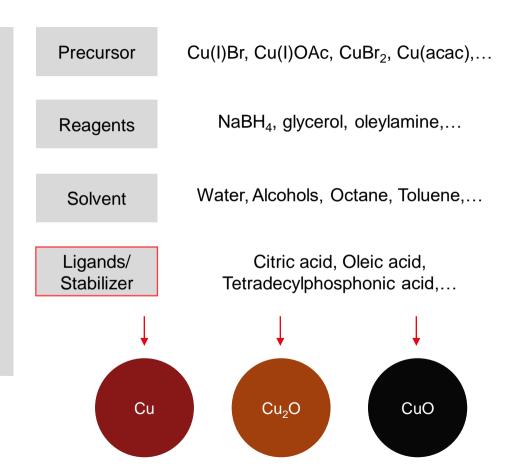
Motivation to develop synthesis in medium of application

Cost

Extensive purification with organic solvents

Organic solvent waste

Fabrication/chemical plant rules

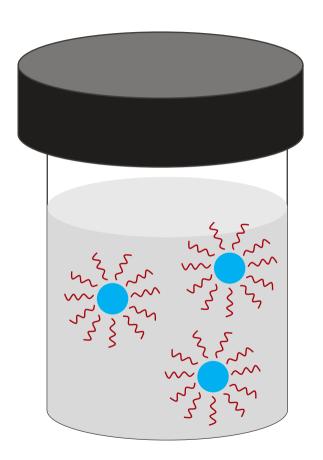

EPFL How Do We Make Nanoparticles?

1) A Viable Chemical Route

Chemical transformations from commercially available starting materials

Breadth of Inorganic Chemistry

Condensation, Hydrolysis, Pyrolysis, Reduction, Precipitation,...

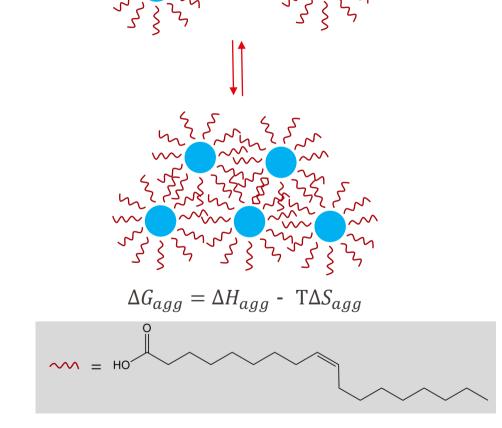

Nanoparticle Ligands

Coordination chemistry from metal-organic complexes

Steric or charge-stabilization

Solvation of the ligand shell – dispersing

Impact monomer flux


Nanoparticle Ligands

Large dispersion forces cause aggregation

Entropic penalty for ligand compression, solvent organization

Enthalpic contributions of interdigitation, ligand-solvent interactions

Dominant term decides T-response

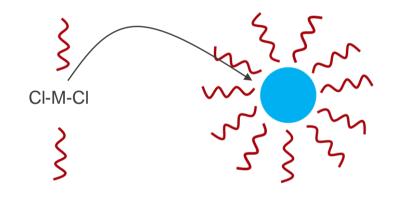
 F_{VdW}

Journal of Colloid and

Interface Science, Vol. 58, No. 2, February 1977

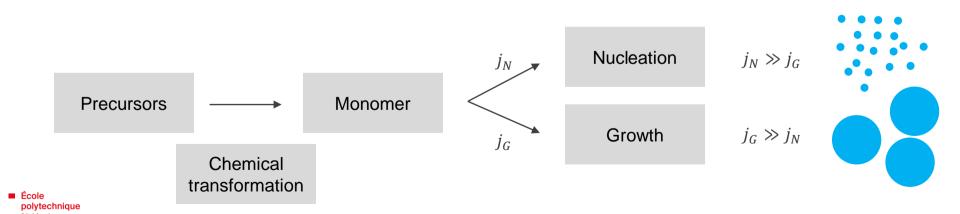
 $\mathsf{F}_{\mathsf{VdW}}$

École polytechnique fédérale


Ligands in Synthesis

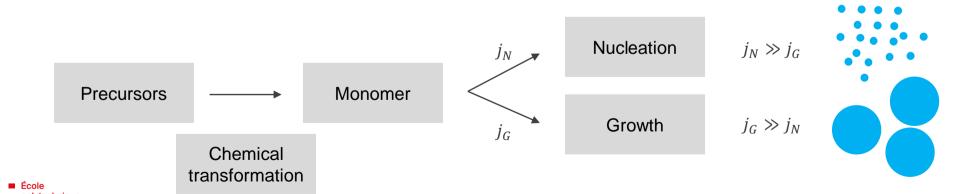
Impact reactivity of precursor

Prevent surface access


Preferential binding sites

Affects both thermodynamics and kinetics of particle growth

EPFL Why are We Getting Nanoparticles? – Not Bulk


The thermodynamic driving force for nanoparticle formation is

EPFL Why are We Getting Nanoparticles? – Not Bulk

The thermodynamic driving force for nanoparticle formation is a concentration of species M larger than it's equilibrium solubility: $[M] > [M]_{eq}$

The precipitating material can be used to form new nanoparticles (nuclei) in a process called nucleation or attach to existing nuclei (growth)

Classical Nucleation Theory

Monomers are in equilibrium with particles

Spherical particle free energy as sum of bulk and surface term

n amount of monomers S supersaturation ratio a_m surface area of monomer γ surface tension

$$n M \rightleftharpoons [M]_n$$

$$\Delta G = \Delta G_{bulk} + \Delta G_{surf}$$

$$\Delta G = \left(-nk_B T lnS\right) + \left(4\pi \gamma \left(\frac{3v_m}{4\pi}n\right)^{\frac{2}{3}}\right)$$

$$S = \frac{[M]}{[M]_{eq}}$$

Bulk term lowers free energy, relieves system of supersaturation, drives NP formation

Creating surfaces is unfavorable

$$n M \rightleftharpoons [M]_n$$

Derivation

Equilibrium between bulk and solute at $[M]_{eq}$ $\mu_{l.eq} = \mu_{s.bulk}$

Solute chemical potential given by

$$\mu_l = \mu_{l,eq} + RT \ln \left[\frac{M}{M} \right]_{eq}$$

Solid chemical potential

$$\mu_S = \mu_{S,bulk} + A\gamma$$

Standard molar crystallization free energy of NP

$$\Delta G = \mu_S - \mu_l = -RT \ln^{[M]}/_{[M]_{eq}} + A\gamma$$

Area in terms of monomer volume v_m and number of monomers n, assuming a spherical particle

$$V = nv_m = \frac{4\pi}{3}r^3$$
$$A = 4\pi r^2$$

Substitute *r* in *A* equation

And from mole to per monomer $R = N_A k_B$

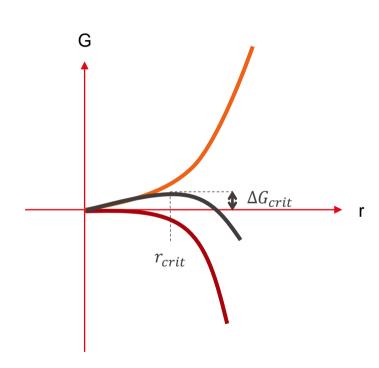
$$\Delta G = -nk_B T \ln S + 4\pi \gamma \left(\frac{3v_m}{4\pi}n\right)^{\frac{2}{3}}$$

