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Vortex rings are remarkably stable structures that occur 
in a large variety of systems, such as in turbulent gases 
(where they are at the origin of weather phenomena)1, fluids  
(with implications for biology)2, electromagnetic discharges3 
and plasmas4. Although vortex rings have also been pre-
dicted to exist in ferromagnets5, they have not yet been 
observed. Using X-ray magnetic nanotomography6, we 
imaged three-dimensional structures forming closed vortex 
loops in a bulk micromagnet. The cross-section of these loops 
consists of a vortex–antivortex pair and, on the basis of mag-
netic vorticity (a quantity analogous to hydrodynamic vor-
ticity), we identify these configurations as magnetic vortex 
rings. Although such structures have been predicted to exist 
as transient states in exchange ferromagnets5, the vortex 
rings we observe exist as static configurations, and we attri-
bute their stability to the dipolar interaction. In addition, we 
observe stable vortex loops intersected by point singularities7 
at which the magnetization within the vortex and antivortex 
cores reverses. We gain insight into the stability of these 
states through field and thermal equilibration protocols. The 
observation of stable magnetic vortex rings opens up possibil-
ities for further studies of complex three-dimensional solitons 
in bulk magnets, enabling the development of applications 
based on three-dimensional magnetic structures.

In magnetic thin films, vortices are naturally occurring flux clo-
sure states in which the magnetization curls around a stable core, 
where the magnetization tilts out of the film plane8,9. These struc-
tures have been studied extensively over past decades due to their 
intrinsic stability10 and their topology-driven dynamics11–13, which 
are of both fundamental and technological14 interest. Antivortices, 
the topological counterpart of vortices, are distinguished from vor-
tices by an opposite rotation of the in-plane magnetization, which 
is quantified by the index of the vector field (equal to the winding 
number of a path traced by the magnetization vector while mov-
ing in the counterclockwise direction around the core)15. Although 
vortices have a circular symmetry of the magnetization (Fig. 1a), 
antivortices only display inversion symmetry about the centre16  
(Fig. 1b), resembling saddle points in the vector field. Experimental 
studies of magnetic vortices and antivortices have mostly been 
restricted to two-dimensional (2D), planar systems, in which vor-
tex–antivortex pairs have a natural tendency to annihilate17 unless 
they are part of larger, stable structures, such as cross-tie walls18.

In bulk ferromagnets, the existence of transient vortex rings, 
which take the form of localized solitons and are analogous to 

smoke rings, has been predicted5, but, so far, such structures have 
not been observed. Just as vortex rings in fluids are characterized by 
their vorticity, ferromagnetic vortex ring structures can be identi-
fied by considering the magnetic vorticity19. By analogy with fluid 
vorticity, the magnetic vorticity is a vector field, whose components 
are defined by5,19

Ωα ¼
1
8π

ϵαβγϵijkmi∂βmj∂γmk ð1Þ

where mi(r,t) is a component of the unit vector representing the 
local orientation of the magnetization m = M/MS, the reduced mag-
netization, where MS is the saturation magnetization, α indicates 
the vorticity component, and ϵαβγ is the Levi–Civita tensor, summed 
over three components x, y and z. The magnetic vorticity vector 
Ω represents the topological charge flux20 (or skyrmion number21) 
density. Integrating the magnetic vorticity over a closed 2D surface 
S results in an integer value 

R
S
I
Ω ⋅ dS = N corresponding to the sky-

rmion number, which gives the degree of mapping of the magne-
tization distribution to an order parameter space described by the 
surface of an S2 sphere. When N = 1, the target sphere is wrapped 
exactly once and each direction of the magnetization vector is pres-
ent on the surface S. The magnetic vorticity vector Ω is therefore 
non-vanishing in the vicinity of the cores of vortices or antivortices, 
and is represented in Fig. 1a–d for vortices and antivortices with 
different polarizations (the polarization is the orientation of the 
magnetization within the core). The vorticity vector is aligned par-
allel to the polarization of a vortex (Fig. 1a,c) and antiparallel to the 
polarization of an antivortex (Fig. 1b,d), indicating that it is depen-
dent on the direction of the magnetization in the core as well as the 
index of the structure. Consequently, a vortex–antivortex pair with 
parallel polarizations exhibit opposite vorticities, which circulate in 
a closed loop (Fig. 1e).

Here, we use the magnetic vorticity to locate and identify magne-
tization structures within a three-dimensional (3D) GdCo2 micro-
pillar, imaged using hard X-ray magnetic nanotomography6. Within 
the bulk of the pillar, we find two types of vorticity loops. The first 
is characterized by a circulating magnetic vorticity forming vortex 
rings, analogous to smoke rings. The cross-sections of these mag-
netic vortex rings consist of vortex–antivortex pairs with parallel 
polarizations, as illustrated in Fig. 1e. Consequently, such a pair 
can be smoothly transformed into a uniformly magnetized state 
and carries zero topological charge. The second type of loop con-
tains singularities, or Bloch points7, at which the vorticity abruptly 
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reverses its sign, reflecting the reversal of the polarization of the vor-
tex and antivortex within the cross-section of the ring. Calculating 
pre-images of the observed structures reveals concentric pre-images 
that do not link each other, so have a vanishing Hopf index (a topo-
logical invariant that counts the linking number of pre-images 
corresponding to different magnetization vector directions). In 
contrast, structures containing Bloch points have pre-images simi-
lar to the recently observed ‘toron’ structures in liquid crystals22.

