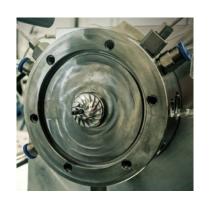


Overview

- Motivation & introduction
- Governing gas bearing equations
- Grooved gas lubricated bearings
- Practical implementation
- Conclusions

Selection of Examples

 Turbocompressor for domestic heat pumps improves performance by 20-30% compared to state of the art

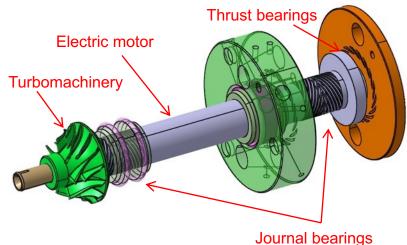


 Domestic scale solid oxide fuel cell (6 kW_{EL}) coupled to steam turbine driven anode off-gas fan achieves 66% efficiency

Common Denominator Small-Scale Turbomachinery

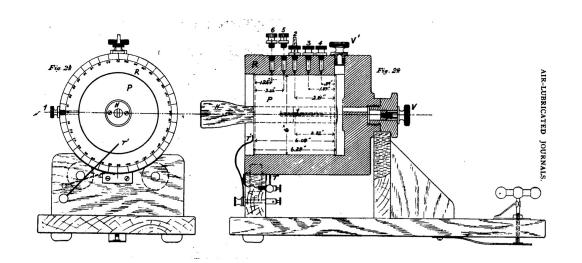
 Small-scale and oil-free turbomachinery is enabling technology for improving energy conversion efficiency

- Composed of several critical elements
 - Gas lubricated bearings
 - Turbomachinery aerodynamics
 - Integrated design approaches



Common Denominator Small-Scale Turbomachinery

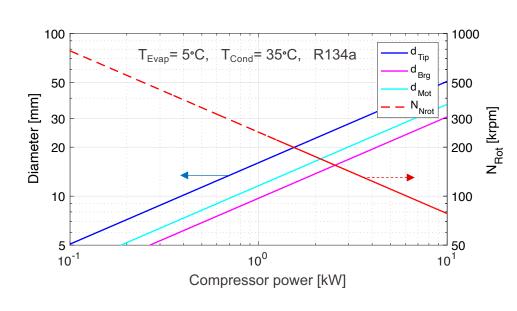
 Gas lubrication: Discovered in 1895 (9 years after Reynolds equation), first paper in 1897.



.

Turbocompressor Scaling Analysis

- Downscaling power increases speed (N_{rot}) and decreases siz
- Bearings
 - Need to support high speed (5 kHz)
 - High lifetime (>80'000 hours)
 - High efficiency
 - Low mechanical complexity

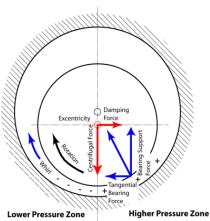


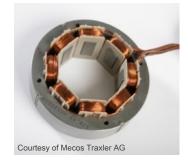
High Speed Bearing Classes

Rolling element bearings

Magnetic bearings

Fluid film bearings

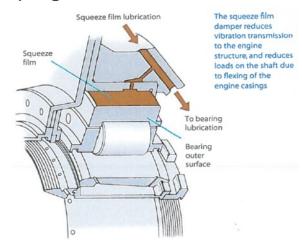


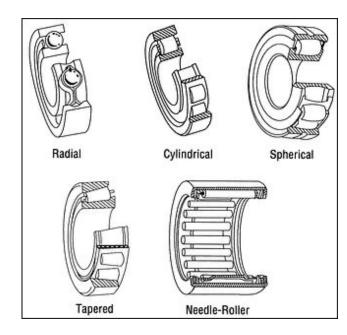


,

Rolling Element Bearings

- Standardized and robust technology
- Needs controlled lubrication
- Limited lifetime
- Offers little damping

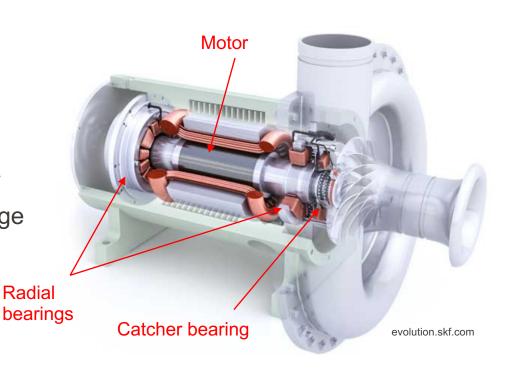




3

Magnetic Bearings

- No mechanical contact
- Work in vacuum
- Requires no lubrication
- Needs probes and controller
- Relatively expensive and large
- Requires catcher bearings

