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Experimental observation of vortex rings in a

bulk magnet
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Vortex rings are remarkably stable structures that occur
in a large variety of systems, such as in turbulent gases
(where they are at the origin of weather phenomena)’, fluids
(with implications for biology)? electromagnetic discharges®
and plasmas®. Although vortex rings have also been pre-
dicted to exist in ferromagnets®, they have not yet been
observed. Using X-ray magnetic nanotomography®, we
imaged three-dimensional structures forming closed vortex
loops in a bulk micromagnet. The cross-section of these loops
consists of a vortex-antivortex pair and, on the basis of mag-
netic vorticity (a quantity analogous to hydrodynamic vor-
ticity), we identify these configurations as magnetic vortex
rings. Although such structures have been predicted to exist
as transient states in exchange ferromagnets®, the vortex
rings we observe exist as static configurations, and we attri-
bute their stability to the dipolar interaction. In addition, we
observe stable vortex loops intersected by point singularities’
at which the magnetization within the vortex and antivortex
cores reverses. We gain insight into the stability of these
states through field and thermal equilibration protocols. The
observation of stable magnetic vortex rings opens up possibil-
ities for further studies of complex three-dimensional solitons
in bulk magnets, enabling the development of applications
based on three-dimensional magnetic structures.

In magnetic thin films, vortices are naturally occurring flux clo-
sure states in which the magnetization curls around a stable core,
where the magnetization tilts out of the film plane®”. These struc-
tures have been studied extensively over past decades due to their
intrinsic stability’® and their topology-driven dynamics'-, which
are of both fundamental and technological' interest. Antivortices,
the topological counterpart of vortices, are distinguished from vor-
tices by an opposite rotation of the in-plane magnetization, which
is quantified by the index of the vector field (equal to the winding
number of a path traced by the magnetization vector while mov-
ing in the counterclockwise direction around the core)”. Although
vortices have a circular symmetry of the magnetization (Fig. la),
antivortices only display inversion symmetry about the centre'®
(Fig. 1b), resembling saddle points in the vector field. Experimental
studies of magnetic vortices and antivortices have mostly been
restricted to two-dimensional (2D), planar systems, in which vor-
tex—antivortex pairs have a natural tendency to annihilate'” unless
they are part of larger, stable structures, such as cross-tie walls'.

In bulk ferromagnets, the existence of transient vortex rings,
which take the form of localized solitons and are analogous to
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smoke rings, has been predicted’, but, so far, such structures have
not been observed. Just as vortex rings in fluids are characterized by
their vorticity, ferromagnetic vortex ring structures can be identi-
fied by considering the magnetic vorticity”. By analogy with fluid
vorticity, the magnetic vorticity is a vector field, whose components
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are defined by
1
Q, = geaﬂ,eijkmiaﬁmjaymk (1)

where m(r,t) is a component of the unit vector representing the
local orientation of the magnetization m=M/M, the reduced mag-
netization, where M is the saturation magnetization, & indicates
the vorticity component, and ¢, is the Levi-Civita tensor, summed
over three components x, y and z. The magnetic vorticity vector
Q represents the topological charge flux (or skyrmion number?')
density. Integrating the magnetic vorticity over a closed 2D surface
S results in an integer value [(Q-dS=N corresponding to the sky-
rmion number, which gives the degree of mapping of the magne-
tization distribution to an order parameter space described by the
surface of an §* sphere. When N=1, the target sphere is wrapped
exactly once and each direction of the magnetization vector is pres-
ent on the surface S. The magnetic vorticity vector Q is therefore
non-vanishing in the vicinity of the cores of vortices or antivortices,
and is represented in Fig. 1a—d for vortices and antivortices with
different polarizations (the polarization is the orientation of the
magnetization within the core). The vorticity vector is aligned par-
allel to the polarization of a vortex (Fig. 1a,c) and antiparallel to the
polarization of an antivortex (Fig. 1b,d), indicating that it is depen-
dent on the direction of the magnetization in the core as well as the
index of the structure. Consequently, a vortex—antivortex pair with
parallel polarizations exhibit opposite vorticities, which circulate in
a closed loop (Fig. 1e).