$$n M \rightleftharpoons [M]_n$$

$$\Delta G_{nucl} = -nk_B T lnS + 4\pi \gamma \left(\frac{3v_m}{4\pi}n\right)^{2/3}$$

$$S = \frac{[M]}{[M]_{eq}}$$

Critical radius is defined as the minimum radius (scales with number of monomers) needed to create a stable particle – defined as a particle to which attaching additional monomers is more favorable than dissolution – reason why precipitation does not occur instantly at the thermodynamic condition of saturation


$$n M \rightleftharpoons [M]_n$$

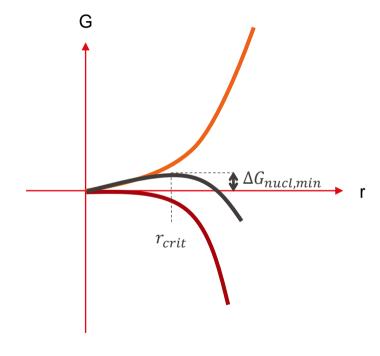
$$\Delta G_{nucl} = -nk_B T ln S + 4\pi \gamma \left(\frac{3v_m}{4\pi}n\right)^{2/3}$$

$$r_{\rm crit} = \frac{2\gamma v_0}{k_{\rm B}T \ln S}$$

$$\Delta G_{\text{crit}} = \frac{16\pi \gamma^3 {\nu_0}^2}{3(k_{\text{B}}T)^2 (\ln S)^2}$$

$$n M \rightleftharpoons [M]_n$$

$$\Delta G_{nucl} = -nk_BTlnS + 4\pi \gamma \left(\frac{3v_m}{4\pi}n\right)^{2/3}$$


Conclusions

There exists a minimum size for nuclei r_{crit} , with this comes an activation energy barrier $\Delta G_{nucl,min}$

Nuclei size depends on S and γ

Different materials and solvents will impact γ

Free energy barrier decreases with *S.* Nucleation becomes more likely/faster as the fluctuation in energy needed to induce nucleation decreases

 $j_{nucl} \propto \exp(-\Delta G_{nucl})$

EPFL A Groundbreaking Theory to achieve monodisperse colloids

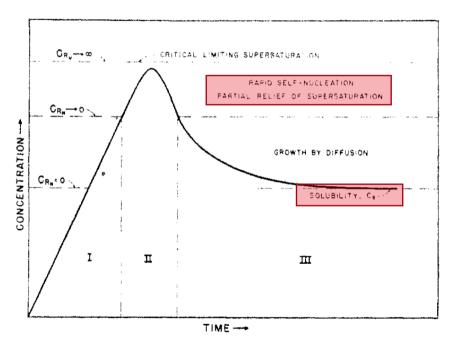


Fig. 1.—Schematic representation of the concentration of molecularly dissolved sulfur before and after nucleation as a function of time.

Concentration of monomer M rises above equilibrium solubility

When reaching supersaturation, nucleation can occur

This reduces supersaturation S, nucleation is suppressed again but remaining [M]>[M]_{eq} can cause NP growth

EPFL A Groundbreaking Theory inspires Nobel Prize Winning Chemistry

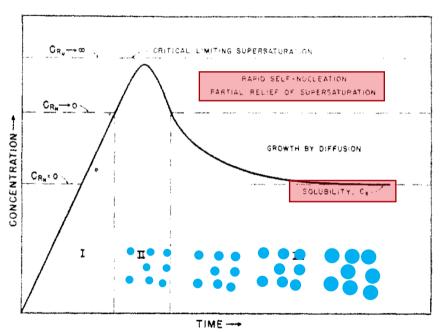


Fig. 1.—Schematic representation of the concentration of molecularly dissolved sulfur before and after nucleation

as a function of time.

The Nobel Prize in Chemistry 2023

The Royal Swedish Academy of Sciences has decided to award the Nobel Prize in Chemistry 2023 to

Moungi G. Bawendi

Louis E. Brus

Aleksev Yekimov

Massachusetts Institute of Technology (MIT). Cambridge, MA, USA

Columbia University, New York, NY, USA

Nanocrystals Technology Inc., New York, NY USA

"for the discovery and synthesis of quantum dots"

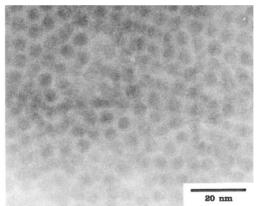
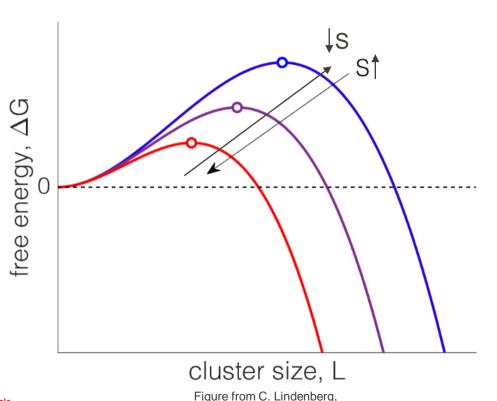



Figure 9. A near monolayer of 51 Å diameter CdSe crystallites showing short-range hexagonal close packing.

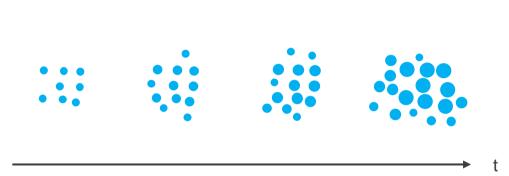
EPFL CNT Does Not Predict Burst Nucleation

ETH Zürich "Nucleation"

Nucleation reduces S

No requirement for S to return all the way back to 1 ($[M] = [M]_{eq}$) instantly

If S is reduced but S>1, nucleation continues, although at a reduced rate due to increasing energy barriers

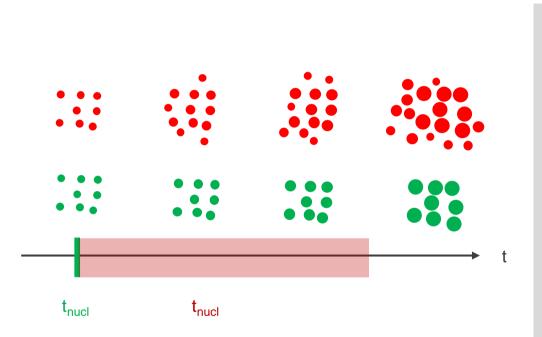

Nucleation and growth can occur at the same time, yielding polydisperse samples

,

$$\Delta G_{\text{crit}} = \frac{16\pi\gamma^3 v_0^2}{3(k_{\text{p}}T)^2 (\ln S)^2} \qquad j_{nucl} \propto \exp(-\Delta G_{crit})$$