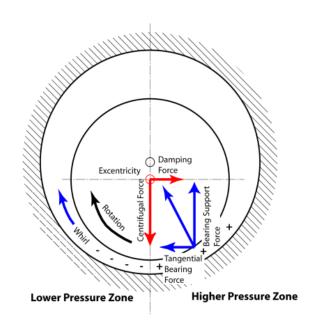


- 1

Fluid Film Bearings

Features

- Fluid film separates rotating from static part
- Very simple geometry → ease of downscaling
- No wear after liftoff
- Low mechanical losses
- No cycle contamination
- Challenges
 - Low specific load capacity and damping
 - Rotordynamic stability issues

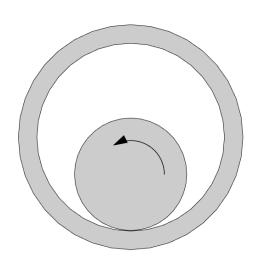


Fluid Film Bearing Classification

- Static (externally pressurized)
 - External source provides fluid film with pressurized fluid
 - Pressurization provides load capacity
- Dynamic (self-acting)
 - Relative motion between surfaces drags fluid into fluid film
 - Appropriate design generates load capacity
- Compressible or incompressible lubricant
 - Gas or liquid phase lubricant

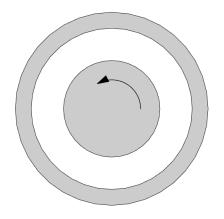
Self-Acting Fluid Film Bearings

- Advantages
 - No external source of pressurized fluid required
 - Bearing is passive element
 - Requires little space
 - Simple geometry → ease of manufacturing
- Disadvantages
 - Contact at start & stop → potential wear
 - Sensitive to clearance distortion
 - Prone to instability



Instability

- Self-acting bearings are prone to modal unstability
 - Subsynchronous
 - Leads to limit cycles or contact at high speed
 - → Often means a destruction of the system
- Most of the R&D of the last 50 years aimed at improving the stability of gas bearings

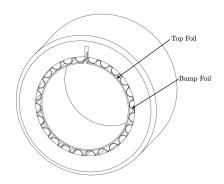


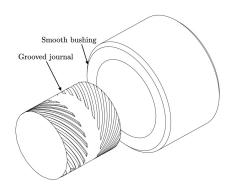
Example Self-Acting Fluid Film Bearings

Tilting pad

Herringbone grooved

Foil bearings

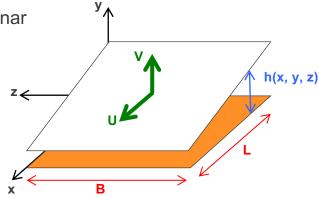




Reynolds Equations

Baseline hypothesis:

- The lubricant is a Newtonian fluid
- The film thickness is much smaller than the two other orthogonal directions (h/L<<1)
- The fluid characteristics (viscosity, pressure, density) are constant across the film thickness
- Viscous forces dominate the inertia and the flow is laminar



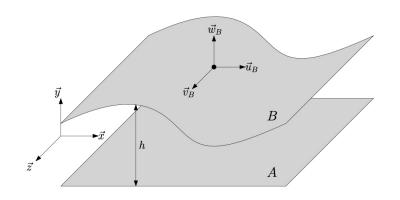
Reynolds Equations

Navier-Stokes boils down to:

$$\frac{\partial p}{\partial x} = \frac{\partial}{\partial y} \left(\mu \frac{\partial u}{\partial y} \right)$$
$$\frac{\partial p}{\partial z} = \frac{\partial}{\partial y} \left(\mu \frac{\partial v}{\partial y} \right)$$

Integrated twice:

$$u = \frac{y^2}{2\mu} \frac{\partial p}{\partial x} + A \frac{y}{\mu} + B$$
$$v = \frac{y^2}{2\mu} \frac{\partial p}{\partial z} + C \frac{y}{\mu} + D$$



With boundary conditions:

$$y = 0, u = 0, v = 0$$

 $y = h, u = u_B, v = v_B$

→ Hypothesis :<u>no-slip</u> condition at the solid-lubricant interface

B

A

Reynolds Equations

Navier-Stokes boils Integration constants are determined:

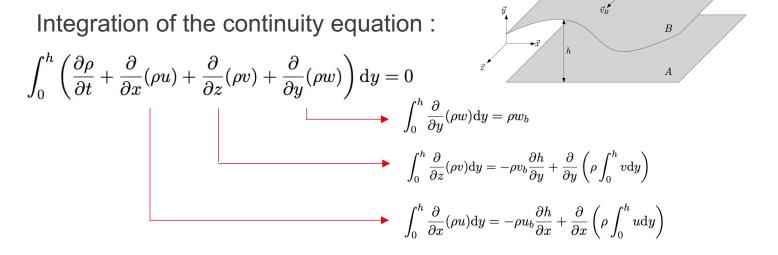
$$u = -y \left(\frac{h-y}{2\mu}\right) \frac{\partial p}{\partial x} + u_B \frac{y}{h}$$
$$v = -y \left(\frac{h-y}{2\mu}\right) \frac{\partial p}{\partial z} + v_B \frac{y}{h}$$