Here, we use the magnetic vorticity to locate and identify magne-
tization structures within a three-dimensional (3D) GdCo, micro-
pillar, imaged using hard X-ray magnetic nanotomography®. Within
the bulk of the pillar, we find two types of vorticity loops. The first
is characterized by a circulating magnetic vorticity forming vortex
rings, analogous to smoke rings. The cross-sections of these mag-
netic vortex rings consist of vortex—antivortex pairs with parallel
polarizations, as illustrated in Fig. le. Consequently, such a pair
can be smoothly transformed into a uniformly magnetized state
and carries zero topological charge. The second type of loop con-
tains singularities, or Bloch points’, at which the vorticity abruptly
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Fig. 1| Measuring and reconstructing the magnetic structure and magnetic vorticity within a GdCo, pillar. a-d, Schematic representation of the magnetic
vorticity Q, shown in purple and orange arrows, for vortex (a,c) and antivortex (b,d) configurations with different polarizations (red, dark blue). e, The
vorticity of a ring composed of a vortex-antivortex pair with parallel polarizations. f, Schematic representation of the experimental set-up: tomographic
projections with magnetic contrast are measured using dichroic ptychography for the sample at many different azimuthal angles with respect to the X-ray
beam (rotation indicated by the green arrow). Measurements were performed with the sample at two different tilt angles: 30° (transparent green cylinder)
and 0° (blue cylinder). g h, By plotting regions of high magnetic vorticity, we locate a variety of structures (g) and by plotting regions of high divergence of
the vorticity V- Q, we locate Bloch points (red) and anti-Bloch points (blue), which respectively have positive and negative V- Q (h).

reverses its sign, reflecting the reversal of the polarization of the vor-
tex and antivortex within the cross-section of the ring. Calculating
pre-images of the observed structures reveals concentric pre-images
that do not link each other, so have a vanishing Hopf index (a topo-
logical invariant that counts the linking number of pre-images
corresponding to different magnetization vector directions). In
contrast, structures containing Bloch points have pre-images simi-
lar to the recently observed ‘toron’ structures in liquid crystals*.

The hard X-ray magnetic nanotomography set-up is shown in
Fig. 1f. During the measurements, high-resolution X-ray projec-
tions of a bulk GdCo, ferrimagnetic cylinder of diameter 5 pm were
measured with dichroic ptychography* for 1,024 orientations of
the sample with respect to the X-ray beam. The photon energy of
the circularly polarized X-rays was tuned to the Gd L, edge and, by
exploiting the X-ray magnetic circular dichroism effect, sensitivity
to the component of the magnetization parallel to the X-ray beam
was obtained. To gain access to all three components of the mag-
netization, X-ray projections were measured for different sample
orientations about the tomographic rotation axis for two different
sample tilts. The internal magnetic structure was obtained using an
iterative reconstruction algorithm®, which has been demonstrated
to offer a robust reconstruction of nanoscale magnetic textures*.
Further experimental details are provided in the Methods.

In the ferrimagnetic micropillar, the coupling between two anti-
parallel magnetic sublattices leads to an effective soft ferromagnetic
behaviour”. The lowest energy state of such a magnetic cylinder is
expected to consist of a single vortex®. In practice, the size of the
pillar is large enough to reduce the role of surface effects, support-
ing the stabilization of more complex, often metastable states, which
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can include a large number of vortices, antivortices, domain walls
and singularities®.

We compute the magnetic vorticity Q from the reconstructed
magnetization following equation (1). Regions of large vorticity are
plotted in Fig. 1g, where a number of ‘tubes’ and loops correspond-
ing to the cores of vortices and antivortices are visible. In addition,
unlike in incompressible fluids where the divergence must van-
ish, a non-zero divergence of the magnetization, M, is allowed in
ferromagnets, given that Maxwell’s equations only exclude the
divergence of B. Consequently, computing the magnetic vorticity
also allows us to locate singularities of the magnetization (Bloch
points) within the system, which are characterized by a large
divergence of the magnetic vorticity, V-, due to the abrupt local
variation in the orientation of the magnetization. Here, Bloch points
and anti-Bloch points are identified by positive (red) and nega-
tive (blue) V-, as plotted in Fig. 1h. Within the pillar, we find an
equal number of Bloch points and anti-Bloch points, indicating
that the singularities most likely originated in the bulk of the struc-
ture, where they can only be created in pairs. As a result, it appears
that sample boundaries, through which a single Bloch point could
be injected, did not play an essential role in the formation of the
observed structures.