The hard X-ray magnetic nanotomography set-up is shown in 
Fig. 1f. During the measurements, high-resolution X-ray projec-
tions of a bulk GdCo2 ferrimagnetic cylinder of diameter 5 μm were 
measured with dichroic ptychography23 for 1,024 orientations of 
the sample with respect to the X-ray beam. The photon energy of 
the circularly polarized X-rays was tuned to the Gd L3 edge and, by 
exploiting the X-ray magnetic circular dichroism effect, sensitivity 
to the component of the magnetization parallel to the X-ray beam 
was obtained. To gain access to all three components of the mag-
netization, X-ray projections were measured for different sample 
orientations about the tomographic rotation axis for two different 
sample tilts. The internal magnetic structure was obtained using an 
iterative reconstruction algorithm6, which has been demonstrated 
to offer a robust reconstruction of nanoscale magnetic textures24. 
Further experimental details are provided in the Methods.

In the ferrimagnetic micropillar, the coupling between two anti-
parallel magnetic sublattices leads to an effective soft ferromagnetic 
behaviour25. The lowest energy state of such a magnetic cylinder is 
expected to consist of a single vortex26. In practice, the size of the 
pillar is large enough to reduce the role of surface effects, support-
ing the stabilization of more complex, often metastable states, which 

can include a large number of vortices, antivortices, domain walls 
and singularities6.

We compute the magnetic vorticity Ω from the reconstructed 
magnetization following equation (1). Regions of large vorticity are 
plotted in Fig. 1g, where a number of ‘tubes’ and loops correspond-
ing to the cores of vortices and antivortices are visible. In addition, 
unlike in incompressible fluids where the divergence must van-
ish, a non-zero divergence of the magnetization, M, is allowed in  
ferromagnets, given that Maxwell’s equations only exclude the  
divergence of B. Consequently, computing the magnetic vorticity 
also allows us to locate singularities of the magnetization (Bloch 
points) within the system, which are characterized by a large  
divergence of the magnetic vorticity, ∇ ⋅ Ω, due to the abrupt local 
variation in the orientation of the magnetization. Here, Bloch points 
and anti-Bloch points are identified by positive (red) and nega-
tive (blue) ∇ ⋅ Ω, as plotted in Fig. 1h. Within the pillar, we find an 
equal number of Bloch points and anti-Bloch points, indicating 
that the singularities most likely originated in the bulk of the struc-
ture, where they can only be created in pairs. As a result, it appears 
that sample boundaries, through which a single Bloch point could 
be injected, did not play an essential role in the formation of the 
observed structures.

Within the reconstructed magnetization we observe a large 
number of 3D loops (Fig. 2c) that resemble the vortex ring schemat-
ically illustrated in Fig. 1e. We consider the case of one such loop, 
identified by plotting an isosurface corresponding to m ¼ ± x̂

I
 in 

Fig. 2a. This loop is located in the vicinity of a single vortex extend-
ing throughout the majority of the height of the pillar and whose 
polarization equally points along the þx̂

I
 direction in the shown 
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Fig. 1 | Measuring and reconstructing the magnetic structure and magnetic vorticity within a GdCo2 pillar. a–d, Schematic representation of the magnetic 
vorticity Ω, shown in purple and orange arrows, for vortex (a,c) and antivortex (b,d) configurations with different polarizations (red, dark blue). e, The 
vorticity of a ring composed of a vortex–antivortex pair with parallel polarizations. f, Schematic representation of the experimental set-up: tomographic 
projections with magnetic contrast are measured using dichroic ptychography for the sample at many different azimuthal angles with respect to the X-ray 
beam (rotation indicated by the green arrow). Measurements were performed with the sample at two different tilt angles: 30° (transparent green cylinder) 
and 0° (blue cylinder). g,h, By plotting regions of high magnetic vorticity, we locate a variety of structures (g) and by plotting regions of high divergence of 
the vorticity ∇ ⋅ Ω, we locate Bloch points (red) and anti-Bloch points (blue), which respectively have positive and negative ∇ ⋅ Ω (h).
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slice. Considering the magnetization in the y–z plane, represented 
by streamlines in Fig. 2a, we identify a bound state consisting of two 
vortices separated by an antivortex, a structure analogous to that of 
a cross-tie wall. Note that the streamlines are used to indicate the 
direction of the magnetization and are extrapolated beyond the spa-
tial resolution of the measurements. Similarly, the isosurfaces high-
light the position of the vortex core and do not represent the width 
of the core. The loop itself is embedded within a quasi-uniformly 
magnetized region (m ¼ þx̂

I
, red) and therefore the vortex and 

antivortex have parallel polarizations, as shown schematically 
in Fig. 1e. Calculating the magnetic vorticity vector Ω, plotted in  
Fig. 2b, reveals a unidirectional circulation around the loop, directly 
comparable to the schematic in Fig. 1e. This structure is similar to 
a vortex ring in a fluid, which equally corresponds to a loop in the 
hydrodynamic vorticity. Such vorticity loops have been predicted to 
exist as propagating solitons in exchange ferromagnets5. In contrast, 
the loops observed here are static and stable at room temperature 
over the duration of our measurements. We note that the diameter 
of the vortex ring, that is, the average distance between the vortex 
and antivortex cores in the y–z plane, is ~370 nm, comparable to 
the diameter of other vortex rings present inside the pillar (Fig. 2c), 
which exhibit an average diameter of 400 ± 90 nm. Interestingly, this 
loop (along with a number of similar vortex rings in the sample) 
occurs in the vicinity of a singularity: indeed, the neighbouring  
vortex in the cross-tie structure contains a Bloch point, which is 
located in Fig. 2b where the vorticity (and the magnetization in the 
vortex core) abruptly reverses direction (also seen in Extended Data 
Fig. 1). There is, a priori, no topological requirement for the pres-
ence of a Bloch point in the proximity of the vortex loop and, despite 
the observed correlations, our static observations do not allow for 
the determination of a causal relationship between the presence of 
the two structures.

