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Preliminary remarks

-Some basic elements about two geological systems that exhibit sliding contact.

-I'm not a field geologist! I'm just giving you a few theoretical insights and some examples.

Preliminary remarks
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Preliminary remarks

-Some basic elements about two geological systems that exhibit sliding contact.

-I'm not a field geologist! I'm just giving you a few theoretical insights and some examples.

-Outline:

Rock faults

Glaciers

Preliminary remarks
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Rock faults
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Geological sliding in the field
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Some elements of Llnear Elastic Fracture Mechanics (LEFM)

-Three modes of cracks, named I, II, and III:

1

v

Mode I: Mode II: Mode III:
Opening In-plane shear Out-of-plane shear

Rock faults
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Some elements of Linear Elastic Fracture Mechanics (LEFM)

-Three modes of cracks, named I, II, and III:

1

v

Mode I: Mode II: Mode I1I:
Opening In-plane shear Out-of-plane shear
| | | |
I I
Joints, Fractures Faults

Rock faults
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Some elements of Linear Elastic Fracture Mechanics (LEFM)

-Canonical models for fractures and faults in 2D:

Remote tensile loading

RERRRRRRRRNRNE

Cohesionless fracture

Infinite elastic medium (G, v)

cELLELLL L L

Remote tensile loading

Rock faults

Remote tangential loading

—_ > ——> ——> ——> ——> —>

Frictionless crack

Infinite elastic medium (G, v)

—— — — — — ——

Remote tangential loading
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Some elements of Linear Elastic Fracture Mechanics (LEFM)

-Canonical models for fractures and faults in 2D:

Remote tangential loading

—_ > ——> ——> ——> ——> —>

Frictionless crack

Infinite elastic medium (G, v)

—— — — — — ——

Remote tangential loading

Rock faults
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Some elements of Linear Elastic Fracture Mechanics (LEFM)

-Displacement field for the canonical fault model (under the assumptions of LEFM):

-> Normal continuity

-> Tangential discontinuity

Ux (crack) x107* Uy (crack)
T T T T

0.5 =
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Rock faults
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Some elements of Linear Elastic Fracture Mechanics (LEFM)

-Displacement field for the canonical fault model (under the assumptions of LEFM):

~
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Displacement field (crack)
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Rock faults
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Some elements of Linear Elastic Fracture Mechanics (LEFM)

%107

Sigma xy (crack)

-Stress field shows interesting features: "

-> stress shadow on the sides

-> stress concentration at the tips

0.5

0.5

-1.5

Rock faults
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Some elements of Linear Elastic Fracture Mechanics (LEFM)
-Distribution of slip (i.e. tangential discontinuity in displacement) along fault:
-> No slip at the tips
-> Maximum slip in the middle, close to 1% of fault length

-> If a fault wants to slip more, it will have to grow...

Ux (crack]
T T

Rock faults
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Some elements of Linear Elastic Fracture Mechanics (LEFM)
-Distribution of slip (i.e. tangential discontinuity in displacement) along fault:
-> No slip at the tips
-> Maximum slip in the middle, close to 1% of fault length

-> If a fault wants to slip more, it will have to grow...

o
o
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Normalized Displacement
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0.00

Normalized Distance Along Fault
Rock faults
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Some elements of Linear Elastic Fracture Mechanics (LEFM)
-Distribution of slip (i.e. tangential discontinuity in displacement) along fault:
-> No slip at the tips
-> Maximum slip in the middle, close to 1% of fault length
-> If a fault wants to slip more, it will have to grow...

-> Theory predicts elliptical distribution
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Normalized Displacement
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Normalized Distance Along Fault
Rock faults
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How to recognize a fault in the field?
-You may first want to look for offsets

-> At the regional scale

Pigiang fault, China |

“ 8 San Andreas fault, USA

Rock faults
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How to recognize a fault in the field?

-You may first want to look for offsets

-> At the regional scale

Pigiang fault, China ‘»

Offsets can provide insights on
the chronology of events.

“ 8 San Andreas fault, USA

Rock faults
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How to recognize a fault in the field?
-You may first want to look for offsets

-> At the regional scale

-> At the local scale

NB: these offsets are those of single earthquakes, not the
total, integrated slip on the fault.