Within the reconstructed magnetization we observe a large
number of 3D loops (Fig. 2¢) that resemble the vortex ring schemat-
ically illustrated in Fig. le. We consider the case of one such loop,
identified by plotting an isosurface corresponding to m = +X in
Fig. 2a. This loop is located in the vicinity of a single vortex extend-
ing throughout the majority of the height of the pillar and whose
polarization equally points along the +% direction in the shown
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Fig. 2 | Structure of a vortex ring with circulating magnetic vorticity. a, A loop is identified next to a vortex by plotting an isosurface corresponding to
m,=+1. The in-plane magnetization within a two-dimensional (2D) slice through the loop is plotted using streamlines, revealing that the cross-section

of the loop consists of a vortex-antivortex pair. The colourmap indicates the value of m,, showing that the vortex and the antivortex within the loop have
the same polarization. b, On the same m,=+1 isosurface, mapping the vorticity (represented both by the arrows and the colourmap) reveals that the

loop exhibits a circulating vorticity and is a vortex ring. The vorticity map equally indicates that, in the nearby extended vortex, the vorticity abruptly
reverses, indicating the presence of a Bloch point. Note that the plotted structures have a relatively low vorticity, with || ~ 0.1 (with the exception of the
Bloch point and the extended vortex). ¢, Plotting pre-images for different directions, indicated on the schematic sphere, reveals a number of closed loops
within the sample. Calculating the vorticity shows that these loops also correspond to vortex rings (insets). d, In the vicinity of the vortex loop plotted in a,
pre-images for neighbouring directions are not linked, indicating a Hopf index of zero.

slice. Considering the magnetization in the y-z plane, represented
by streamlines in Fig. 2a, we identify a bound state consisting of two
vortices separated by an antivortex, a structure analogous to that of
a cross-tie wall. Note that the streamlines are used to indicate the
direction of the magnetization and are extrapolated beyond the spa-
tial resolution of the measurements. Similarly, the isosurfaces high-
light the position of the vortex core and do not represent the width
of the core. The loop itself is embedded within a quasi-uniformly
magnetized region (m = +%, red) and therefore the vortex and
antivortex have parallel polarizations, as shown schematically
in Fig. le. Calculating the magnetic vorticity vector Q, plotted in
Fig. 2b, reveals a unidirectional circulation around the loop, directly
comparable to the schematic in Fig. le. This structure is similar to
a vortex ring in a fluid, which equally corresponds to a loop in the
hydrodynamic vorticity. Such vorticity loops have been predicted to
exist as propagating solitons in exchange ferromagnets’. In contrast,
the loops observed here are static and stable at room temperature
over the duration of our measurements. We note that the diameter
of the vortex ring, that is, the average distance between the vortex
and antivortex cores in the y-z plane, is ~370nm, comparable to
the diameter of other vortex rings present inside the pillar (Fig. 2¢c),
which exhibit an average diameter of 400 + 90 nm. Interestingly, this
loop (along with a number of similar vortex rings in the sample)
occurs in the vicinity of a singularity: indeed, the neighbouring
vortex in the cross-tie structure contains a Bloch point, which is
located in Fig. 2b where the vorticity (and the magnetization in the
vortex core) abruptly reverses direction (also seen in Extended Data
Fig. 1). There is, a priori, no topological requirement for the pres-
ence of a Bloch point in the proximity of the vortex loop and, despite
the observed correlations, our static observations do not allow for
the determination of a causal relationship between the presence of
the two structures.
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We gain further insight into the topology of these vortex loops
by plotting pre-images corresponding to a number of directions of
the magnetization in the vicinity of the vortex ring. The pre-image
corresponding to the +X% direction, that is, m,=+1, is plotted in
light green in Fig. 2d, along with additional pre-images correspond-
ing to directions indicated in the inset, which form an ensemble of
closed-loop pre-images. The plotted loops do not link, indicating
that the vortex ring has a Hopf index of H=0. Indeed, the vicinity
of the H=0 structure contains only pre-images representing direc-
tions close to the +x direction that, consequently, do not cover the
§? sphere (as illustrated on the schematic sphere in Fig. 2d), mean-
ing that the magnetization can smoothly unwind into a single
point on the sphere””. Hence, these vortex rings belong to a class of
non-topological solitons*. In the Methods (Extended Data Fig. 2¢c),
we develop an analytic model of such a soliton, qualitatively repro-
ducing the observed features, vorticity and pre-images.