We gain further insight into the topology of these vortex loops 
by plotting pre-images corresponding to a number of directions of 
the magnetization in the vicinity of the vortex ring. The pre-image 
corresponding to the þx̂

I
 direction, that is, mx = +1, is plotted in 

light green in Fig. 2d, along with additional pre-images correspond-
ing to directions indicated in the inset, which form an ensemble of 
closed-loop pre-images. The plotted loops do not link, indicating 
that the vortex ring has a Hopf index of H = 0. Indeed, the vicinity 
of the H = 0 structure contains only pre-images representing direc-
tions close to the þx̂

I
 direction that, consequently, do not cover the 

S2 sphere (as illustrated on the schematic sphere in Fig. 2d), mean-
ing that the magnetization can smoothly unwind into a single 
point on the sphere27. Hence, these vortex rings belong to a class of 
non-topological solitons28. In the Methods (Extended Data Fig. 2c), 
we develop an analytic model of such a soliton, qualitatively repro-
ducing the observed features, vorticity and pre-images.

In addition to vortex rings, we also identify loops containing 
sources and sinks of the magnetization due to the presence of Bloch 
points. The magnetic structure of one such loop, highlighted by the 
isosurface mx ¼ ± x̂

I
, is shown in Fig. 3a, where the colourscale rep-

resents mx and the magnetization in the y–z plane is represented 
by streamlines, revealing a vortex–antivortex pair. At two points 
within the loop, the polarization along the vortex and antivortex 
cores reverses (colour changes from blue to red). Consequently, the 
vorticity does not circulate around the loop, but instead assumes an 
asymmetric onion-like structure, flowing out from a source (green 
box, Fig. 3b) and into a sink (orange box, Fig. 3b). The structure 
of the magnetization in the vicinity of the singularities is plotted 
in Fig. 3c,d. The vorticity sink (Fig. 3e), whose surrounding mag-
netization is plotted in Fig. 3c, corresponds to a contra-circulating 
Bloch point29 (or anti-Bloch point) with skyrmion number −1. The 
vorticity source (Fig. 3f) has a magnetization structure (Fig. 3d) 
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Fig. 2 | Structure of a vortex ring with circulating magnetic vorticity. a, A loop is identified next to a vortex by plotting an isosurface corresponding to 
mx = ±1. The in-plane magnetization within a two-dimensional (2D) slice through the loop is plotted using streamlines, revealing that the cross-section 
of the loop consists of a vortex–antivortex pair. The colourmap indicates the value of mx, showing that the vortex and the antivortex within the loop have 
the same polarization. b, On the same mx = ±1 isosurface, mapping the vorticity (represented both by the arrows and the colourmap) reveals that the 
loop exhibits a circulating vorticity and is a vortex ring. The vorticity map equally indicates that, in the nearby extended vortex, the vorticity abruptly 
reverses, indicating the presence of a Bloch point. Note that the plotted structures have a relatively low vorticity, with ∣Ω∣ ≃ 0.1 (with the exception of the 
Bloch point and the extended vortex). c, Plotting pre-images for different directions, indicated on the schematic sphere, reveals a number of closed loops 
within the sample. Calculating the vorticity shows that these loops also correspond to vortex rings (insets). d, In the vicinity of the vortex loop plotted in a, 
pre-images for neighbouring directions are not linked, indicating a Hopf index of zero.
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corresponding to that of a circulating Bloch point29 with skyrmion 
number +1. Two features of this loop are particularly noteworthy. 
First, the singularities are not linked to the generation and annihila-
tion of a vortex and antivortex with opposite polarizations, as has 
been reported for dynamic processes15. Instead, the loop consists  
of two halves connected by the Bloch points, which locally leads  
to a reversal of the vorticity along the vortex and the antivortex 
cores, as also seen in Extended Data Fig. 3. Second, while singu-
larities have been predicted to mediate dynamic magnetization pro-
cesses29,30 as well as to occur during magnetic field reconnection in 
plasma physics31, the observed structures are inherently static. In 
ref. 6, Bloch points were observed at the locations where a vortex 
core intersected a domain wall. Similarly, we find that the Bloch 
point pair is located at the intersection of the vortex–antivortex loop 
with a domain wall separating regions of opposite mx (Extended 
Data Fig. 3f).

We gain further insight into the topology of the vortex–anti-
vortex loop containing singularities by plotting pre-images corre-
sponding to a defined set of spatial directions (or points on the S2 
sphere) in Fig. 3g. In particular, we plot regions of the magnetization 
aligned along ± x̂

I
 (bright/dark green), ± ŷ

I
 (bright/dark red) and ± ẑ

I
 

(bright/dark blue), which form a 3D onion state, with all directions 
of the magnetization meeting at the singularities schematically 
indicated by green (Bloch point) and orange (anti-Bloch point) 
circles. The pre-images resemble those found to correspond to 
‘torons’, which have recently been observed in chiral liquid crystals22  

and anisotropic fluids32. In the Methods, we present an analytical 
model describing different micromagnetic configurations with sim-
ilar pre-images, allowing us to reproduce and, consequently, under-
stand the experimental observations.