Mass flow rate per unit length:

$$\psi_x = \rho \int_0^h u dy = \rho \left(-\frac{h^3}{12\mu} \frac{\partial p}{\partial x} + \frac{u_b}{2} h \right)$$

$$\psi_y = \rho \int_0^h v dy = \rho \left(-\frac{h^3}{12\mu} \frac{\partial p}{\partial y} + \frac{v_b}{2} h \right)$$

Reynolds Equations



Recognize the mass flow rate per length expressions :

$$\frac{\partial}{\partial x} \underbrace{\left(\rho \int_{0}^{h} u \, \mathrm{d}y\right)}_{\psi_{x}} + \frac{\partial}{\partial z} \underbrace{\left(\rho \int_{0}^{h} v \, \mathrm{d}y\right)}_{\psi_{z}} + h \frac{\partial \rho}{\partial t} + \rho \underbrace{\left(-u_{b} \frac{\partial h}{\partial x} - v_{b} \frac{\partial h}{\partial z} + w_{b}\right)}_{\frac{\partial h}{\partial t}} = 0$$

Reynolds Equations

Following the development of material derivative of h:

$$0 = \frac{\partial}{\partial x} \left(-\frac{\rho h^3}{12\mu} \frac{\partial p}{\partial x} \right) + \frac{\partial}{\partial z} \left(-\frac{\rho h^3}{12\mu} \frac{\partial p}{\partial z} \right) + \underbrace{\frac{\partial}{\partial x} \left(\frac{\rho h u_B}{2} \right)}_{\text{Couette}} + \underbrace{\frac{\partial}{\partial z} \left(\frac{\rho h v_B}{2} \right$$

Reynolds Equation for Journal Bearing

• Change coordinate system (cartesian \rightarrow cylindrical): $x = R\theta$

■ Normalize with
$$Z = \frac{z}{R} \qquad P = \frac{p}{p_{Amb}} \qquad H = \frac{h}{C} \qquad u_0 = R\omega_{Rot} \qquad T = \omega_{Ex} t$$

$$\uparrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

And assume a constant viscosity to lead to:

$$\partial_{\theta} \left(\rho H^{3} \partial_{\theta} P \right) + \partial_{Z} \left(\rho H^{3} \partial_{Z} P \right) = \underbrace{\frac{6\mu \omega_{Rot}}{p_{Amb}} \left(\frac{R}{C} \right)^{2}}_{\text{Ompressibility}} \partial_{\theta} \left(\rho H \right) + \underbrace{\frac{12\mu \omega_{Ex}}{p_{Amb}} \left(\frac{R}{C} \right)^{2}}_{\text{Ompressibility}} \partial_{T} \left(\rho H \right)$$

Simplifying Reynolds Equation

- Further assumptions
 - Isothermal fluid film
 - Ideal gas
 - Constant viscosity

$$\rho = \frac{Pp_{Amb}}{R_G T}$$
Temperature
Spec. Gas constant

Reynolds equation for journal bearing lubricated with a ideal gas & isothermal film

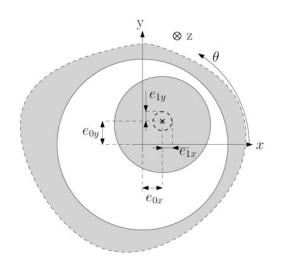
$$\partial_{\theta} (PH^{3} \partial_{\theta} P) + \partial_{z} (PH^{3} \partial_{z} P) = \Lambda \partial_{\theta} (PH) + \sigma \partial_{z} (PH)$$

Dynamic Bearing Properties

- Objective is prediction of dynamic stiffness and damping
- How to proceed?
 - 1. Load bearing with static load → leads to static rotor eccentricity
 - 2. Perturb rotor with periodic oscillation around static equilibrium
 - 3. Integrate unperturbed pressure field to calculate static load capacity
 - Integrate perturbed pressure field to calculate stiffness and damping matrices

Dynamic Bearing Properties

Introduce static and dynamic perturbation



- Introduce into Re-equation, collect 0th and 1st order terms and solve for static and dynamic pressure fields using Finite Difference Method or Finite Volume Method
- Integrate P on bearing domain to get the bearing reaction forces and identify load capacity, stiffness and damping coefficients K & C

Dynamic System Properties

 Use the linearized dynamic coefficients K & C to solve the eigenproblem of the rotor-bearing system

$$M\ddot{q} + C\dot{q} + Kq = 0$$

State-space problem

$$\dot{\mathbf{z}} + \mathbf{A}\mathbf{z} = 0$$

where

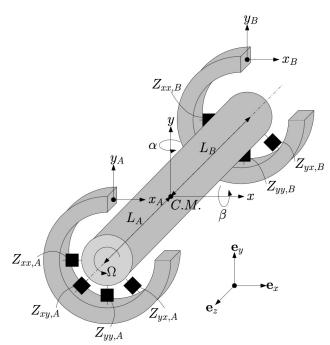
$$\mathbf{z} = egin{pmatrix} \dot{\mathbf{q}} \ \mathbf{q} \end{pmatrix}$$

and

$$\mathbf{A} = egin{pmatrix} \mathbf{M}^{-1} \mathbf{C} & \mathbf{M}^{-1} \mathbf{K} \ -\mathbf{I}_n & \mathbf{0}_n \end{pmatrix}$$