In addition to vortex rings, we also identify loops containing
sources and sinks of the magnetization due to the presence of Bloch
points. The magnetic structure of one such loop, highlighted by the
isosurface m, = + X, is shown in Fig. 3a, where the colourscale rep-
resents m, and the magnetization in the y-z plane is represented
by streamlines, revealing a vortex-antivortex pair. At two points
within the loop, the polarization along the vortex and antivortex
cores reverses (colour changes from blue to red). Consequently, the
vorticity does not circulate around the loop, but instead assumes an
asymmetric onion-like structure, flowing out from a source (green
box, Fig. 3b) and into a sink (orange box, Fig. 3b). The structure
of the magnetization in the vicinity of the singularities is plotted
in Fig. 3c,d. The vorticity sink (Fig. 3¢), whose surrounding mag-
netization is plotted in Fig. 3¢, corresponds to a contra-circulating
Bloch point” (or anti-Bloch point) with skyrmion number —1. The
vorticity source (Fig. 3f) has a magnetization structure (Fig. 3d)
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Fig. 3 | Structure of a vortex loop containing magnetization singularities. a, The loop is highlighted by the m, = £ X isosurface, while the magnetic
configuration in a 2D slice is plotted using streamlines, with the colour indicating the out-of-plane magnetization component m,. The cross-section
contains a vortex-antivortex pair. Within the loop, the polarizations of the vortex and antivortex cores switch from +m, (red) to —m, (blue) at two points,
indicated by the orange and green boxes. b, The magnetic vorticity forms an ‘onion’ state, with the vorticity direction reversing at the same two points.
c-f, These locations correspond to singularities of the magnetization; their surrounding magnetic and vorticity structures are plotted in ¢, d and e f,
respectively. g, Pre-images corresponding to the Cartesian axes *x (light/dark green), +y (light/dark red) and 2z (light/dark blue) (indicated on the
schematic sphere) reveal an onion-like state, with all pre-images meeting at the singularities. See also Extended Data Fig. 4.

corresponding to that of a circulating Bloch point® with skyrmion
number +1. Two features of this loop are particularly noteworthy.
First, the singularities are not linked to the generation and annihila-
tion of a vortex and antivortex with opposite polarizations, as has
been reported for dynamic processes”. Instead, the loop consists
of two halves connected by the Bloch points, which locally leads
to a reversal of the vorticity along the vortex and the antivortex
cores, as also seen in Extended Data Fig. 3. Second, while singu-
larities have been predicted to mediate dynamic magnetization pro-
cesses”’ as well as to occur during magnetic field reconnection in
plasma physics®, the observed structures are inherently static. In
ref. ¢, Bloch points were observed at the locations where a vortex
core intersected a domain wall. Similarly, we find that the Bloch
point pair is located at the intersection of the vortex-antivortex loop
with a domain wall separating regions of opposite m, (Extended
Data Fig. 3f).

We gain further insight into the topology of the vortex-anti-
vortex loop containing singularities by plotting pre-images corre-
sponding to a defined set of spatial directions (or points on the S
sphere) in Fig. 3g. In particular, we plot regions of the magnetization
aligned along +x (bright/dark green), +y (bright/dark red) and +2
(bright/dark blue), which form a 3D onion state, with all directions
of the magnetization meeting at the singularities schematically
indicated by green (Bloch point) and orange (anti-Bloch point)
circles. The pre-images resemble those found to correspond to
‘torons, which have recently been observed in chiral liquid crystals*

NATURE PHYSICS | VOL 17 | MARCH 2021 316-321 | www.nature.com/naturephysics

and anisotropic fluids®. In the Methods, we present an analytical
model describing different micromagnetic configurations with sim-
ilar pre-images, allowing us to reproduce and, consequently, under-
stand the experimental observations.

We explore the stability of the observed vorticity loops by apply-
ing two different field and thermal protocols on a similar GdCo,
micropillar and performing magnetic X-ray nanotomography at
remanence following each protocol. In the first protocol, we apply
a 7 T magnetic field along the long axis of the pillar at room tem-
perature and image the resulting remanent configuration. The
applied field is above the measured sample saturation field of ~2'T.
A plot of the magnetic vorticity (Fig. 4a) shows a large number of
vortices and antivortices, as well as magnetic singularities (shown
in Extended Data Fig. 5 at remanence). Plotting pre-images corre-
sponding to different directions of the magnetization, we observe
a small number of vortex loops, two of which are shown in Fig. 4b.
The presence of these vortex loops after the application of a satu-
rating magnetic field indicates that the loops can nucleate spon-
taneously and therefore do not require a specific field protocol to
prepare them. Second, we heat the sample to 400K while applying
a 7 T magnetic field. The sample is then field-cooled and the field
is gradually removed after the sample reaches room temperature.
This annealing procedure is reminiscent of those used to expel
defects in single crystals to increase their purity. A plot of the vor-
ticity, shown in Fig. 4c, shows a noticeably smaller number of struc-
tures with non-vanishing vorticity. Importantly, we do not find any
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Fig. 4 | Magnetic vorticity plots measured for a similar micropillar at remanence showing the effect of different field histories. a,b, Following the
application of a 7 T saturating field, a small number of vortex rings, like the one plotted in Fig. 2, are present at remanence (a), some of which are shown in
b. ¢, After annealing ina 7 T field, followed by field cooling, no rings are observed.