We explore the stability of the observed vorticity loops by apply-
ing two different field and thermal protocols on a similar GdCo2 
micropillar and performing magnetic X-ray nanotomography at 
remanence following each protocol. In the first protocol, we apply 
a 7 T magnetic field along the long axis of the pillar at room tem-
perature and image the resulting remanent configuration. The 
applied field is above the measured sample saturation field of ~2 T. 
A plot of the magnetic vorticity (Fig. 4a) shows a large number of 
vortices and antivortices, as well as magnetic singularities (shown 
in Extended Data Fig. 5 at remanence). Plotting pre-images corre-
sponding to different directions of the magnetization, we observe 
a small number of vortex loops, two of which are shown in Fig. 4b. 
The presence of these vortex loops after the application of a satu-
rating magnetic field indicates that the loops can nucleate spon-
taneously and therefore do not require a specific field protocol to 
prepare them. Second, we heat the sample to 400 K while applying 
a 7 T magnetic field. The sample is then field-cooled and the field 
is gradually removed after the sample reaches room temperature. 
This annealing procedure is reminiscent of those used to expel 
defects in single crystals to increase their purity. A plot of the vor-
ticity, shown in Fig. 4c, shows a noticeably smaller number of struc-
tures with non-vanishing vorticity. Importantly, we do not find any  
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Fig. 3 | Structure of a vortex loop containing magnetization singularities. a, The loop is highlighted by the mx ¼ ± x̂
I

 isosurface, while the magnetic 
configuration in a 2D slice is plotted using streamlines, with the colour indicating the out-of-plane magnetization component mx. The cross-section 
contains a vortex–antivortex pair. Within the loop, the polarizations of the vortex and antivortex cores switch from +mx (red) to −mx (blue) at two points, 
indicated by the orange and green boxes. b, The magnetic vorticity forms an ‘onion’ state, with the vorticity direction reversing at the same two points.  
c–f, These locations correspond to singularities of the magnetization; their surrounding magnetic and vorticity structures are plotted in c,d and e,f, 
respectively. g, Pre-images corresponding to the Cartesian axes ± x̂

I
 (light/dark green), ± ŷ

I
 (light/dark red) and ± ẑ

I
 (light/dark blue) (indicated on the 

schematic sphere) reveal an onion-like state, with all pre-images meeting at the singularities. See also Extended Data Fig. 4.
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vortex loops, indicating that these are metastable states that are 
more efficiently destroyed through thermal annealing in a field, 
which is likely to lead to the expulsion of magnetic as well as lat-
tice defects that contribute to pinning of the magnetic structures 
(see Methods and Extended Data Figs. 6 and 7 for more details). 
Quantitatively, the average vorticity value following field cooling is 
half the value following the application of only a 7 T field, and the 
total number of Bloch points is roughly halved (52 versus 110 Bloch 
points, as seen in Extended Data Fig. 5).

Although the vortex rings we observe are topologically trivial 
structures and have a Hopf index of zero, they are surprisingly 
stable. We attribute their stability to interactions with surrounding 
magnetization structures, which ensure that they are, for example, 
embedded in cross-tie structures. In the case of the loops contain-
ing Bloch points, the singularities occur at the intersection with 
domain walls (as shown in Extended Data Fig. 3), thus pinning 
the loops. Moreover, the magnetostatic interaction clearly plays 
an important role in the stabilization of these structures, ensuring 
that our observations of stable localized solitons do not contradict 
the Hobart–Derrick theorem for an exchange ferromagnet that 
requires nonlinearities (such as intrinsic chirality in the presence of 
the Dzyaloshinskii–Moriya interaction) to set a scale for localized 
magnetization non-uniformities. Based on the balance of magne-
tostatic and exchange interactions, a distance of ~296 nm between 
the vortex and antivortex in such bound states can be estimated via 
the bulk limit of the cross-tie domain wall width as described in the 
Methods. This value matches the average observed size of the rings 
of 400 ± 90 nm, indicating that the balance of the magnetostatic and 
exchange interactions is sufficient to stabilize the structures. We 
note that chirality has been demonstrated in a similar bulk amor-
phous system through the inclusion of structural inhomogeneities33. 
We expect that such systems could host topologically non-trivial 
solitons, such as knots with a higher Hopf index, as well as torons, 
following predictions for chiral magnetic heterostructures34–36, 
analogous to the reported observations in chiral liquid crystals  
and ferrofluids27,37.

The calculation and visualization of the magnetic vorticity and 
pre-images have proven essential tools in the characterization of 
the observed 3D structures. In combination with recent advances in 
time-resolved X-ray magnetic laminography38, these open the path 
to investigating the dynamics of 3D magnetic solitons. As well as 

probing resonant dynamics, it is possible that investigations of the 
displacement of 3D vortex rings could reveal behaviour analogous 
to the Kelvin motion of 2D vortex–antivortex pairs39–41. Similarly, we 
expect that the magnetic vortex loops discovered here containing 
singularities will also display compelling dynamics, with implica-
tions for the fundamental understanding of the role of singularities 
in magnetization processes. Finally, the study of the conditions for 
the formation of 3D magnetic structures, and of their stability, is 
expected to lead to new possibilities for the controlled manipulation 
of the magnetization that could be relevant for technological appli-
cations requiring complexity, such as neuromorphic computing42 or 
new proposals for 3D data storage43.
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Methods
Sample fabrication. GdCo2 micropillars of diameter 5 μm were cut from 
a larger nugget of GdCo2 using a focused ion beam in combination with a 
micromanipulator, and mounted on top of OMNY tomography pins44.

The crystal structure of the GdCo2 micropillars was determined using 
microcrystallography measurements performed at the X06DA beamline at the 
Swiss Light Source, Paul Scherrer Institute. An example diffraction pattern is given 
in Extended Data Fig. 6, where one can observe that the Bragg peaks display a 
substructure (right image), indicating the polycrystalline nature of the micropillar.