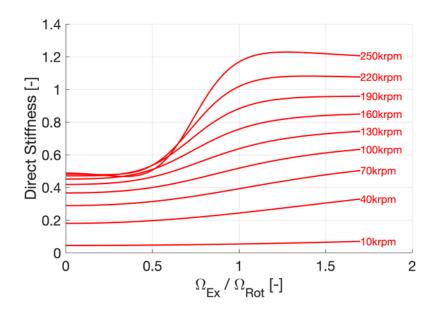
eigenproblem

$$\det(\mathbf{A} - \delta_p \mathbf{I}_{2n}) \mathbf{b}_p = 0$$



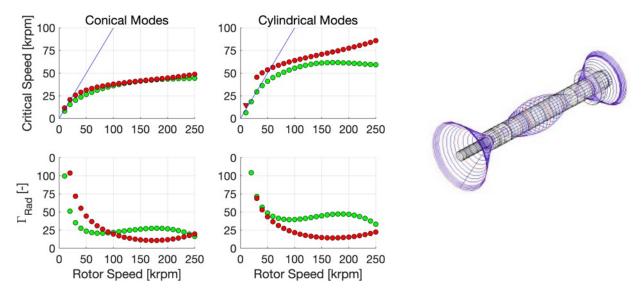
Particularity of Gas Lubricated Bearings

 Gas lubricated bearing properties dependent on rotor and excitation frequency → K = K(f_{ex}) , C = C(f_{ex})



Dynamic Bearing Properties

Compute the modal logarithmic decrement of all your eingenmodes
 → they must remain positive!



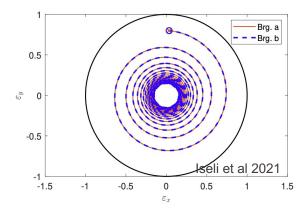
• This method is very fast but it relies on a <u>linearization</u> around an equilibrium point

Non-linear dynamic evaluation

 Alternatively, the Reynlods equation can be integrated <u>in time</u> and coupled with the rotordynamics equations of motion

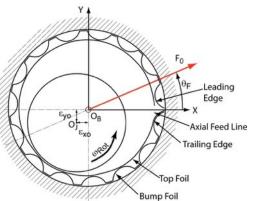
$$\partial_{\theta} (PH^{3} \partial_{\theta} P) + \partial_{z} (PH^{3} \partial_{z} P) = \Lambda \partial_{\theta} (PH) + \sigma \partial_{x} (PH)$$
 $\dot{\mathbf{q}} = f(\mathbf{q}, t)$

Very computationally costly, but captures non-linear effects



Dynamic Gas Lubricated Bearings

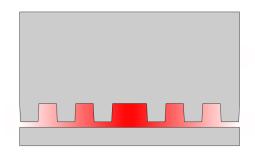
- Herringbone groove journal bearings
 - Can achieve very high stability thresholds
 - Rigid bearing bushings need tight clearances and perfect alignment
- Foil bearings
 - Fluid film operates in series with a compliant surface
 - Complex interaction between fluid film and soft structure
 - Compliant structure adds external damping
 - Tolerant to misalignment and thermal gradients



Large number of models available but no validation data

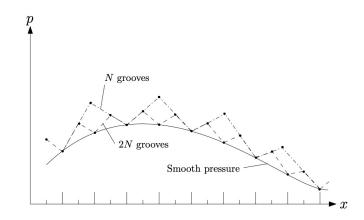
Herringbone Grooved Journals

- Structured groove pattern improves stability
- Pumping grooves increase fluid film pressure
- Can achieve very high stability thresholds
- Rigid bearing bushings need tight clearances (5÷10 µm) and perfect alignment



Modeling of Herringbone Grooved Journals

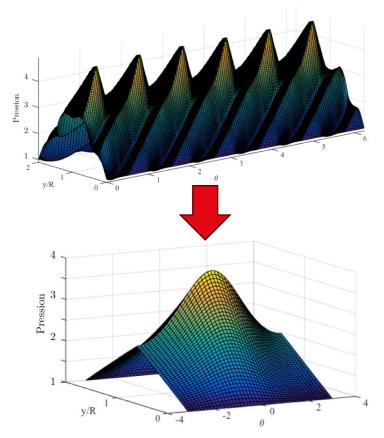
- Assumption of infinite number of grooves reduces saw-tooth pressure profile to smooth pressure
- Narrow Groove Theory (NGT) allows to express fluid film pressure evolution as modified Re-equation



$$\partial_{\varphi} \left[\overline{P} \Big(f_1 \partial_{\varphi} \overline{P} + f_2 \partial_{\overline{z}} \overline{P} \Big) \right] + \partial_{\overline{z}} \left[\overline{P} \Big(f_2 \partial_{\varphi} \overline{P} + f_3 \partial_{\overline{z}} \overline{P} \Big) \right] + c_s \left[\sin \beta \partial_{\varphi} \Big(\overline{P} f_4 \Big) - \cos \beta \partial_{\overline{z}} \Big(\overline{P} f_4 \Big) \right] - \Lambda \partial_{\varphi} \Big(\overline{P} f_5 \Big) - \sigma \partial_{\overline{t}} \Big(\overline{P} f_5 \Big) = 0$$