vortex loops, indicating that these are metastable states that are
more efficiently destroyed through thermal annealing in a field,
which is likely to lead to the expulsion of magnetic as well as lat-
tice defects that contribute to pinning of the magnetic structures
(see Methods and Extended Data Figs. 6 and 7 for more details).
Quantitatively, the average vorticity value following field cooling is
half the value following the application of only a 7 T field, and the
total number of Bloch points is roughly halved (52 versus 110 Bloch
points, as seen in Extended Data Fig. 5).

Although the vortex rings we observe are topologically trivial
structures and have a Hopf index of zero, they are surprisingly
stable. We attribute their stability to interactions with surrounding
magnetization structures, which ensure that they are, for example,
embedded in cross-tie structures. In the case of the loops contain-
ing Bloch points, the singularities occur at the intersection with
domain walls (as shown in Extended Data Fig. 3), thus pinning
the loops. Moreover, the magnetostatic interaction clearly plays
an important role in the stabilization of these structures, ensuring
that our observations of stable localized solitons do not contradict
the Hobart-Derrick theorem for an exchange ferromagnet that
requires nonlinearities (such as intrinsic chirality in the presence of
the Dzyaloshinskii-Moriya interaction) to set a scale for localized
magnetization non-uniformities. Based on the balance of magne-
tostatic and exchange interactions, a distance of ~296 nm between
the vortex and antivortex in such bound states can be estimated via
the bulk limit of the cross-tie domain wall width as described in the
Methods. This value matches the average observed size of the rings
of 400 + 90 nm, indicating that the balance of the magnetostatic and
exchange interactions is sufficient to stabilize the structures. We
note that chirality has been demonstrated in a similar bulk amor-
phous system through the inclusion of structural inhomogeneities™.
We expect that such systems could host topologically non-trivial
solitons, such as knots with a higher Hopf index, as well as torons,
following predictions for chiral magnetic heterostructures®-,
analogous to the reported observations in chiral liquid crystals
and ferrofluids®>"".

The calculation and visualization of the magnetic vorticity and
pre-images have proven essential tools in the characterization of
the observed 3D structures. In combination with recent advances in
time-resolved X-ray magnetic laminography*, these open the path
to investigating the dynamics of 3D magnetic solitons. As well as
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probing resonant dynamics, it is possible that investigations of the
displacement of 3D vortex rings could reveal behaviour analogous
to the Kelvin motion of 2D vortex—antivortex pairs®-*. Similarly, we
expect that the magnetic vortex loops discovered here containing
singularities will also display compelling dynamics, with implica-
tions for the fundamental understanding of the role of singularities
in magnetization processes. Finally, the study of the conditions for
the formation of 3D magnetic structures, and of their stability, is
expected to lead to new possibilities for the controlled manipulation
of the magnetization that could be relevant for technological appli-
cations requiring complexity, such as neuromorphic computing* or
new proposals for 3D data storage®.
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Methods

Sample fabrication. GdCo, micropillars of diameter 5pm were cut from
a larger nugget of GdCo, using a focused ion beam in combination with a
micromanipulator, and mounted on top of OMNY tomography pins*.

The crystal structure of the GdCo, micropillars was determined using
microcrystallography measurements performed at the X06DA beamline at the
Swiss Light Source, Paul Scherrer Institute. An example diffraction pattern is given
in Extended Data Fig. 6, where one can observe that the Bragg peaks display a
substructure (right image), indicating the polycrystalline nature of the micropillar.

X-ray ptychographic tomography. Hard X-ray magnetic tomography was
performed at the cSAXS beamline at the Swiss Light Source, Paul Scherrer
Institute, using the flexible tomographic nano-imaging (lOMNI) instrument®.
Part of the data presented in this manuscript (the central vortex containing the
Bloch point in Fig. 2a,b) formed part of the dataset presented in ref. °. All other
measurements and analysis are shown here for the first time.