X-ray ptychographic tomography. Hard X-ray magnetic tomography was 
performed at the cSAXS beamline at the Swiss Light Source, Paul Scherrer 
Institute, using the flexible tomographic nano-imaging (flOMNI) instrument45. 
Part of the data presented in this manuscript (the central vortex containing the 
Bloch point in Fig. 2a,b) formed part of the dataset presented in ref. 6. All other 
measurements and analysis are shown here for the first time.

Two-dimensional tomographic projections were measured with X-ray 
ptychography, a coherent diffractive imaging technique allowing access to the 
full complex transmission function of the sample46,47. For X-ray ptychography, an 
X-ray illumination of ~4 μm was defined on the sample, and ptychography scans 
were performed by measuring diffraction patterns on a concentric grid of circles 
with a radial separation of 0.4 μm for a field of view of 8 × 7 μm2 and 13 × 9 μm2 
for the untilted and tilted sample orientations, respectively. The projections were 
reconstructed using 500 iterations of the difference map and 200 iterations of the 
maximum likelihood refinement using the cSAXS PtychoShelves package48.

To probe the magnetization of the sample, X-rays tuned to the Gd L3 edge 
with a photon energy of 7.246 keV were chosen to maximize the absorption X-ray 
magnetic circular dichroism signal23. Circularly polarized X-rays were produced 
by including a 500-μm-thick diamond phase plate upstream of the sample 
position49. The degree of circular polarization achieved was greater than 99%, with 
a transmission of ~35%.

The tomographic projections were aligned with high precision as described  
in ref. 6.

Magnetic tomography. When a single circular polarization projection is  
measured, the component of the magnetization parallel to the X-ray beam 
is probed via X-ray magnetic circular dichroism, along with the electronic 
structure of the sample. To probe all three components of the magnetization, 
projections were measured around a rotation axis for two orientations of the 
sample6. Generally, the magnetic contrast of a projection is isolated from other 
contrast mechanisms by measuring the same projection using circularly left- and 
right-polarized light, where the sign of the magnetic contrast is reversed, and 
taking the difference between the two images. Here, a single X-ray polarization  
was used for all measurements and, to isolate the magnetic structure, projections 
with circularly left polarization were measured at θ and θ + 180°. Between  
these two angles, the magnetic contrast is reversed; this can be used to differentiate 
the magnetic contrast from the electronic contrast. Accordingly, for the  
magnetic tomography measurements, circular left polarization projections  
were measured through 360° about the rotation axis, instead of through 180°,  
as in standard tomography.

The magnetization (which is a 3D vector field) was reconstructed using a 
two-step gradient-based iterative reconstruction algorithm, as described in ref. 
50. The spatial resolution for each component of the magnetization was estimated 
using Fourier shell correlation51, and a 3D Hanning low-pass filter was used 
to remove high-frequency noise. The spatial resolution of the reconstructed 
magnetization was found to be 97 nm, 125 nm and 127 nm in the x–z, x–y and y–z 
planes, respectively6.

The magnetic vorticity was calculated according to equation (1). The 
magnetization was normalized to obtain the unit vector, which was used to 
calculate the magnetic vorticity numerically in MATLAB. Specifically, the 
components of the vorticity vector were calculated numerically as follows:

Ωx ¼ 2mxð∂ymy∂zmz � ∂zmy∂ymzÞ þ 2myð∂ymz∂zmx � ∂zmz∂ymxÞ
þ2mzð∂ymx∂zmy � ∂zmx∂ymyÞ

Ωy ¼ 2mxð∂zmy∂xmz � ∂xmy∂zmzÞ þ 2myð∂zmz∂xmx � ∂xmz∂zmxÞ
þ2mzð∂zmx∂xmy � ∂xmx∂zmyÞ

Ωz ¼ 2mxð∂xmy∂ymz � ∂ymy∂xmzÞ þ 2myð∂xmz∂ymx � ∂ymz∂xmxÞ
þ2mzð∂xmx∂ymy � ∂ymx∂xmyÞ

ð2Þ

where mi is the ith component of the reduced magnetization and ∂i represents the 
partial derivative with respect to the ith direction that were calculated numerically 
using the gradient function in MATLAB 2018a.

The 3D visualizations of the magnetic vorticity and magnetization were 
performed with Paraview52. To consider the topology of the magnetization in 
three dimensions, pre-images corresponding to different directions are plotted 
within the pillar. The difference between the magnetization vector and the mx = 1 
direction is calculated using

δpx ¼
mx

jmj � 1

� �2

þ my

jmj

� �2

þ mz

jmj

� �2

ð3Þ

To plot the mx = 1 pre-image, for example, we plot an isosurface for δpx = 0.01. 
This results in a tube rather than a line, which is necessary due to the finite spatial 
resolution and signal-to-noise ratio of the measurement.

Field and thermal protocols. A separate GdCo2 micropillar was used to investigate 
the effect of two different protocols, and the magnetic state was determined 
using magnetic tomography. The first protocol involved the application of a 7 
T saturating field at room temperature. The second involved thermal annealing 
(heating the micropillar to a temperature of 400 K close to the Curie temperature 
of the material), applying a 7 T field and then reducing the temperature to room 
temperature, followed by a slow reduction of the applied magnetic field.

In the final states, a notable difference in both the presence of high-vorticity 
structures as well as the number of Bloch points was observed. This can be seen in 
Fig. 4 and Extended Data Fig. 5, with the thermal annealing procedure resulting in 
a large decrease in the average magnetic vorticity as well as in the number of Bloch 
points.