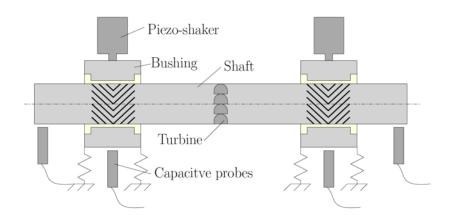
Modeling of Herringbone Grooved Journals

- NGT allows a very fast and elegant mathematical treatment of the lubricating effects due to the texturing
- No need to capture each groove individually in the numerical method
- Has been the dominating method for grooved bearing design for the last 60 years



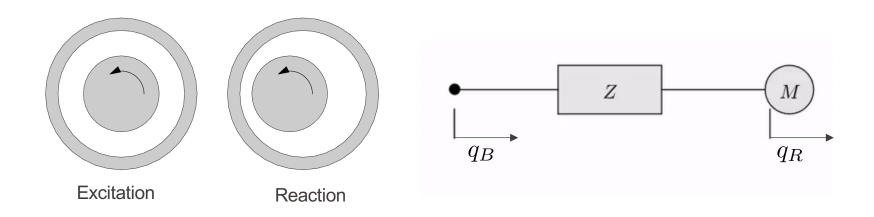
Test-Rig for Herringbone Grooved Journals

- Excitation of softly supported bushings via piezo-shakers
- Measurement of relative motion between rotor and bushing allows to retrieve stiffness and damping matrices

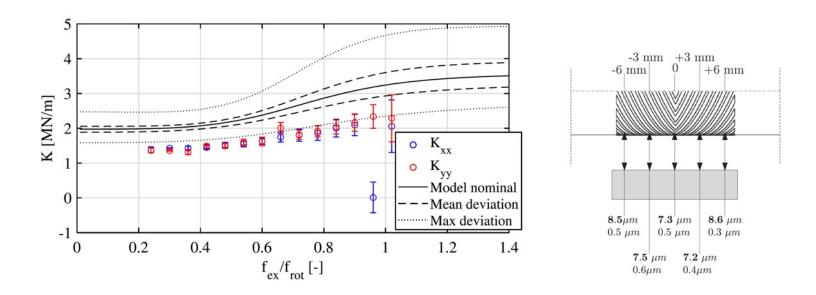


Test-Rig for Herringbone Grooved Journals

- Excitation of softly supported bushings via piezo-shakers
- Measurement of relative motion between rotor and bushing allows to retrieve stiffness and damping matrices



Measurement of Herringbone Grooved Journals



- Agreement between model and experimental data validates NGT
- Effects of manufacturing deviation significant

Modeling of Herringbone Grooved Journals

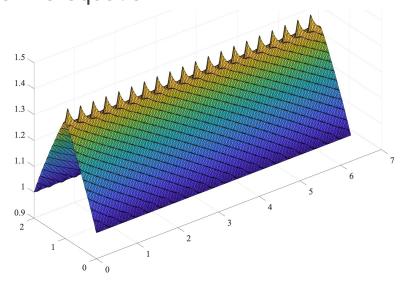
NGT makes many questionable assumptions

Objective was to introduce a solution of Re-equation

for grooved bearings

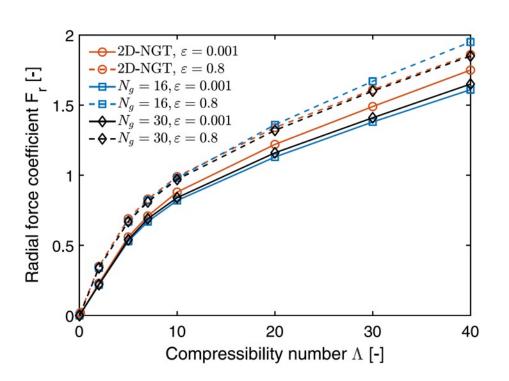
 Modeling approach based on periodicity of pressure profiles

- Finite groove approach (FGA)
 - Finite Volume Method
 - Finite Element Method



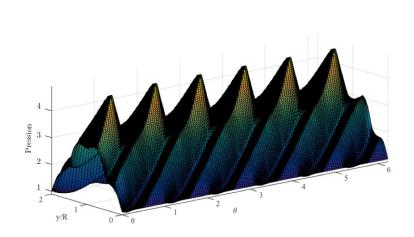
Static Performance (FGA)