Orders of magnitude :
Single event -> slip = 107%-1074 fault length

Total discontinuity -> slip = 103-102 fault length

Rock faults
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How to recognize a fault in the field?
-You may first want to look for offsets
-> At the regional scale
-> At the local scale

-> At the outcrop scale

Offsets are easy to observe and measure when
they cross planar features -> sedimentary
bedding, magmatic intrusion, etc.

Rock faults
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How to recognize a fault in the field?

Some common traps:

-Outcrops are often complex / unclear / damaged / covered with sediments.

Rock faults

Corsica — August 2021
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How to recognize a fault in the field? - Some common traps:

-Beware what quantity you measure: offset is different from slip distance
-> You are not sure that the plane of observation contains the slip vector

-> To be sure of that, you need two non-colinear offset measurements!

Rock faults
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How to recognize a fault in the field? - Some common traps:
-Beware what quantity you measure: offset is different from slip distance
-> You are not sure that the plane of observation contains the slip vector
-> To be sure of that, you need two non-colinear offset measurements!

-Be sure to measure offsets in the tangential direction.

What is the offset here?

Corsica — August 2021 &

Rock faults
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How to recognize a fault in the field? - Some common traps:
-Beware what quantity you measure: offset is different from slip distance
-> You are not sure that the plane of observation contains the slip vector
-> To be sure of that, you need two non-colinear offset measurements!

-Be sure to measure offsets in the tangential direction.

What is the offset here?

No offset! This is a fracture, not a fault!

Corsica — August 2021 &

Rock faults
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How to recognize a fault in the field?

-Other sliding evidences in faults: third body!

Rock faults

Granular gouge —
cataclistic flow —
brittle failure
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How to recognize a fault in the field?

-Other sliding evidences in faults: third body!

Mylonites— semi-brittle
or ductile failure

Rock faults
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How to recognize a fault in the field?

-Other sliding evidences in faults: third body!

Pseudotachylites — fast
and large coseismic slip

Rock faults
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How to recognize a fault in the field?

-Other sliding evidences in faults: fracturing patterns

Conjugate faults

Rock faults
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How to recognize a fault in the field?

-Other sliding evidences in faults: fracturing patterns

Riedel bands

Rock faults
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How to recognize a fault in the field?

-Other sliding evidences in faults: crack tip patterns

Infinitely close to the tip, theory predicts two phenomena:
-> Divergence of stress towards infinity (internal violation of elasticity assumptions)

-> Asymmetrical stress distribution at the tip

i i Sigma yy (ti 10"
Sigma xx (tip) 10" Sigma xy (tip) o Y igma yy (tip)
ey T T T
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Rock faults
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How to recognize a fault in the field?

-Other sliding evidences in faults: crack tip patterns

Infinitely close to the tip, theory predicts two phenomena:

-> Divergence of stress towards infinity (internal violation of elasticity assumptions)
-> Asymmetrical stress distribution at the tip

-> Several consequences!
Fracture )
i i Branching i

Fracture
Process

Zone
“Process zone” around

the fault tip, with
damage, plasticity, etc.

Meso-fracture

Initial Crack

3 Progressive Fracture Zone
Free Traction er

Rock faults
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How to recognize a fault in the field?

-Other sliding evidences in faults: crack tip patterns

Infinitely close to the tip, theory predicts two phenomena:
-> Divergence of stress towards infinity (internal violation of elasticity assumptions)
-> Asymmetrical stress distribution at the tip

-> Several consequences!

“Wing cracks” at the tip (on the tensile side)

Rock faults
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How to recognize a fault in the field?

-Other sliding evidences in faults: crack tip patterns

Infinitely close to the tip, theory predicts two phenomena:

-> Divergence of stress towards infinity (internal violation of elasticity assumptions)
-> Asymmetrical stress distribution at the tip

-> Several consequences!

“Horsetail” patterns at the tip

Corsica — August 2021

Rock faults
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How to recognize a fault in the field?

-Other sliding evidences in faults: crack tip patterns

Infinitely close to the tip, theory predicts two phenomena:
-> Divergence of stress towards infinity (internal violation of elasticity assumptions)
-> Asymmetrical stress distribution at the tip

-> Several consequences!

“Echelon” patterns across several

Rock faults

Jault segments
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How to recognize a fault in the field?

-Other sliding evidences in faults: slickensides.