Two-dimensional tomographic projections were measured with X-ray
ptychography, a coherent diffractive imaging technique allowing access to the
full complex transmission function of the sample*>*. For X-ray ptychography, an
X-ray illumination of ~4 pm was defined on the sample, and ptychography scans
were performed by measuring diffraction patterns on a concentric grid of circles
with a radial separation of 0.4 pm for a field of view of 8 X7 um? and 13 X9 pm?
for the untilted and tilted sample orientations, respectively. The projections were
reconstructed using 500 iterations of the difference map and 200 iterations of the
maximum likelihood refinement using the cSAXS PtychoShelves package*.

To probe the magnetization of the sample, X-rays tuned to the Gd L, edge
with a photon energy of 7.246 keV were chosen to maximize the absorption X-ray
magnetic circular dichroism signal”. Circularly polarized X-rays were produced
by including a 500-pm-thick diamond phase plate upstream of the sample
position®. The degree of circular polarization achieved was greater than 99%, with
a transmission of ~35%.

The tomographic projections were aligned with high precision as described
in ref. °.

Magnetic tomography. When a single circular polarization projection is
measured, the component of the magnetization parallel to the X-ray beam

is probed via X-ray magnetic circular dichroism, along with the electronic
structure of the sample. To probe all three components of the magnetization,
projections were measured around a rotation axis for two orientations of the
sample’. Generally, the magnetic contrast of a projection is isolated from other
contrast mechanisms by measuring the same projection using circularly left- and
right-polarized light, where the sign of the magnetic contrast is reversed, and
taking the difference between the two images. Here, a single X-ray polarization
was used for all measurements and, to isolate the magnetic structure, projections
with circularly left polarization were measured at § and 8+ 180°. Between

these two angles, the magnetic contrast is reversed; this can be used to differentiate
the magnetic contrast from the electronic contrast. Accordingly, for the
magnetic tomography measurements, circular left polarization projections

were measured through 360° about the rotation axis, instead of through 180°,

as in standard tomography.

The magnetization (which is a 3D vector field) was reconstructed using a
two-step gradient-based iterative reconstruction algorithm, as described in ref.
. The spatial resolution for each component of the magnetization was estimated
using Fourier shell correlation”’, and a 3D Hanning low-pass filter was used
to remove high-frequency noise. The spatial resolution of the reconstructed
magnetization was found to be 97nm, 125nm and 127 nm in the x-z, x-y and y-z
planes, respectively®.

The magnetic vorticity was calculated according to equation (1). The
magnetization was normalized to obtain the unit vector, which was used to
calculate the magnetic vorticity numerically in MATLAB. Specifically, the
components of the vorticity vector were calculated numerically as follows:

Q. = 2m,(9,my0,m; — 9,m,dym_) + 2m,(0,m0,m, — ;M0 m,)
+2m;(0ymd,m, — d,m,d,m,)

Q, = 2m,(3,m,0xm; — 0,m,0,m;) + 2m,(9,m 0, m, — Oxm 0 m,)
+2m;(0,m9xm, — 0xm0,m,)

Q. = 2m,(d,mydym; — 9ym,dxm;) + 2m, (dxm 0ym, — 0,m 0 my)
+2m_(3xm,Oym, — 0,m,0,m,)

where m; is the ith component of the reduced magnetization and 0, represents the
partial derivative with respect to the ith direction that were calculated numerically
using the gradient function in MATLAB 2018a.

The 3D visualizations of the magnetic vorticity and magnetization were
performed with Paraview™. To consider the topology of the magnetization in
three dimensions, pre-images corresponding to different directions are plotted
within the pillar. The difference between the magnetization vector and the m, =1
direction is calculated using
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To plot the m,=1 pre-image, for example, we plot an isosurface for &,,=0.01.

This results in a tube rather than a line, which is necessary due to the finite spatial
resolution and signal-to-noise ratio of the measurement.

Field and thermal protocols. A separate GdCo, micropillar was used to investigate
the effect of two different protocols, and the magnetic state was determined

using magnetic tomography. The first protocol involved the application of a 7

T saturating field at room temperature. The second involved thermal annealing
(heating the micropillar to a temperature of 400K close to the Curie temperature
of the material), applying a 7 T field and then reducing the temperature to room
temperature, followed by a slow reduction of the applied magnetic field.