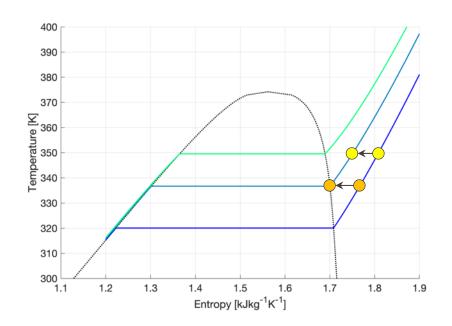
- NGT suggested to predict slightly larger static force coefficients than exact solution (<3%)
- Higher number of grooves decreases difference to NGT



Condensation in Gas Lubricated Bearings

- Bearings operated close to saturation line exposed to real gas behavior
 - Deviation from ideal gas behavior
 - Potential condensation





Capturing condensation

Under isothermal condensation : $\partial_{\theta|z}P = 0$

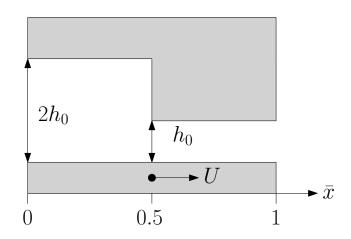
→ Re-equation changes from elliptic to hyperbolic → Information travels forward, not backward

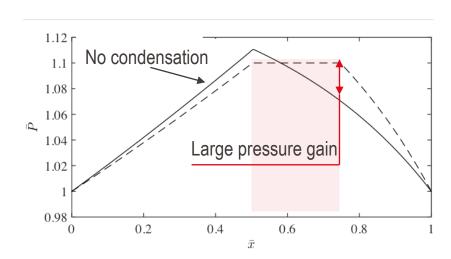
$$\partial_{\theta} (\overline{\rho} \overline{h}) + \sigma \partial_{T} (\overline{\rho} \overline{h}) = 0$$

Numerical treatment inspired by work on cavitation in liquid bearings

Effects of Condensation

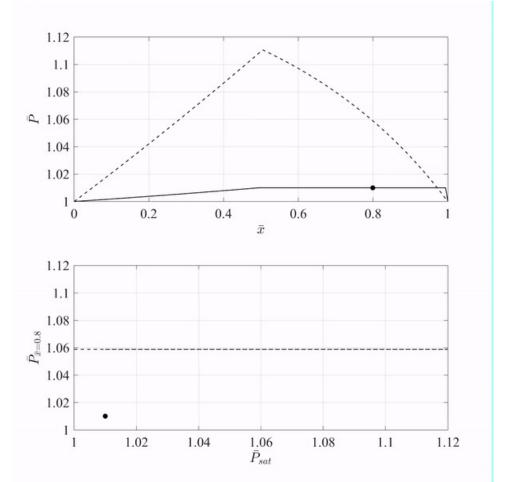
- Condensation links pressure to temperature and pressure governed purely by fluid film temperature (isothermal behavior)
- The closer to the saturation curve the wider the condensation zone





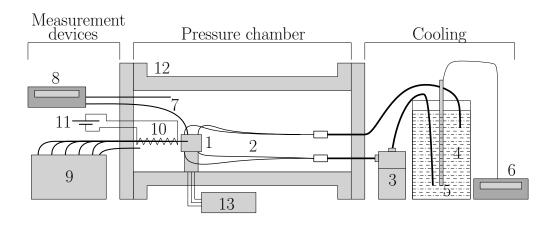
Effects of Condensation

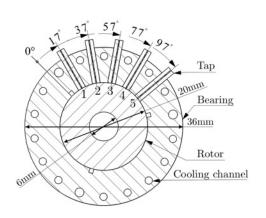
- As the temperature increases, so does the saturation pressure
- At x=0.8, the pressure experiences a pressure excursion <u>above</u> its single-phase gas value

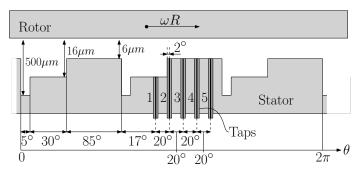


Experimental Setup for Condensation

- Instrumented 3-pad Rayleigh step bearing
- Vertical operation to avoid radial load
- Test performed in R245fa