Rare but interesting observation: the sliding plane!
-> planar, flat, sometimes shiny surfaces

-> may exhibit striations -> sliding vector.

Rock faults
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How to recognize a fault in the field?

-Other sliding evidences in faults: slickensides.

Rare but interesting observation: the sliding plane!
-> planar, flat, sometimes shiny surfaces

-> may exhibit striations -> sliding vector.

Corsica — August 2021

Rock faults
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Glaciers
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Geological sliding in the field
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General elements on glaciers
-Typical structure: three zones
-> Accumulation zone
-> Transport zone

-> Ablation zone

Glaciers
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General elements on glaciers
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-Glacier flow is the result of a number of forces and stresses:

Gravitational driving stress

Longitudinal

(compressional
and extensional) stresses

>

Vertical
stress
gradients

>

Longitudinal
(compressional
and extensional)
stresses

www.AntarcticGlaciers.org

Glaciers
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General elements on glaciers
-Glacier flow is the result of a number of forces and stresses.

-Hence, sliding can occur by several (possibly simultaneous) ways

Surface Meltwater and pathways to the bed
www.AntarcticGlaciers.org

Surface
meltwater

S

Bedrock

Glaciers
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General elements on glaciers
-Glacier flow is the result of a number of forces and stresses.
-Hence, sliding can occur by several (possibly simultaneous) ways

-> Basal sliding (for glaciers in temperate areas)

Surface Meltwater and pathways to the bed
www.AntarcticGlaciers.org

Surface
meltwater

Glaciers
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General elements on glaciers
-Glacier flow is the result of a number of forces and stresses.
-Hence, sliding can occur by several (possibly simultaneous) ways

-> Basal sliding (for glaciers in temperate areas)

https://youtu.be/njTjfJcAsBg?t=21

Glaciers
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General elements on glaciers
-Glacier flow is the result of a number of forces and stresses.
-Hence, sliding can occur by several (possibly simultaneous) ways

-> Basal sliding (for glaciers in temperate areas)

-> Viscoplastic flow of the ice (for glacier in artic regions)

Surface Meltwater and pathways to the bed
www.AntarcticGlaciers.org

Surface
meltwater

S

Bedrock

BINSTITUT

Glaciers
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General elements on glaciers
-Glacier flow is the result of a number of forces and stresses.
-Hence, sliding can occur by several (possibly simultaneous) ways
-> Basal sliding (for glaciers in temperate areas)
-> Viscoplastic flow of the ice (for glacier in artic regions)

-> Shearing of the underlying weak sediments

Surface Meltwater and pathways to the bed
www.AntarcticGlaciers.org

Surface
meltwater

o

Bedrock

Glaciers
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General elements on glaciers
-Glacier flow is the result of a number of forces and stresses.
-Hence, sliding can occur by several (possibly simultaneous) ways
-> Basal sliding (for glaciers in temperate areas)
-> Viscoplastic flow of the ice (for glacier in artic regions)

-> Shearing of the underlying weak sediments

-> Shear occurs on the weakest layer

-> Close analogy with the S;M; tribological concept!

Glaciers
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A spectacular example: the Aletsch glacier

-Largest glacier in the Alps

-Length: 23 km

-Area: 118 km?2

-Mass: 27.10'2 kg of ice
-Max thickness: 900 m
-Velocity: ~0.1 m/day
-3 tributary glaciers

Glaciers
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A spectacular example: the Aletsch glacier
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INSA :

-Largest glacier in the Alps

-Not far from here!
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Glaciers
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A spectacular example: the Aletsch glacier
-Largest glacier in the Alps

-Not far from here!

Bettmerhorn Sparrhorn Fusshémer i Aletschhorn

Bedalp d P
Inners Alétschii

et

Sparrhorn Geisshorn

Oberaletsch-
gletscher

Glaciers

Jungfrau Ménch Eiger

Zenbdachenhorn Rothorn
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Walliser Fiescherhorner Eggishorn

Olmenhorn

Walliser Fiescherhdrmer
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A spectacular example: the Aletsch glacier

-Has lost a lot of volume in the last century
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Glaciers
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A spectacular example: the Aletsch glacier
-Has lost a lot of volume in the last century

-Extension now approaches its historical lowest point, and will overcome it soon

(1213)1128- 941-924 BC 1300~  1581-1590
1041 BC 723-600 BC 272 430 - 590 9" century (?) 1100 1370 1678  1859/60
1128 BC 662 BC . X ]
1859/60 Maximum extension 0(m)
1880 — !
5
2 2 1195 + 70 yBP 1000 ?:3
c 2 @
g 1820 % - X S
& 1926127 & " <
©
-g 1957 — 2000 g
A 1970 P N— @
© 1982 ]
\ 3000 '
2000 3400
?