In the final states, a notable difference in both the presence of high-vorticity
structures as well as the number of Bloch points was observed. This can be seen in
Fig. 4 and Extended Data Fig. 5, with the thermal annealing procedure resulting in
a large decrease in the average magnetic vorticity as well as in the number of Bloch
points.

We note that, although the general magnetic structure is significantly different
following the different protocols, and a large reduction in the average magnetic
vorticity is observed following the annealing process, the main vortex that spans
most of the height of the pillar occupies a similar position, within ~300nm, as
can be seen in Extended Data Fig. 7. Given that the vortex state is, in principle,
the ground state of a cylindrical sample, the formation of the vortex core at
nearby locations in a structure of this size is indicative of the presence of pinning
centres that may be attributed to the polycrystalline nature of the material. The
suppression of high-vorticity structures, as well as magnetic vortex rings, following
the thermal annealing protocol (Extended Data Fig. 5) indicates, however, that the
pinning centres do not solely determine the stability of the structures, but rather
may indirectly influence them through the pinning of neighbouring magnetic
features.

Analytical models. To qualitatively interpret and understand the observed
structures, we build a series of 24 1 dimensional models, which allow us to
compare the observed magnetization structures, pre-images and vorticity with
those derived from modelled vortex loops with different magnetization structures.
These models are similar to those used to describe hopfions in ref. °. They are
based on the subdivision of the magnetic material volume into thin slices, lying in
the x—y plane of a Cartesian coordinate system. The magnetization in each slice
can then be described by a complex function w of a complex variable u=x+1y by
means of stereographic projection {m, + wm,,m;} = {2w,1 — ww}/(1 + ww),
where the overline denotes complex conjugation, so that 4 = x — 2y, 1 = v/ —1.
Without loss of generality, any 3D magnetization distribution m(x, y, z) can be
described by a function w = w(u, u, z), which depends on the complex coordinate
u within each slice and the extra-dimensional variable z, identifying the slice.

For realistic models, including at least the exchange and the magnetostatic
interactions, no exact solutions for non-uniform w(u, %, z) are known.

However, if the magnetostatic interaction is neglected and w(u, 7, z) is

assumed to be weakly dependent on z, two large families of exact solutions

exist for w(u, 7, z) at a fixed z. These are solitons®, which are meromorphic
functions w(u, %, z) = f(u, z), and singular merons™, which are functions with
|w(u,u,z)| = Lor w(u,u,z) = f(u,z)/|f(u,z)|. Zeros of f(u, z) correspond to the
centres of magnetic vortices (or hedgehog-like structures, if the magnetization
vectors are rotated by 7/2 in the x—y plane). The poles correspond to the centres of
the magnetic antivortices (or saddles). From the stereographic projection it follows
that, for solitons, m,=1 in the centres of the vortices and m,=—1 in the centres of
antivortices.

An example of meromorphic functions are the rational functions of a complex
argument (quotient of two polynomials). They allow direct expression of the
vortex/antivortex pair annihilation as a cancellation of two identical monomials,
whereas creation is a time-reversed process. The topological charge (or skyrmion
number) in each slice is a conserved quantity” in the sense that it cannot be
changed by a smooth singularity-free variation of the magnetization distribution.
For the slices in the x—y plane, the topological charge density is the z-component
of the vorticity £2, and the total charge is the integral of this density over the whole
slice. Creation and annihilation of the vortex-antivortex pairs within the soliton is
always accompanied by a singularity.

A vortex ring can be understood as a process of creation, separation,
convergence and annihilation of a vortex-antivortex pair as the variable z advances

through successive slices’. Consider
u—p(2) Z“*\/I*(z/z)z @

BP!’( 7_7):f(7):' =
w u,u,z u,z 7u+p(z) u+\m

for an (arbitrary) range —2 < z < 2, where the specific expression for p(z) was
chosen to make the vortex and antivortex cores extend along arcs, as in the
experimental data. It describes the creation of a vortex—antivortex pair at x=y=0
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and z=2, the vortex and antivortex moving apart (with the maximum distance
between their centres equal to 2 at z=0), then approaching each other again, and
annihilating at z=—2. We call this model the Belavin—Polyakov ring (BPr) because
each slice is a Belavin-Polyakov soliton, described by a meromorphic w(u, %, z).
The corresponding schematic magnetization, set of pre-images and vorticity are
shown in Extended Data Fig. 2a. A similar pre-image pattern connecting two
Bloch points was indeed observed in our sample. However, the corresponding
vorticity distributions are different. Indeed, instead of a single centrally symmetric
vorticity bundle we reconstruct a pair of bundles, corresponding to the vortex
and antivortex centres. Clearly, the pure Belavin-Polyakov ring model cannot
reproduce this feature.