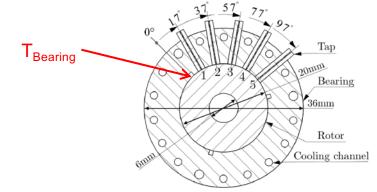


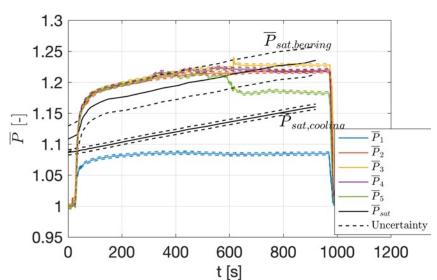




Experimental Results with Condensation

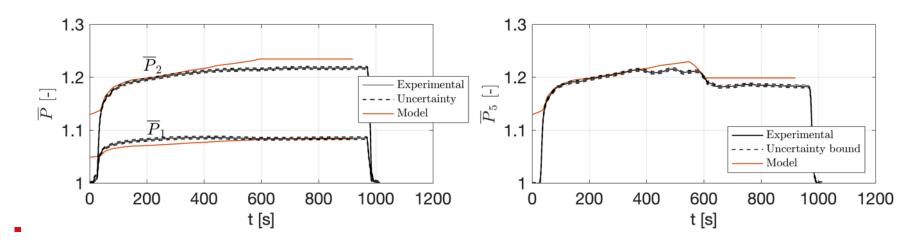
- Fluid film pressures evolve with temperature
- P₂₋₅ linked to and limited by condensation pressure in bearing
- P₁ is below saturation pressure and evolves slower than without condensation
 - → upstream condensation





Experimental Results with Condensation (cont.)

- Reynolds equation with real gas effects captures evolution of pressures
- Sudden drop of P₅ due to switch from two to single phase lubrication
- Occurrence of condensation proven experimentally
- Sustained operation of bearing under condensation technically feasible



Practical Implementation of Gas Lubricated Bearings

Implementation of Grooved Bearings

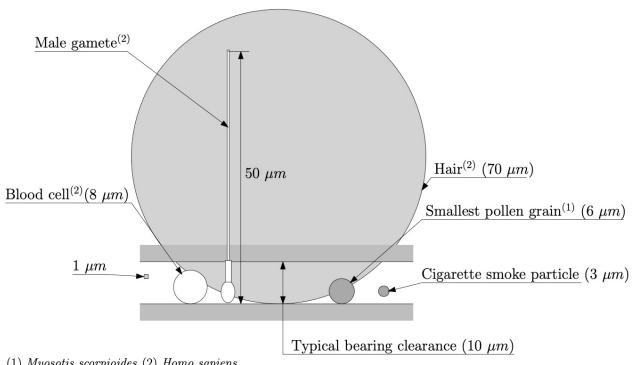
- Gas bearings require very small clearances (5-10 μm for ø10 mm) to ensure stable operation and sufficient load capacity
- Stringent manufacturing and alignment tolerances yield high manufacturing cost
- Design to alleviate manufacturing challenges
- Increase bearing clearance
 - Flexible bushing support with damping
 - Modify fluid film behavior

Implementation of Grooved Bearings

- Gas bearings require very small clearances (5-10 μm for ø10 mm) to ensure stable operation and sufficient load capacity
- Stringent manufacturing and alignment tolerances yield high manufacturing cost
- Design to alleviate manufacturing challenges
- Increase bearing clearance
 - Flexible bushing support with damping
 - Modify fluid film behavior

Implementation of Grooved Bearings

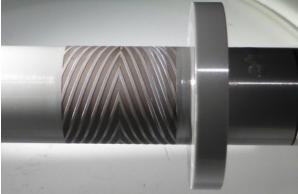
Manufacturing tolerance : ~1 μm

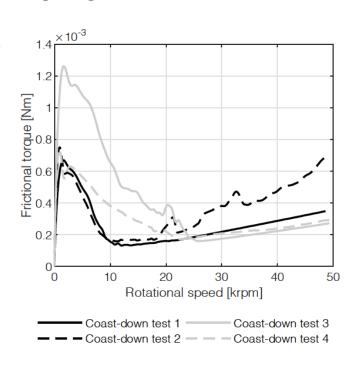


(1) Myosotis scorpioides (2) Homo sapiens

Flexible Bushing Support

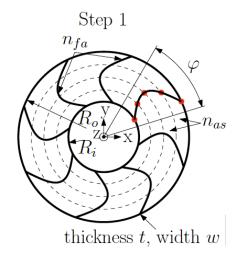
- O-ring as a flexible bushing support with self-aligning features
 - Cheap, compact, availability, high damping
 - Dynamic properties difficult to measure / tune
 - Limited lifetime
 - Non-repeatable assembly

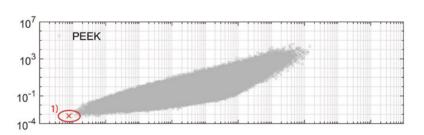


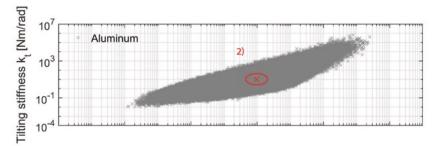


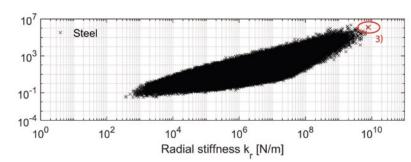
Tunable Membrane Based Support

- Membrane design with flexible arms
- Tuning radial and tilting stiffness
- Possibility to introduce damping