 École polytechnique fédérale

EPFL CNT Does Not Predict Burst Nucleation


Nucleation reduces S

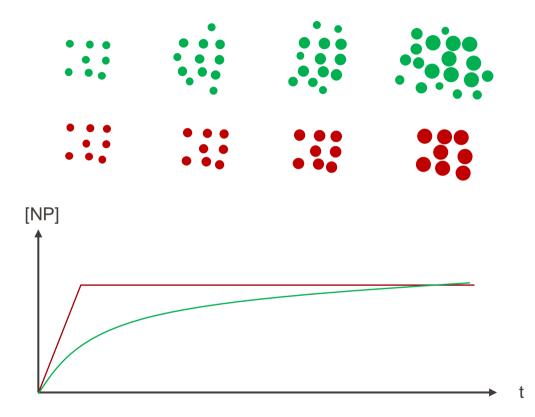
No requirement for S to return all the way back to 1 (M = Meq) instantly

If S is reduced but S>1, nucleation continues, although at a reduced rate due to increasing energy barriers

Nucleation and growth can occur at the same time, yielding polydisperse samples

EPFL CNT Does Not Predict Burst Nucleation

This raises a few questions:

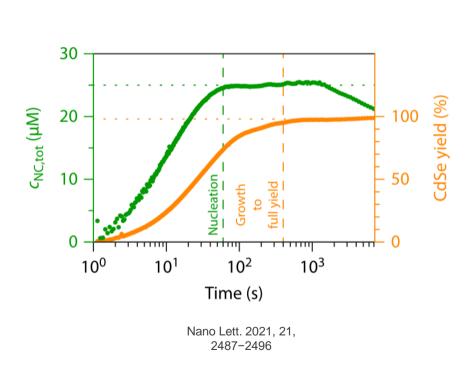

What are indicators of either burst or continuous nucleation?

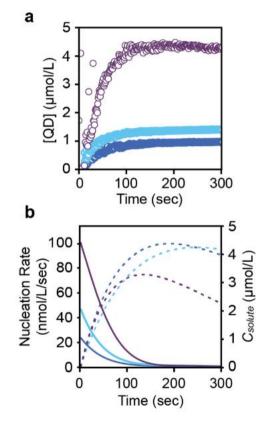
Does the existence of monodisperse samples imply burst nucleation?

If there is no burst nucleation, how can we access monodisperse samples?

Has this been studied?

EPFL CNT Does Not Predict Burst Nucleation




This raises a few questions:

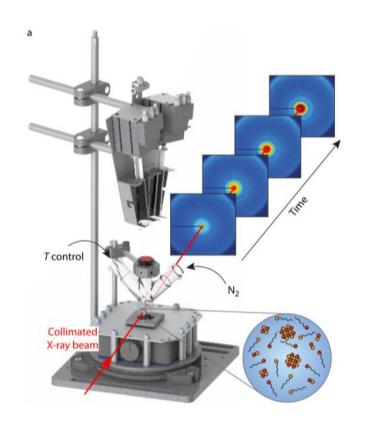
What are indicators of either burst or continuous nucleation?

Concentration of particles must be constant for nucleation to be neglected during the reaction

EPFL People have shown this for specific reactions

Chem. Sci., 2022, 13, 4977-4983

EPFL Small Angle X-ray Scattering


SAXS

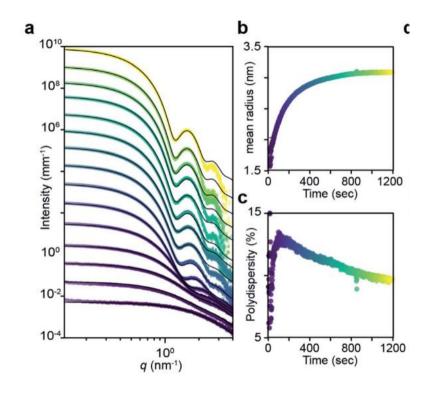
Strong tool for in-situ synthesis studies

X-ray scattering at low q

Intensity fluctuations result of particle concentration, size and even shape

Fit scattered intensity with model to obtain particle concentration and size

EPFL Small Angle X-ray Scattering


SAXS

Strong tool for in-situ synthesis studies

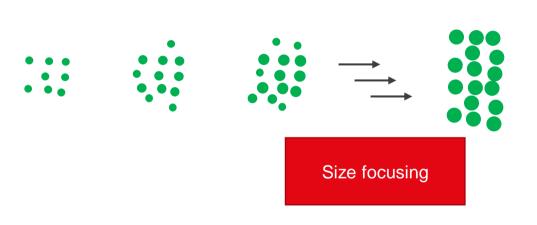
X-ray scattering at low q

Intensity fluctuations result of particle concentration, size and even shape

Fit scattered intensity with model to obtain particle concentration and size

Chem. Sci., 2022, 13, 4977–4983

This raises a few questions:


What are indicators of either burst or continuous nucleation?

Does the existence of monodisperse samples imply burst nucleation?

If there is no burst nucleation, how can we access monodisperse samples?

Has this been studied?

Size focusing

Mechanism by which smaller NPs grow faster than large NPs

Possible in diffusion or reactionlimited reactions

Fact remains, at some point during the reaction nucleation must stop whereas growth continues

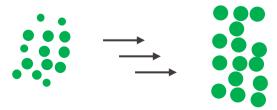
Diffusion-limited size focusing

The growth of the particles is limited by the supply of monomer to the growing NP surface

Growth rate:
$$\frac{dr}{dt} = DV_m^2 [M]_0 \frac{S - S^{rc}/r}{r}$$

1/r dependence causes small particles to catch up in size

J. Phys. Chem. B, Vol. 105, No. 49, 2001


Reaction-limited size focusing

The incorporation of the monomer into the surface is slower than the supply of monomer to the surface

Growth rate:
$$\frac{dr}{dt} = DV_m^2 [M]_0 \frac{S - S'^c/r}{D/k_a(r)}$$

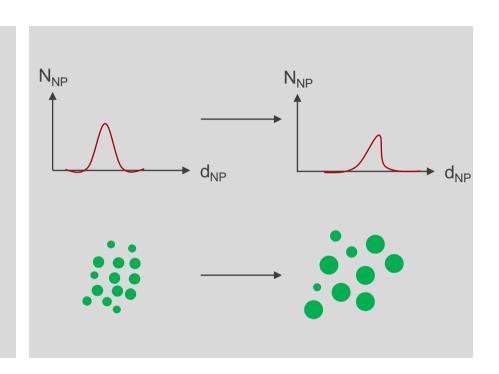
Explicit radius dependence in surface incorporation rate k(r) can lead to absolute focusing also

Nano Lett. 2021, 21, 2487-2496

What happens after [M]->0?

When all precursor is consumed, ideally the particles are isolated from the reaction mixture fairly quickly and the temperature is reduced back to room

Why?


Ostwald Ripening

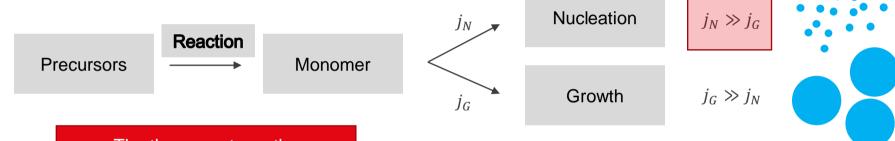
A precipitated phase dispersed in solvent is not at the lowest free energy

To minimize surface energy, coarsening, or ripening can occur

Small particles dissolve to reduce the surface area of the bulk phase

$$\mu_{S} = \mu_{S,bulk} + A\gamma$$

Where are we?