We note that, although the general magnetic structure is significantly different 
following the different protocols, and a large reduction in the average magnetic 
vorticity is observed following the annealing process, the main vortex that spans 
most of the height of the pillar occupies a similar position, within ~300 nm, as 
can be seen in Extended Data Fig. 7. Given that the vortex state is, in principle, 
the ground state of a cylindrical sample, the formation of the vortex core at 
nearby locations in a structure of this size is indicative of the presence of pinning 
centres that may be attributed to the polycrystalline nature of the material. The 
suppression of high-vorticity structures, as well as magnetic vortex rings, following 
the thermal annealing protocol (Extended Data Fig. 5) indicates, however, that the 
pinning centres do not solely determine the stability of the structures, but rather 
may indirectly influence them through the pinning of neighbouring magnetic 
features.

Analytical models. To qualitatively interpret and understand the observed 
structures, we build a series of 2 + 1 dimensional models, which allow us to 
compare the observed magnetization structures, pre-images and vorticity with 
those derived from modelled vortex loops with different magnetization structures. 
These models are similar to those used to describe hopfions in ref. 53. They are 
based on the subdivision of the magnetic material volume into thin slices, lying in 
the x–y plane of a Cartesian coordinate system. The magnetization in each slice 
can then be described by a complex function w of a complex variable u = x + ıy by 
means of stereographic projection fmx þ {my ;mzg ¼ f2w; 1� wwg=ð1 þ wwÞ

I
, 

where the overline denotes complex conjugation, so that u ¼ x � {y
I

, { ¼
ffiffiffiffiffiffi
�1

p
I

. 
Without loss of generality, any 3D magnetization distribution m(x, y, z) can be 
described by a function w ¼ wðu; u; zÞ

I
, which depends on the complex coordinate 

u within each slice and the extra-dimensional variable z, identifying the slice.
For realistic models, including at least the exchange and the magnetostatic 

interactions, no exact solutions for non-uniform wðu; u; zÞ
I

 are known. 
However, if the magnetostatic interaction is neglected and wðu; u; zÞ

I
 is 

assumed to be weakly dependent on z, two large families of exact solutions 
exist for wðu; u; zÞ

I
 at a fixed z. These are solitons20, which are meromorphic 

functions wðu; u; zÞ ¼ f ðu; zÞ
I

, and singular merons54, which are functions with 
jwðu; u; zÞj ¼ 1
I

 or wðu; u; zÞ ¼ f ðu; zÞ=jf ðu; zÞj
I

. Zeros of f(u, z) correspond to the 
centres of magnetic vortices (or hedgehog-like structures, if the magnetization 
vectors are rotated by π/2 in the x–y plane). The poles correspond to the centres of 
the magnetic antivortices (or saddles). From the stereographic projection it follows 
that, for solitons, mz = 1 in the centres of the vortices and mz = −1 in the centres of 
antivortices.

An example of meromorphic functions are the rational functions of a complex 
argument (quotient of two polynomials). They allow direct expression of the 
vortex/antivortex pair annihilation as a cancellation of two identical monomials, 
whereas creation is a time-reversed process. The topological charge (or skyrmion 
number) in each slice is a conserved quantity20 in the sense that it cannot be 
changed by a smooth singularity-free variation of the magnetization distribution. 
For the slices in the x–y plane, the topological charge density is the z-component 
of the vorticity Ωz and the total charge is the integral of this density over the whole 
slice. Creation and annihilation of the vortex–antivortex pairs within the soliton is 
always accompanied by a singularity.

A vortex ring can be understood as a process of creation, separation, 
convergence and annihilation of a vortex–antivortex pair as the variable z advances 
through successive slices5. Consider

wBPrðu; u; zÞ ¼ f ðu; zÞ ¼ {
u� pðzÞ
uþ pðzÞ ¼ {

u�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðz=2Þ2

q

uþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðz=2Þ2

q ð4Þ

for an (arbitrary) range −2 < z < 2, where the specific expression for p(z) was 
chosen to make the vortex and antivortex cores extend along arcs, as in the 
experimental data. It describes the creation of a vortex–antivortex pair at x = y = 0 
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and z = 2, the vortex and antivortex moving apart (with the maximum distance 
between their centres equal to 2 at z = 0), then approaching each other again, and 
annihilating at z = −2. We call this model the Belavin–Polyakov ring (BPr) because 
each slice is a Belavin–Polyakov soliton, described by a meromorphic wðu; u; zÞ

I
. 

The corresponding schematic magnetization, set of pre-images and vorticity are 
shown in Extended Data Fig. 2a. A similar pre-image pattern connecting two 
Bloch points was indeed observed in our sample. However, the corresponding 
vorticity distributions are different. Indeed, instead of a single centrally symmetric 
vorticity bundle we reconstruct a pair of bundles, corresponding to the vortex 
and antivortex centres. Clearly, the pure Belavin–Polyakov ring model cannot 
reproduce this feature.