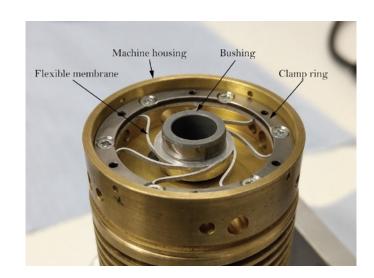






Tunable Membrane Based Support

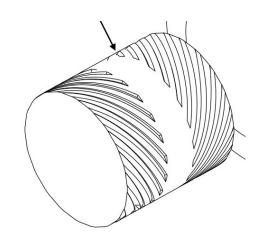
- Assembly procedure with perfect alignment
- Yields totally repeatable results
- Identified unstable bushing tilting mode

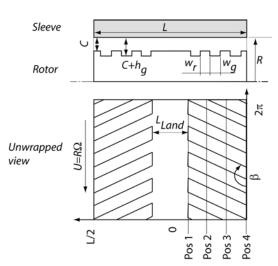




Enhanced Herringbone Grooves Journal Bearings

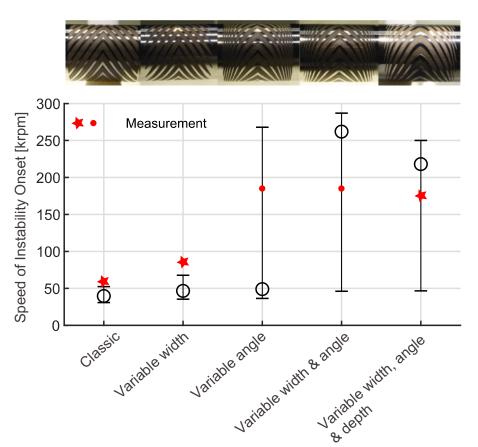
- Traditional grooves of herringbone journal bearing follow helicoid curve with constant angle with constant cross-sectional area
- Idea: introduce variable groove geometry and identify promising patterns by combining models with optimization algorithms

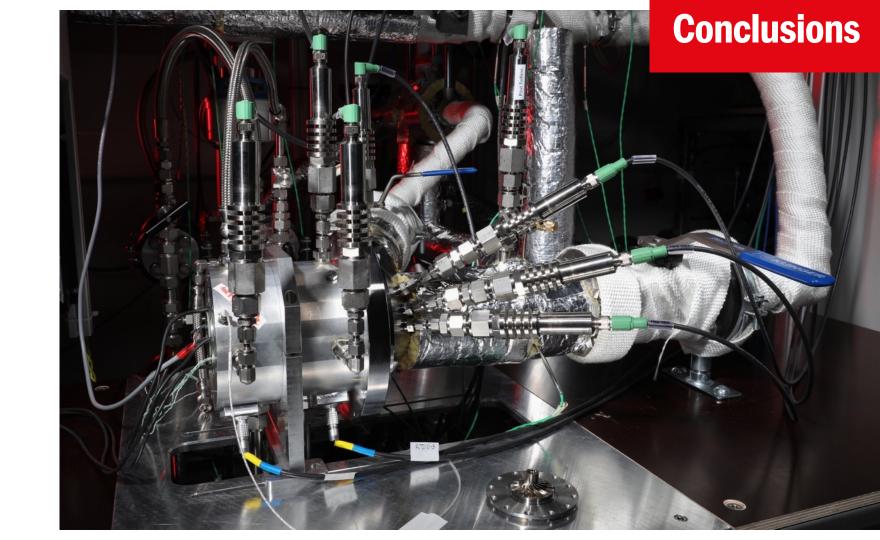




Enhanced Herringbone Grooves Journal Bearings

- Optimized patterns tested on same rotor with same bearing clearance
- Enhanced patterns allows to increase rotor speed x3 compared to classical grooves
- New patterns allow 50% clearance increase





Conclusions

- High rotor speeds and high life time expectations call for gas lubricated bearings
- Gas lubricated bearings can be modeled via Re-equation. Perturbation allows prediction of linearized stiffness and damping matrices
- Grooved bearings with high stability threshold can be approximated by Narrow Groove Theory
- Stringent manufacturing tolerance remains a challenge, additional external damping is helpful

Mechanical Engineering

Reynolds Equations

Following the development of material derivative of h:

$$\frac{\mathrm{D}h}{\mathrm{D}t} = \frac{\partial h}{\partial t} + \frac{\partial h}{\partial x} \frac{\mathrm{d}x}{\mathrm{d}t} + \frac{\partial h}{\partial z} \frac{\mathrm{d}z}{\mathrm{d}t}$$

With:

$$\frac{\mathrm{d}x}{\mathrm{d}t} = u_b \quad \frac{\mathrm{d}y}{\mathrm{d}t} = v_b \qquad \frac{\mathrm{D}h}{\mathrm{D}t} = w_b$$

