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Outline
https://c4science.ch/source/Tribology_Course_nb/
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• Lecture 1
• Introduction of lecturer and laboratory LSMS (lsms.epfl.ch)
• Introduction to tribology (my vision)
• From da Vinci to rate and state friction laws

• Exercise 1 (optional HW): Some fundamental solutions in mechanics of solids

• Lecture 2
• Surface roughness, self-affine roughness
• Single asperity contact: Hertz contact theory
• Multiple asperities contact, rough contact mechanics

• Exercise 2 (optional HW)
• Generation with open-source software Tamaas of rough surfaces
• Resolution of Hertz contact with Tamaas

• Lecture 3: From friction to wear

• Exercise 3 (optional HW): Resolution of rough contact mechanics with Tamaas



• Bowden and Tabor (1950)

• Real contact area 
(much smaller than apparent area)

• Sum of microcontacts

• Friction force

• Σr real contact area
• σs shear strength of the interface 

W increases  ⇒ Σr increases (linearly for small W) 
⇒ friction force increases

W
F

Ff ?

rsfF Σ⋅=σ

Short recap



Confirmed with optical images by Dieterich-Kilgore (1994)

Real Contact Area of Random Surfaces



Simplest model for roughness: the overlap (or cutoff) model
(no mechanics) 

Theoretical Models
For Σr ∝ W

2
3

r WΣ ∝Hertz: elastic contact of elastic sphere
(no friction, no adhesion) 

Linearity captured (many asperities of various heights + mech):
• Greenwood and Williamson, 1966 (distribution of heights of spheres);
• Bush et al., 1975 (distribution of radii and aspherical asperities);
• Persson, 2001 (self-affine surfaces); 
• Borri-Brunetto et al., 2001, many others…

Overlap model fails to
capture linearity



Self-Affine Fractal Surfaces
• Surface roughness power spectra

• Variations in height over a lateral length 
scale of L rise as LH

• (H<1, means surfaces look smooth 
macroscopically)
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Cutoffs in spectrum
Isotropic (versus anistropic surface)

Figure from Yastrebov



Comparison with Experiments
Natural surfaces in comparison to self-affine fractal surfaces (Dieterich)



Roughness of natural surfaces
Self-affine fractals

Renard et al., 2013, Geophysical Research Letters
Scaling over 10 decades! (from 0.1 mm to 1000 km) 

H<1   Hurst exponent

5



Self-Affine Fractal Surfaces

H=0.5

H=0.9

H=0.7

From Boger et al., 1987

H: Hurst 
(or roughness) 

exponent



More Examples
H=0.8 (www.phys.ntnu.no)

Mount Everest
10x10 micrometer2 AFM 

image of clay surface

Propagation of a crack in 
plexiglas block with artificially 

controlled thickness



Elastic or J2 elasto/perfectly-plastic solid 
with a rough surface contacting a rigid 
surface
L  = 512 nodes per side; periodic BCs
Full range of H and roughness amplitude

W

• S. Hyun, L. Pei, J.F. Molinari, and M.O. Robbins, “Finite-element analysis of contact between elastic
self-affine surfaces”, Phys. Rev. E, 2004 
• L. Pei, S. Hyun, J.F. Molinari, and M.O. Robbins, “Finite-element analysis of contact between elasto-
plastic self-affine surfaces”, Journal of the Mechanics and Physics of Solids, 2006

Continuum Mechanics
Early finite element simulations

H=0.7 ( D = 3 - H = 2.3), 256x256 grid; 
generated by successive Random Addition 

Rule (RF Voss)
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No Friction
No plasticity

(Johnson, 1985)



Contact contour, L=256, H=0.5, 
∆=0.08, ν=0, A/A0=0.1

Quick overview of results 

Complex Contact Geometry:   
J.H. Dieterich and B.D. Kilgore, Tectonophysics 256, 219 
(1996).  Image contacts between self-affine surfaces of 
transparent materials (quartz, calcite, soda-lime glass, 
acrylic plastic).  

Complex contact morphology



Quick overview of results 
Real contact area versus load

• A proportional to load (consistent with theory)
• AE’/W constant up to 8% ⇒ In this domain, mean pressure constant 
• Slope depends on roughness parameters (unlike analytical theories)
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Quick overview of results 
Statistics of micro contacts

Universal curve (for all H and ∆)!
Exponential decay, not Gaussian ⇒ we predict larger pressures than previous models
(may reflect correlations in the loads carried by different asperities, which is not captured in 
analytical theories)



Smooth representative surfaces  
Yastrebov Anciaux Molinari IJSS 2015

Requires many asperities at many scales, and a fine discretization…



Change gun: the BEM  
Boundary Element Method or Boundary Integral Equation Method

Building blocks: 
1) Integral representation (to obtain solution at any point in the interior 

from solution on the boundary)
2) Fundamental solutions (Boussinesq, Westergaard, …) 
3) If complex domain, discretization of boundary for numerical solution

Advantages: 
Concentrate discretization at the surface (reduction of dimension)
High Precision
Efficiency

Disadvantages: 
Hard to include heterogeneities in bulk (and loss of reduction of 
dimension)
Linear elasticity: hard to include non-linear behavior in bulk 
(FEM better for this)



Fundamental solutions
For contact problems

Displacement at a point M due to a normal load applied at O

Boussinesq’s solution :

Westergaard’s (1939, 1D contact line) and Johnson’s (1985, 2D contact plane) 
solution:



Minimization problem
Find p and u admissible such that :

is minimum

(contact constraint)

(loading)

and

and

Discretization with a uniform grid

Periodic solution for FFT (requires periodic asperities); 
Convolution in Fourier space is a product
Relation between displacement and pressure is computed in Fourrier’s space

Minimize energy under constraints: Stanley and Kato, Polonsky and Keer

Under constraints



Hertz contact
Comparison between computed and exact solutions

Effects of 
PBCS



Pressure of Hertz contact
Solution can be computed at any point



Convergence of solution



Rough surface
3D view



Rough contact
Solution of simulations



Fluid injection at a rough surface
Yastrebov et al. in preparation



Summary comments
• Roughness; self-affine roughness

• Hertz contact theory

• Multi-asperity contact

• Power of BEM for mesoscale modeling of rough surfaces: access to 
statistical data of micro contact sizes and local pressures

• Limitation of BEM: difficulty of including non-linearity and heterogeneities
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