BC 1500 1400 1300 1200 1100 1000 900 800 700 600 500 400 300 200 100 -1/+1 100 200 300 400 500 600 700 800 9S00 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 AD

am

Middle Ages : Modern Age

© H.Holzhauser — |ifetime of fossile trees

Glaciers
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A spectacular example: the Aletsch glacier

-Has lost a lot of volume in the last century

-Extension now approaches its historical lowest point, and will overcome it soon

Geissgrat Zenbachenhom Rothorn

Glacial maximum

Glaciers

across geological ages.
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A spectacular example: the Aletsch glacier
-Has lost a lot of volume in the last century

-Extension now approaches its historical lowest point, and will overcome it soon

-There was a huge glacial lake a century ago, it has now retreated to the much smaller Marjelensee.

Jungfraujoch Ménch Eiger

Glaciers
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A spectacular example: the Aletsch glacier
-Has lost a lot of volume in the last century
-Extension now approaches its historical lowest point, and will overcome it soon
-There was a huge glacial lake a century ago, it has now retreated to the much smaller Marjelensee.

-Projections indicate this retreat will go on, at a velocity which is scenario-dependent.

(Jouvet and Huss, JOG, 2019) ‘ ¥, (Jouvet and Huss, JOG, 2019)

Glaciers
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A spectacular example: the Aletsch glacier

-Surface flow patterns were reconstructed from SAR imagery -> seven years of glacier flow!

Glaciers
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A spectacular example: the Aletsch glacier

8 CARNOT
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Ingénierie @ Lyon

ENS
-Surface flow patterns were reconstructed from SAR imagery -> seven years of glacier flow!
-Surface velocity reconstruction

ECOLE NORMALE
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B, s,
PC =
P
Interferometric [
hase pattern Ag,; i
p! P D | ,\:(\.
\ v !
1 " Critical height of ambiguity
‘\' Interferometric phase
: pattern with reference
' phase subtracted
0 True topography
-7 ¥n ______ ; ’
Phase A =T '0 ‘3(\Q,e P Reference surface (e.g. ellipsoid)
contour levels: 0.05 m/d
Glaciers

0.0 0.2

0.4
annual median velocity (m/d)
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Spotting evidences of glacial sliding

Glaciers

-Moraines : wear material of glacier sliding!

Im | 'cr“" =

-> Can be observed at the ancient front of a glacier

-> Can also occur as ancient lateral walls of the glacier

Geissgrat

Zenbachenhom
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Rothorn
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Spotting evidences of glacial sliding
-Moraines : wear material of glacier sliding!
-> Can be observed at the ancient front of a glacier
-> Can also occur as ancient lateral walls of the glacier

-> Pushed, but also sheared!

Jungfrau Jungfraujoch  Ménch Eiger

Kranzberg Trugberg

Glaciers

Mérjelensee

Moesfluh
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Spotting evidences of glacial sliding

Glaciers

-Moraines : wear material of glacier sliding!
-> Can be observed at the ancient front of a glacier

-> Can also occur as ancient lateral walls of the glacier

-> Pushed, but also sheared! Can originate from basal, but also lateral wear.
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Spotting evidences of glacial sliding
-Quasi-ductile deformation of pushed rock formations : “Roches moutonnées”

-Reminiscent of severe plastic flows in some tribological contacts
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Spotting evidences of glacial sliding

-Wear scars on exposed outcrops (ancient slip surfaces)

Photographie : Abel Guihou
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Spotting evidences of glacial sliding
-Wear scars on exposed outcrops (ancient slip surfaces)

-Not carved by ice, but by trapped mineral wear debris (3rd body-related wear)

-Patterns usually called “striations”.
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Open your eyes, and good luck!

Guilhem Mollont

1LaMCoS
INSA LYON
Villeurbanne, France

EPFL Summer School, Viege, August 2021

Geological sliding in the field