NP synthesis relies on a chemical transformation that can provide the target compound (M, MOx, ME,...)

The accumulation of active monomers (assumed units of material MX) beyond solubility provides the driving force for precipitation

Nanoparticles are obtained with high nucleation rates and suppressed growth

Size control can be achieved in diffusion or reaction-limited conditions due to focusing

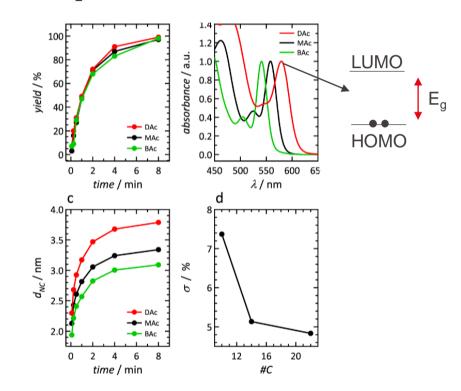
The theory rests on the assumption that this is faster than precipitation $(j_N \text{ or } j_G)$ — otherwise monomer accumulation does not occur, and a well-defined nucleation event (independent of burst or not) is unlikely

■ École polytechnique fédérale de Lausanne

Works on NP synthesis

How is the growth rate affected practically?
Which knobs can we turn to achieve our
desired NP size

Can we rationalize this in terms of the equations previously seen?

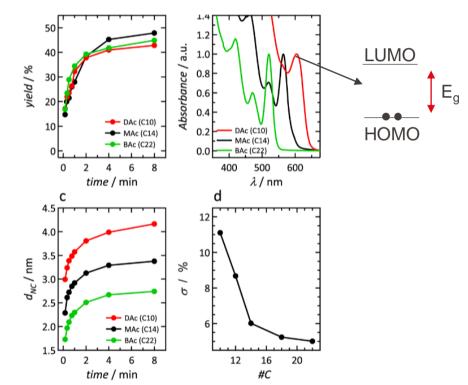

Ligand Length Affects NP size

CdSe long served as the model system for QD research

Reproducible syntheses, endproduct not air-sensitive, good opto-electronic properties for technology development

Size tuning at full yield! Important distinction with stopping a reaction to get size tuning

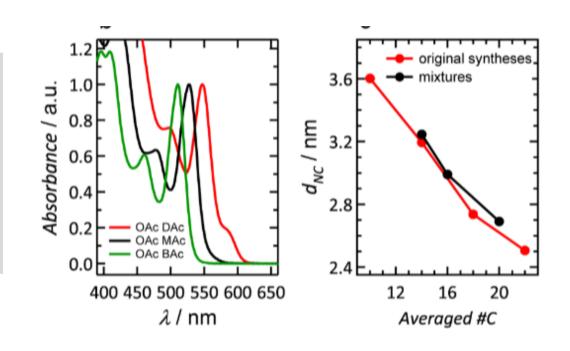
 $Cd(RCOO)_2 + TOP - Se + ODE \rightarrow CdSe + \cdots$



Ligand Length Affects NP size

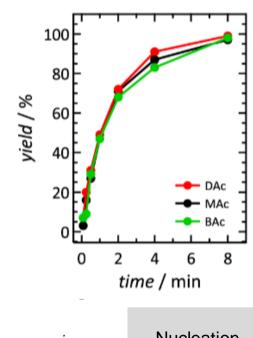
Same observation seen with different Se precursor

Longer ligands yield smaller NPs (decanoic > myristic > behenic acid)


$Cd(RCOO)_2 + Se + ODE \rightarrow CdSe + \cdots$

Ligand Length Affects NP size

Mixtures of ligands seemed to yield average particle sizes as given by the average number of carbons in the ligand chain


But how??

Rate at which CdSe forms is unaffected – suggests that P -> M conversion is not affected

Ligands must affect balance between nucleation and growth rate

Nucleation Growth jG

polytechnique

J. Am. Chem. Soc. 2015, 137. 2495-2505

Check all parameters

Expression for nucleation and growth

Well-designed experiments to probe influence

$$J_{\rm N} = \frac{2D}{\nu_0^{5/3}} \exp \left(-\frac{16\pi \gamma^3 V_{\rm m}^2 N_{\rm A}}{3(RT)^3 (\ln S)^2} \right)$$
 (1)

$$j_{\rm G} = DV_{\rm m}[M]_0 \left[\frac{S - \exp\left(-\frac{2\gamma V_{\rm m}}{rRT}\right)}{r + \frac{D}{k_g^{\infty}} \exp\left(\alpha \frac{2\gamma V_{\rm m}}{rRT}\right)} \right]$$
(2)

variable	change analyzed	effect on $J_{\rm N}$	effect on $j_{\rm G}$	effect on $d_{ m NC}$	effect on σ_d
D - prefactor	↑	1	_	1	_
γ	↑	1	_	1	1
k_{g}^{∞}	↑	_	↑	↑	\downarrow
D - growth	1	_	↑	1	↑
rate					
$[\mathbf{M}]_{0}$	1	_	1	1	↑


Does ligand change equilibrium solubility of solute?

Chemical insight suggests solubility of compound depends on ligand length/solvent compatibility

Solubility goes down with longer chain length (previous work)

So adding shorter ligand should increase solubility and yield larger NPs – not observed

variable	change analyzed	effect on $J_{\rm N}$	effect on $j_{\rm G}$	effect on $d_{ m NC}$	effect on σ_d
D - prefactor	1	1	_	↓	_
γ	1	\	_	↑	\downarrow
k_g^∞	↑	_	↑	↑	\downarrow
D - growth	1	_	1	1	↑
rate					
$[\mathbf{M}]_0$	1	_	↑	↑	1

Check all parameters

Do ligands at the surface affect surface tension γ

Free energy per surface area – can be affected by ligand-solvent interactions and ligand-ligand interactions

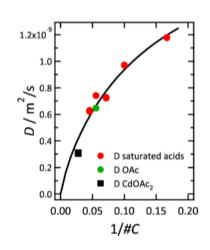
Could increase d_{NC}

If shorter ligands increase surface tension, synthesis in mixtures of ligands should yield NC enriched in longer ligand - NMR

variable	change analyzed	effect on J_N	effect on $j_{\rm G}$	effect on $d_{ m NC}$	effect on σ_d
D - prefactor	↑	1	_	1	_
γ	1	1	-	1	↓
k_g^∞	1	-	↑	1	1
D - growth rate	1	-	1	1	1
$[\mathbf{M}]_{0}$	1	_	↑	1	1

NMR analysis does not identify enrichment in purified final NCs, suggesting the ligands used here have minimal affect on surface tension and therefore are not expected to affect nucleation

Check all parameters


Do ligands affect solute diffusion coefficient *D*

Diffusion coefficient measured by DOSY-NMR decreases with increasing chain length