To ‘unbundle’ the vortex and antivortex, we can use the instanton model54  
by writing

wiðu; u; zÞ ¼
f ðu; zÞ=cðzÞ jf ðu; zÞj≤cðzÞ
f ðu; zÞ=jf ðu; zÞj dðzÞ> jf ðu; zÞj>cðzÞ
f ðu; zÞ=dðzÞ jf ðu; zÞj>dðzÞ

8
><
>:

ð5Þ

where d(z) = 1/c(z), assuming the same size for the vortex and antivortex cores. 
Choosing c(z) = 1 − q + q∣z∣/2 < 1 allows control of the size of the vortex and 
antivortex cores (where mz ≠ 0) at the central plane z = 0 via the parameter q. The 
magnetization, pre-images and vorticity for such an instanton ring with q = 3/4 are 
shown in Extended Data Fig. 2b. Although they reproduce qualitatively both the 
vorticity distribution and the pre-images, shown in Fig. 3b,g, the structure of the 
Bloch points is different. Indeed, the instanton ring has two hedgehog-type Bloch 
points (in which the magnetization directions are opposite), whereas the observed 
structure, shown in Fig. 3, contains two different types of Bloch point. Additionally, 
this model differs from the observation in Fig. 3 in that singularities are absent at 
the transition from the experimentally observed vortex and antivortex pair to a 
uniformly magnetized region. The Bloch points in Fig. 3 instead coincide with the 
polarization reversal of the vortex and antivortex cores as they propagate through 
the volume of the sample. To analytically describe this structure, we first need to 
build a model for a vortex ring.

To describe a vortex–antivortex pair unbound by Bloch point singularities, the 
vortex and antivortex must have identical polarizations (that is, the same direction 
of mz within the core). In this case the topological charge in each slice is zero. Such 
a configuration can be obtained as a generalization of equation (5):

wrðu; u; zÞ ¼ AðzÞ
f ðu; zÞ=cðzÞ jf ðu; zÞj≤cðzÞ
f ðu; zÞ=jf ðu; zÞj dðzÞ> jf ðu; zÞj>cðzÞ
dðzÞ=f ðu; zÞ jf ðu; zÞj>dðzÞ

8
><
>:

ð6Þ

where the modification to the last line reverses the polarization of the antivortex. 
The factor A(z) = (1 − z2/4)s ensures that, at z = ±2, the function wr = 0, which 
corresponds to the uniform state. The parameter s allows for control of the degree 
of quasi-uniformity: the smaller s is, the less mz deviates from 1. The magnetization, 
pre-images and vorticity for such a quasi-uniform ring with q = 3/4 and s = 1/4 
are shown in Extended Data Fig. 2c. They are qualitatively analogous to the 
experimentally observed vortex rings in Fig. 2b,d.

Finally, we can extend the above model to a vortex ring in which the 
polarization reverses along the vortex and antivortex cores, in the presence 
of Bloch points. To describe this state, we note that with s = 1, c(z) = z2/4, the 
magnetization of the quasi-uniform ring (equation (6)) at z = 0 lies completely 
in the x–y plane except for at the centres of the vortex and antivortex, where its 
direction is undefined. Joining at the central plane two half-rings with opposite 
polarizations gives

wvlsðu; u; zÞ ¼ AðzÞ wrðu; u; zÞ z≤0

1=wrðu; u; zÞ z>0

�
ð7Þ

which yields the model for the vortex loop with Bloch point singularities, shown in 
Extended Data Fig. 2d. The structure corresponds well to the observations in Fig. 3, 
including the observed Bloch point types.

Note that, despite the piecewise nature of the above functions, the resulting 
magnetization vector fields are continuous (apart from at the singularities). 
Although neither ansatz in the presented series is an exact solution of the 
corresponding micromagnetic problem (not even of its restricted exchange-only 
version), they provide a simple and easily interpretable model to understand the 
observed magnetization distributions.

We now address the question of the size of the observed magnetization 
structures. According to the Hobart–Derrick theorem, the exchange interaction 
alone cannot stabilize the solitons as the exchange energy does not display a 
minimum as a function of soliton size. However, the magnetostatic interaction 
(which is outside the scope of the Hobart–Derrick theorem) can, in principle, 
set the length scale of solitons. A complete answer to this question requires a 
sophisticated theoretical model, which still remains an open problem. Yet,  
a simple argument for the stability of the observed bound states can be given  
in terms of other well-known magnetic textures such as a cross-tie wall as 
described below.

A single magnetic vortex, centred in a cylindrical nanopillar, does not give 
rise to magnetic volume charges (which are proportional to the divergence of 
the magnetization) and only generates surface charges (proportional to the 
magnetization vector component, normal to the surface) in the region of the core 
at the surfaces of the pillar. The total energy (exchange plus surface magnetostatic) 
of the magnetic vortex has a minimum when varying the vortex core size55. 
However, as the length of the pillar is increased to infinity, the equilibrium vortex 
core size diverges due to the diminishing role of the surfaces. In finite pillars, the 
vortex core has a barrel-like shape that is narrow at the top/bottom surfaces and 
wide in the middle of the pillar. However, these surface charges do not explain 
the stability of the structures in the bulk of our pillar, which do not extend to the 
surfaces of the sample.

It is well known that, in thin films, vortices and antivortices can form bound 
states, such as in cross-tie walls56. A simple theoretical model for such a wall  
can be given directly in terms of the complex function w of a (complex)  
variable u (ref. 57):

wc�tðu; u; zÞ ¼ { tanðu=sÞ ð8Þ

where s is the spatial scale (width) of the domain wall. The corresponding 
magnetization structure has both volume and surface magnetic charges. The 
magnetostatic energy associated to these charges stabilizes the wall, yielding a 
certain equilibrium value of s as a function of the film thickness L and the exchange 
length LEX ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2A=ðμ0M2

SÞ
p

I
, where A is the exchange constant of the material, μ0 is 

the vacuum permeability and MS the saturation magnetization. It should be noted, 
however, that, due to the presence of magnetic volume charges, the domain wall 
width for the model given by equation (8) does not diverge as the film thickness 
goes to infinity L → ∞, but assumes a finite bulk limit:

s1 ¼ 8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

12� π2

r
LEX ð9Þ

which can be directly computed using the magnetostatic function for the cross-tie 
wall57. For GdCo2 with an exchange length LEX ≃ 20 nm, the resulting value of 
s∞ ≃ 189 nm, corresponding to the distances between the vortex and antivortex 
centres of s∞π/2 ≃ 296 nm, can serve as a ballpark theoretical estimate for the size of 
vortex rings.