D could increase or decrease d_{NC} but affect in prefactor approximate and negligible

In growth rate, D causes for a faster takeover from nucleation to growth

variable	change analyzed	effect on	effect on	effect on $d_{ m NC}$	effect on σ_d
D - prefactor	1	<u> </u>	_	1	_
γ	1	1	_	Î	1
$k_{ m g}^\infty$	↑	_	↑	↑	↓
D - growth rate	1	-	1	1	1
$[M]_0$	↑	_	1	1	↑

Conclusions

Ligands must interact with the solute – monomer species

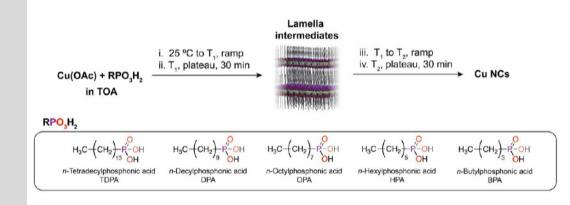
Effect on NC size most probably due to a change in the solute diffusion coefficient

determined by elimination of other factor in systematic control experiments

Identification of mode of action non-trivial!

EPFL Tuning the growth of NPs (Metallic Cu NPs)

Ligand Length Affects NP size


Synthesis of metallic Cu NPs

Phosphonic acid ligands with increasing chain length

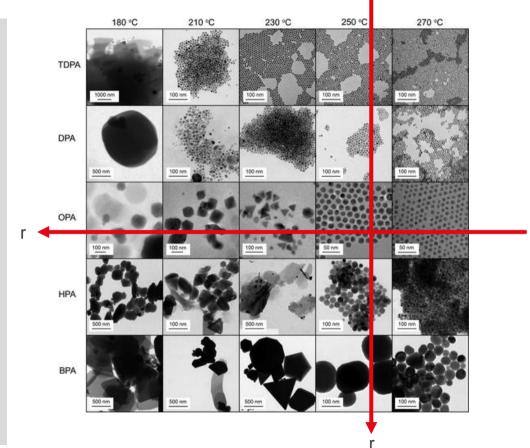
Higher T --> smaller particles

Shorter chain --> larger particles

Shape tuning also!

EPFL Tuning the growth of NPs (Metallic Cu NPs)

Ligand Length Affects NP size

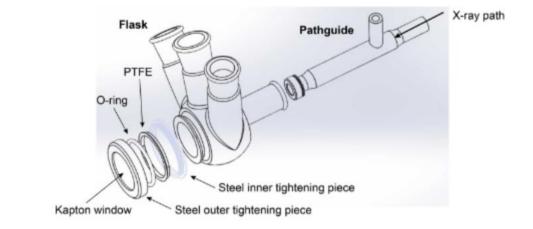

Synthesis of metallic Cu NPs

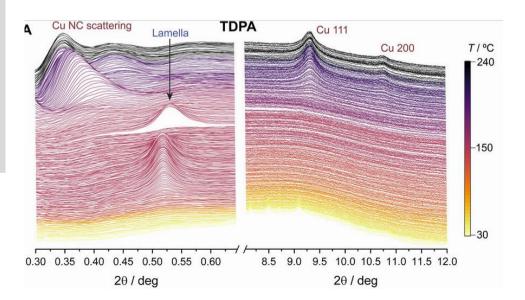
Phosphonic acid ligands with increasing chain length

Higher T --> smaller particles

Shorter chain --> larger particles

Shape tuning also!




In-situ XRD

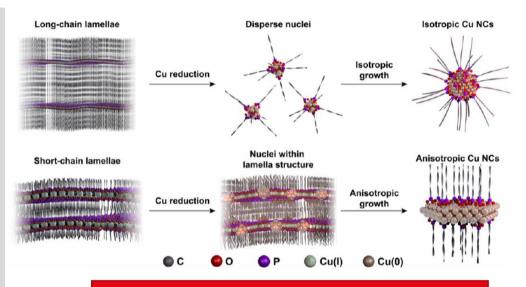
Diffraction measured in custom cell

Appearance of low angle reflections – large dhkl translational symmetry

Intermediate phase consists of lamella

 École polytechnique fédérale de Lausanne

EPFL Tuning the growth of NPs


Ligand Length Affects NP size

Formation of Cu via an intermediate phase

Metallic Cu released from lamella structure

Reduction rate of Cu(I) to Cu in the lamella phase (nucleation stage) depends on chain length

Reduction at higher T for shorter ligand, yielding large NCs

Convolution of temperature and ligand effects

Variety of sizes and shapes attainable

Deconvolution into j_N and j_G very difficult

Ligand Effects in NC synthesis

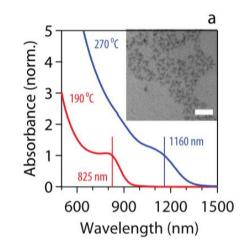
2 case studies

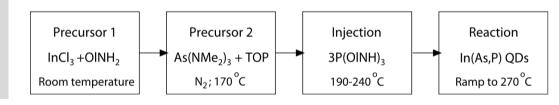
solute diffusion coefficient

Phase transformation of the intermediate phase accelerated or delayed

Ligand effects arise at the particle surface, the precursor, and the intermediate phases and monomers -> deconvolution not simple but one of the more established ways to alter the outcome of a reaction

Now what affects an established reaction?

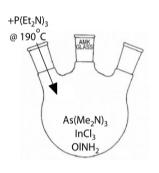

InAs QDs from safe-to-handle precursors


Combine InCl₃ and As(NMe₂)₃ in oleylamine

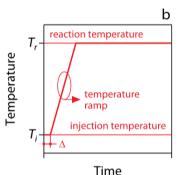
Inject phosphine as reducing agent

Limited size tunability

Increased temperature first hint at larger size, but poor size dispersion


Definitive Screening Design

Design of Experiments


Multiple variables changed simultaneously (see table)

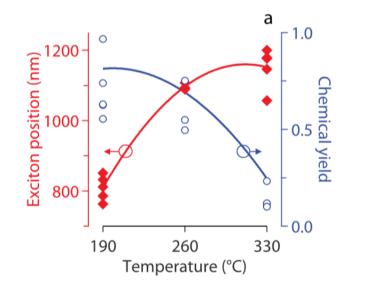
After all experiments are finished, correlation between result (particle size) and parameters is tested statistically

Model via least-squares fitting with correlated parameters

Parameter Screening (no ZnCl₂) *T*_r: 190, 260, 330 °C Heating Delay Δ : 0, 2.5, 5 min Reaction time: 15, 30, 45 min As:In ratio: 1, 1.15, 1.30 V_{OINH_3} : 2.5, 5 mL

Exp. #	χ_1	χ_2	χ_3	χ_4	χ_5	y1 (chemical yield)	y2 (wavelength exciton)
1	0	+	+	+	+	0.10	1177
2	0	_	_	_	_	0.60	763
3	+	0	-	+	+	0.72	1089
4	_	0	+	_	_	0.47	1094
5	+	-	0	_	+	0.53	832
6	_	+	0	+	-	0.11	1146
7	+	+	_	0	_	0.22	1057
8	_	-	+	0	+	0.92	851
9	+	+	+	-	0	0.11	1178
10	_	-	_	+	0	0.71	811
11	+	_	+	+	_	0.60	786
12	_	+	_	_	+	0.10	1200
13	0	0	0	0	0	0.52	1107

Definitive Screening Design

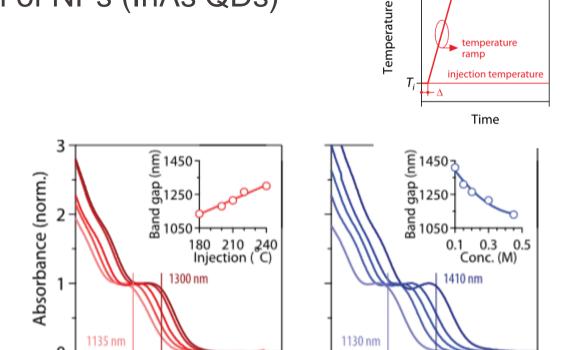

Chemical yield and wavelength exciton (measure particle size) only correlated to reaction temperature and solvent volume

Model creation via least-squares fitting

Main parameters of the synthesis identified?

$$\lambda_{\text{gap}}(\text{nm}) = 1096.7 + 171.5 \left(\frac{\chi_2 - 260}{70}\right) + 30.3 \left(\frac{\chi_5 - 3.75}{1.25}\right)$$
$$-116.6 \left(\frac{\chi_2 - 260}{70}\right)^2$$

Chem. Yield =
$$0.599 - 0.285 \left(\frac{\chi_2 - 260}{70} \right) - 0.180 \left(\frac{\chi_2 - 260}{70} \right)^2$$



800

Model validation

If growth occurs at 270°C, delaying at which stage this temperature is attained will alter final size – injection temperature

Concentration affects particle size also -> linear dilution yields steadily increasing final particle size at equal yield

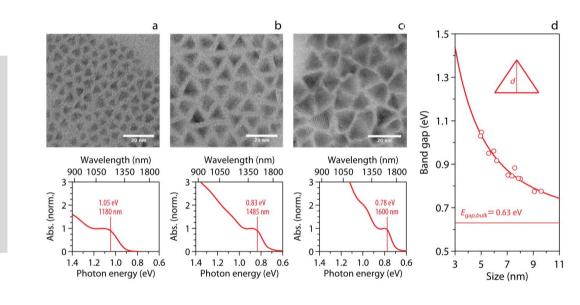
2000

Wavelength (nm)

800

reaction temperature

temperature

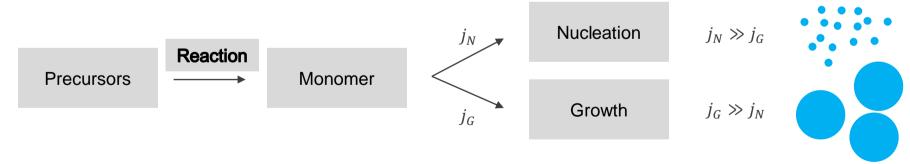

2000

Wavelength (nm)

Size tunability to establish sizing curve

Band gap versus TEM size

Sizing curve for direct sizing from UV-Vis. Only for QDs of course


Analysis of the correlation between higher temperatures and QD size

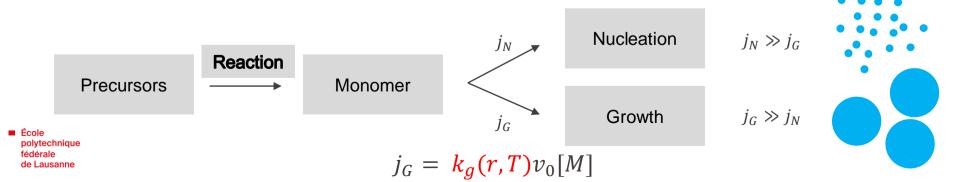
Many examples in literature for higher T smaller NPs, and higher T larger NPs

Scenario 1

All factors constant, higher T accelerates P->M reaction

Larger supersaturation and more nuclei formed, expect smaller

Scenario 1


All factors constant, higher T accelerates P->M reaction

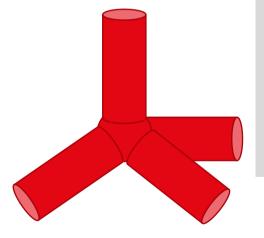
Larger supersaturation and more nuclei formed, expect smaller

We clearly don't see this

Only possible if the higher temperature affects i_N/i_G

Possible if growth is thermally activated – different sources of thermal activation explain size trends with T

Spheres vs non-spheres


Why do different synthesis conditions yield different shapes?

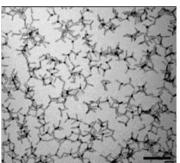
Are we interested in different shapes?

Rational approach to shape tuning?

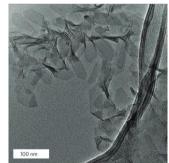
EPFL Shape control

Thermodynamics

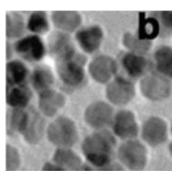
$$\mu_S = \mu_{S,bulk} + A\gamma$$
$$\Delta G = V\Delta G_V + A\gamma$$


For the same amount of material, increasing the surface area comes with a free energy penalty

Spheres have the lowest surface to volume ratio


We're clearly able to make NPs with all different shapes – just look at Cu example

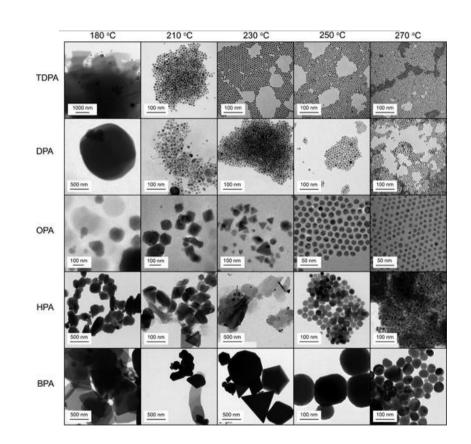
And CdSe


And Gold!!

J. AM. CHEM. SOC. 9 VOL. 131, NO. 6, 2009

Nature Materials volume 10, pages 936– 941 (2011)

J. AM. CHEM. SOC. 2008, 130, 5026-5027


EPFL Shape control

Thermodynamics

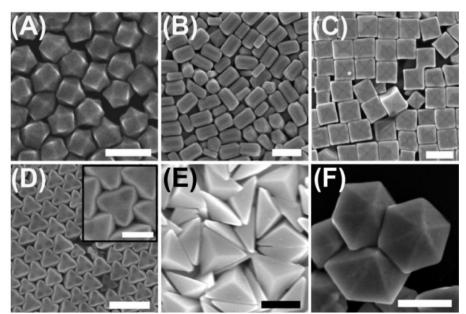
$$\mu_S = \mu_{S,bulk} + A\gamma$$
$$\Delta G = V\Delta G_V + A\gamma$$

For the same amount of material, increasing the surface area comes with a free energy penalty

Spheres have the lowest surface to volume ratio

EPFL Shape control

Thermodynamics


$$\mu_S = \mu_{S,bulk} + A\gamma$$
$$\Delta G = V\Delta G_V + A\gamma$$

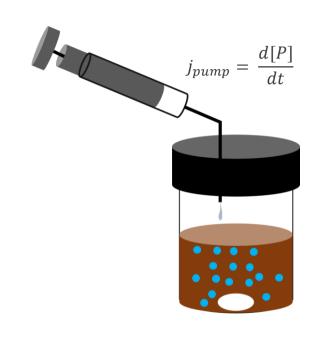
For the same amount of material, increasing the surface area comes with a free energy penalty

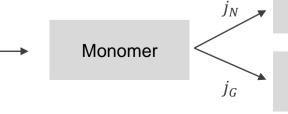
Spheres have the lowest surface to volume ratio

We're clearly able to make NPs with all different shapes –

And Gold!!