Unlike a cross-tie domain wall, the magnetic vortex rings we observe are 
quasi-uniform states and exist as a perturbation of a mostly uniform background. 
Because the magnetization vector is included in both the exchange energy (squared 
gradients of components) and the magnetic volume charges density (product 
of divergences) via derivatives, a constant background is irrelevant and we can 
roughly assume that, in the quasi-uniform state, only the spatial variation of the 
magnetization vector is reduced compared to the case of fully developed vortices 
and antivortices. For the quasi-uniform cross-tie domain wall, this can be modelled 
by representing its total energy as

Ec�t / c1
ðLEX=LÞ2

s
þ c2FðsÞ ð10Þ

where the case c1 = c2 = 1 corresponds to the energy of the fully developed cross-tie 
wall57 and F(s) is the magnetostatic function. The parameters c1 and c2 then account 
for the reduced variation of the magnetization in the quasi-uniform case, which has 
different effects on the exchange and magnetostatic energy terms. It is important 
to note that, provided c1,c2 ≠ 0, this reduced variation does not destroy the energy 
minimum for s, but merely rescales the equilibrium wall width. This means that 
the quasi-uniform bound state of vortices and antivortices can also be stable with 
respect to scaling, as for the cross-tie wall in a bulk magnet.

Data availability
Experimental data and analysis codes used for this manuscript can be found at 
https://doi.org/10.5281/zenodo.4041745.
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Extended Data Fig. 1 | Detailed overview of the vortex ring with circulating magnetic vorticity (presented in Fig. 2), shown in successive slices 
through the loop. The magnetization within each slice is represented by the streamlines. The colourscale in the top row indicates the x̂ component of 
the magnetization, while the colour scale in the bottom row indicates the x̂ component of the vorticity. The vorticity associated with the vortex structure 
extending throughout the pillar changes sign in slice d due to the presence of a Bloch point, while the vortex–antivortex pair conserves its vorticity 
throughout. In slices b and c, the magnetization forms a structure similar to that of a cross-tie wall, which dissolves as the pair unwinds, at slices a and d, 
resulting in a single vortex.
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Extended Data Fig. 2 | Analytical models of vortex loops with different magnetization structures. Top, middle and bottom rows: Magnetization, 
pre-images and vorticity distribution for the different 2+1 dimensional analytical models. The magnetization plots (top row) only include the projection 
of the magnetization onto the shown plane, while the rings correspond to the positions of the vortex and antivortex centres. The colour indicates the mz 
component of the magnetization. The pre-images are shown as volumes where the magnetization vectors deviate only slightly from certain directions di, 
indicated by the colour-coded arrows on each corresponding sphere. The opacity and colour on the vorticity plots indicate the magnitude of local vorticity 
vectors. The structure in c is comparable to the vortex rings in Fig. 2, while the structure in d is comparable to that in Fig. 3.
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Extended Data Fig. 3 | Detailed overview of the magnetic state of the vortex loop containing Bloch points (presented in Fig. 3), shown in successive 
slices through the loop. The magnetization within each slice is represented by the streamlines. The colour scale in the top row indicates the x̂ component 
of the magnetization, while the colourscale in the bottom row indicates the x̂ component of the vorticity. The vorticity along the vortex core reverses 
between slices b and c, while the vorticity along the antivortex core reverses between slices c and d. f, The white isosurface, plotted along with the vortex 
loop, corresponds to mx=0 and separates regions of mx=+1 and mx=−1, thus highlighting the presence of a complicated domain wall structure. The Bloch 
points are located at the intersection of the loop with this isosurface (locations indicated by the dashed circles).
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Extended Data Fig. 4 | The vortex loop containing magnetization singularities (presented in Fig. 3) seen from multiple directions. The vortex loop 
containing Bloch points is plotted using the isosurfaces mx= ± 1 (a,c) and pre-images (b,d). In a and b, the vortex loop and its pre-images have the same 
spatial orientation as in Fig. 3a. In c and d, the loop and pre-images are presented with the same orientation as in Fig. 3g.
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Extended Data Fig. 5 | Effect of different field and thermal protocols on the presence and distribution of regions of high magnetic vorticity, and 
magnetization singularities. a,c, Vorticity distribution following the application of a 7 T saturating field (a) and following saturation and field cooling (c). 
b, Regions of high divergence of the magnetic vorticity indicate the presence of Bloch points (red) and anti-Bloch points (blue) at remanence, following 
saturation. d, In the same way, singularities are identified after heating at 400 K and field cooling in a 7 T field. Noticeably fewer magnetic structures with 
high vorticity are present following the field-cooling procedure.
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Extended Data Fig. 6 | A diffraction pattern from the GdCo2 pillar. The substructure of the Bragg peaks, magnified in the inset to the right, indicates the 
polycrystalline nature of the material.
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Extended Data Fig. 7 | Location of the central vortex following the two different protocols. The position of the central vortex core is plotted using red and 
blue isosurfaces for the remanent magnetic structure after (red) the application of a 7 T magnetic field, and after (blue) the application of the field-cooling 
protocol. After both protocols, the vortex core occupies almost the same position.
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