EPFL Seeded growth


Start with presynthesized nuclei


Addition rate of precursor determines final shape

Overcome reactivity of the chosen chemistry and impose the precursor conversion kinetics with

Jpump

Versatile method for shape control

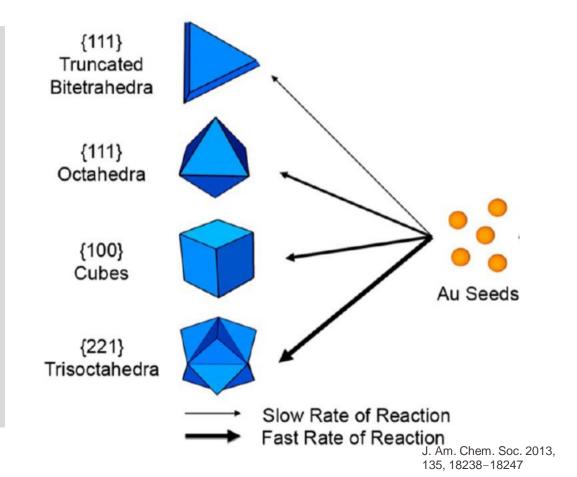
Nucleation

Growth

Precursors

 Ecole polytechnique fédérale de Lausanne

EPFL Seeded growth


Experimental correlation between the speed of monomer formation or addition rate and final particle shape

Very fast reduction gives spheres

Seed (HAuCl4, NaBH4, CTAB, H2O)

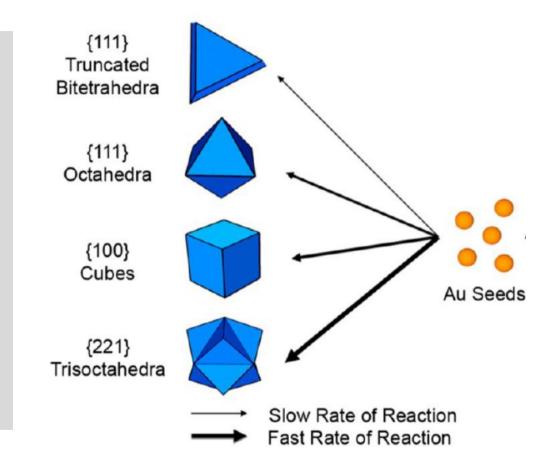
Growth (ascorbic acid, HAuCl4, CTAB)

Particle catalyzed reduction of Au+ to Au

 Écol polytechnique fédérale de Lausanne

EPFL Seeded growth

Rate of metal ion reduction

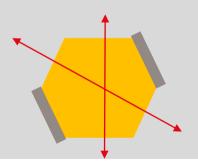

Slower -> lower index facets
Thermodynamically favorable surfaces

3 governing factors for rate

Au complex reduction potential (halide ion effect)

Metal ion availability (solubility and concentration)

Adsorbate binding energy (available surface area)

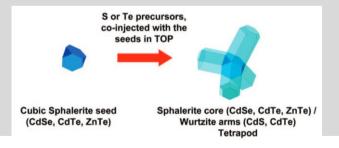

EPFL Crystal facet growth kinetics

Aq-passivated Au seeds

Preferential adsorption of Ag atoms on Au

Au growth rate increases on unpassivated surfaces

Induces anisotropy



CdSe tetrapods

Seeded growth also

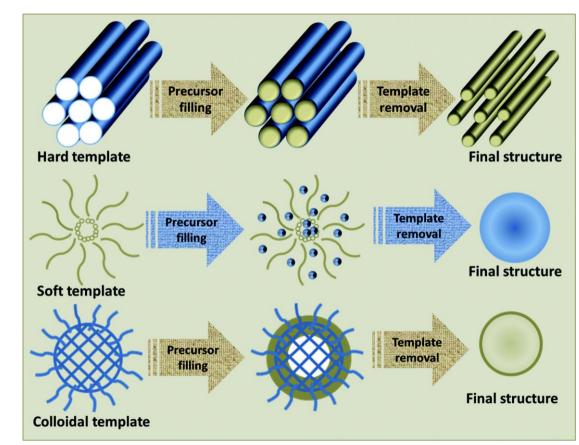
Growing arms are not cubic zinc blende, but rather wurtzite, c-axis different

Growth rate of c-axis higher -> rods and tetrapods

135. 18238-18247

J. Am. Chem. Soc. 2013,

EPFL Template-assisted growth

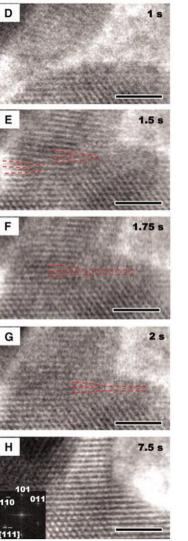

Template defines the accessible volume for precursor

Precipitation necessarily occurs in localized area

Template removal necessary for application

Soft/Colloidal templates for dispersible synthesis product

Promising for oxide synthesis

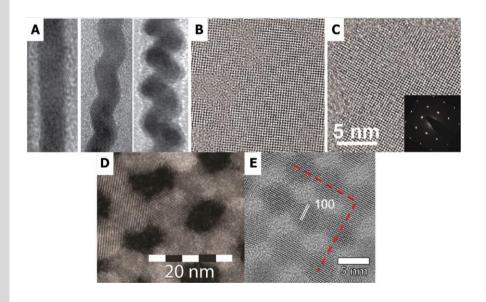

EPFL Oriented attachment

Axis specific attachment of NPs during synthesis

Typically formation of rods from quasispherical particles

Fusion possible along facets that display translation symmetry (minimal reorganization at surface)

Metallic nanoparticles – even PbS (rock salt structure)


EPFL Oriented attachment

Axis specific attachment of NPs during synthesis

Typically formation of rods from quasispherical particles

Fusion possible along facets that display translation symmetry (minimal reorganization at surface)

Metallic nanoparticles – even PbS (rock salt structure)

EPFL Tools to study synthesis

Studying the chemical transformation

The mystery of the reducing agent (Se and Cu examples)

By-products are more telling than the NPs

NP precipitation

In-situ vs reaction aliquots

Crystalline vs amorphous (SAXS vs XRD)

Structure-property relationships that can be used for tracking?

Isolated product analysis

To be dealt with in detail by **Prof. Lionel Maurizi**

$$Cd(RCOO)_2 + Se + ODE \rightarrow CdSe + ?? + ODE$$

Oxidation state discrepancy

Oxidation state Cd before and after?

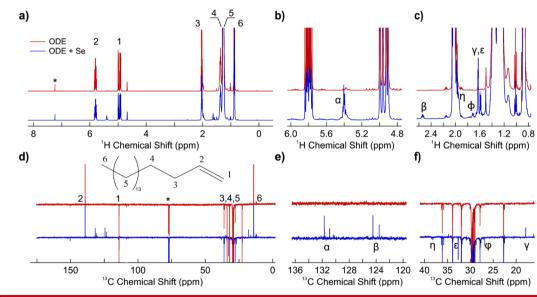
Oxidation state Se before and after?

> Charge neutral redox reactions

$$Se + R + H_2Se$$

$$R + H_2Se$$

$$R + H_2Se$$


$$Cd(RCOO)_2 + Se + ODE \rightarrow CdSe + ?? + ODE$$

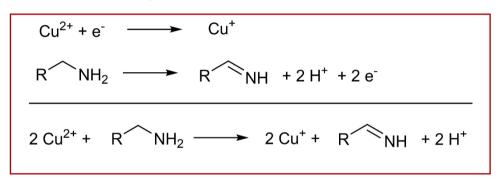
Oxidation state discrepancy

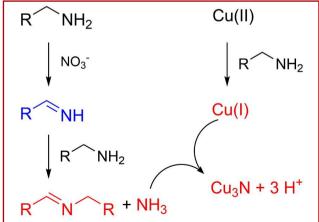
Oxidation state Cd before and after?

Oxidation state Se before and after?

> Charge neutral redox reactions

Study of organic side products approachable via H-NMR and MS techniques -> insights into reaction chemistry often lags behind recipes – bridges organic and nanochemistry

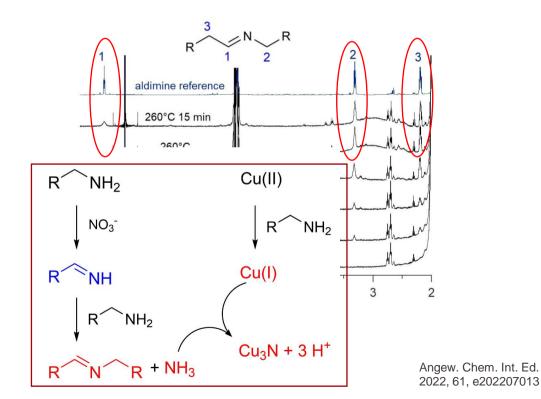

$$Cu(NO_3)_2 + RNH_2 + ODE \rightarrow Cu_3N + ?? + ODE$$


Oxidation state discrepancy

Cu speciation changes

Cu²⁺/Cu⁺ redox couple

Oxidation of primary amine to aldimine


$$Cu(NO_3)_2 + RNH_2 + ODE \rightarrow Cu_3N + ?? + ODE$$

Oxidation state discrepancy

Cu speciation changes

Cu²⁺/Cu⁺ redox couple

Oxidation of primary amine to aldimine

In-situ techniques

Many in-situ probes are available for a wide variety of measurements

SAXS (shown), FTIR, UV-Vis, X-ray absorption spectroscopy, even in-situ liquid cell TFM

BUT

Does the geometry of the in-situ experiment allow for an accurate recreation of your own lab conditions?

Best practice

Design in-situ cells to resemble your typical reaction environment (volume, cell material)

Sample your in-situ experiments, especially in foreign environments such as synchrotron beamlines for product analysis when you return home

Bring previously prepared samples for ex-situ measurements for comparison -> this also streamlines data analysis

Ex-situ techniques

Primarily the study of reaction aliquots

Every off-line analysis technique imaginable

TEM, FTIR, UV-Vis absorption, photoluminescence, x-ray diffraction, dynamic light scattering, SAXS,.. You name it

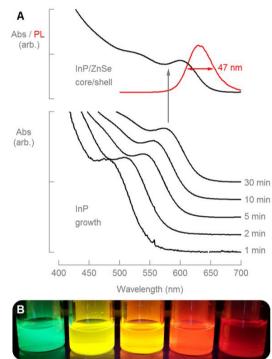
Transient species usually do not survive aliquot sampling and decompose to form reaction or side products

Best practice

Isolate solid and soluble fractions separately, wash and separate! The crude mixtures are nightmarishly complex

If interested in mechanistic insight, analyse not just your desired NP product

Rely on expertise of respective fields – i.e. solid state science vs organic chemistry

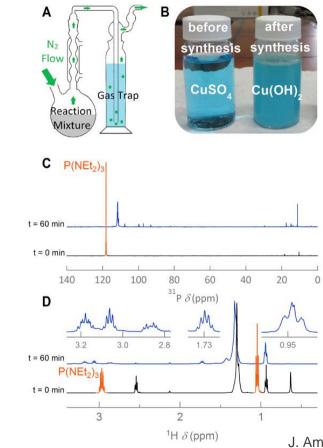

Spectroscopic signatures as markers for your synthesis evolution

QDs are an obvious example -> band gap, size, shape relationship

Plasmon resonance of metal particles (especially in low T synthesis)

Release of precursor molecules in solution

Be creative and think about the entire reaction mixture – refer to older literature that does not cover NPs

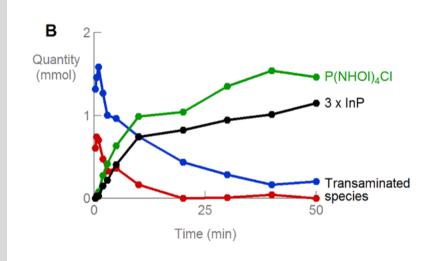

Spectroscopic signatures as markers for your synthesis evolution

QDs are the easiest example -> band gap, size, shape relationship

Plasmon resonance of metal particles (especially in low T synthesis)

Release of precursor ligands

Be creative and think about the entire reaction mixture – refer to older literature that does not cover NPs


Spectroscopic signatures as markers for your synthesis evolution

QDs are the easiest example -> band gap, size, shape relationship

Plasmon resonance of metal particles (especially in low T synthesis)

Release of precursor ligands

Be creative and think about the entire reaction mixture – refer to older literature that does not cover NPs

A Good synthesis may consist of

 École polytechnique fédérale de Lausanne

A Good synthesis may consist of

High chemical yield

Scalability

Reproducibility

Commercial precursors

Short reaction times

Easily isolated from side products

Applicable with minor functionalization

High concentrations

 École polytechnique fédérale de Lausanne

EPFL Conclusions

Theory

Classical nucleation theory predicts a chemistry dependent threshold activation energy and critical nucleus size to start precipitation

Nucleation is not necessarily instantaneous

Balance between nucleation and growth rates explains final particle size

Size focusing rationalizes obtaining ensembles with well-defined size distributions

Case studies

Chemical transformations to achieve the desired material

Tuning the NP size through manipulation of the synthesis mixture and/or reaction conditions

NP shape control influenced by kinetics or confinement effects

Studies of transformations across the phase boundary

■ École polytechnique fédérale de Lausanne