To ‘unbundle’ the vortex and antivortex, we can use the instanton model**
by writing

fu,2)/e(2) If (u, 2)| <e(2)
fw2)/If(u,2)]  d(2)>f(u,2)[>(2) (5)

flw,2)/d(z)  |f(u,2)|>d(z)

where d(z) = 1/c(z), assuming the same size for the vortex and antivortex cores.
Choosing ¢(z) =1 —q+4|z|/2 <1 allows control of the size of the vortex and
antivortex cores (where m,# 0) at the central plane z=0 via the parameter g. The
magnetization, pre-images and vorticity for such an instanton ring with g=3/4 are
shown in Extended Data Fig. 2b. Although they reproduce qualitatively both the
vorticity distribution and the pre-images, shown in Fig. 3b,g, the structure of the
Bloch points is different. Indeed, the instanton ring has two hedgehog-type Bloch
points (in which the magnetization directions are opposite), whereas the observed
structure, shown in Fig. 3, contains two different types of Bloch point. Additionally,
this model differs from the observation in Fig. 3 in that singularities are absent at
the transition from the experimentally observed vortex and antivortex pair to a
uniformly magnetized region. The Bloch points in Fig. 3 instead coincide with the
polarization reversal of the vortex and antivortex cores as they propagate through
the volume of the sample. To analytically describe this structure, we first need to
build a model for a vortex ring.

To describe a vortex—antivortex pair unbound by Bloch point singularities, the
vortex and antivortex must have identical polarizations (that is, the same direction
of m, within the core). In this case the topological charge in each slice is zero. Such
a configuration can be obtained as a generalization of equation (5):

fwa)/ee) w2l <)
wi(u,1,2) = A(2)q f(u.2)/If(w,2)] d(2)>[f(u,2)| >(2) (6)
d2)/f(u,2)  |f(u,2)|>d(2)
where the modification to the last line reverses the polarization of the antivortex.
The factor A(z) = (1 —z%/4)s ensures that, at z= +2, the function w,=0, which
corresponds to the uniform state. The parameter s allows for control of the degree
of quasi-uniformity: the smaller s is, the less m, deviates from 1. The magnetization,
pre-images and vorticity for such a quasi-uniform ring with g=3/4 and s=1/4
are shown in Extended Data Fig. 2c. They are qualitatively analogous to the
experimentally observed vortex rings in Fig. 2b,d.
Finally, we can extend the above model to a vortex ring in which the
polarization reverses along the vortex and antivortex cores, in the presence
of Bloch points. To describe this state, we note that with s=1, ¢(z) =z%/4, the
magnetization of the quasi-uniform ring (equation (6)) at z=0 lies completely
in the x—y plane except for at the centres of the vortex and antivortex, where its
direction is undefined. Joining at the central plane two half-rings with opposite
polarizations gives

wi(u, 1,2) =

wy(u,4,2) z<0
1/we(u,6,2) z>0

which yields the model for the vortex loop with Bloch point singularities, shown in
Extended Data Fig. 2d. The structure corresponds well to the observations in Fig. 3,
including the observed Bloch point types.

Note that, despite the piecewise nature of the above functions, the resulting
magnetization vector fields are continuous (apart from at the singularities).
Although neither ansatz in the presented series is an exact solution of the
corresponding micromagnetic problem (not even of its restricted exchange-only
version), they provide a simple and easily interpretable model to understand the
observed magnetization distributions.

We now address the question of the size of the observed magnetization
structures. According to the Hobart-Derrick theorem, the exchange interaction
alone cannot stabilize the solitons as the exchange energy does not display a
minimum as a function of soliton size. However, the magnetostatic interaction
(which is outside the scope of the Hobart-Derrick theorem) can, in principle,
set the length scale of solitons. A complete answer to this question requires a
sophisticated theoretical model, which still remains an open problem. Yet,

a simple argument for the stability of the observed bound states can be given
in terms of other well-known magnetic textures such as a cross-tie wall as
described below.

wys(u,4,2) = A(z){
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A single magnetic vortex, centred in a cylindrical nanopillar, does not give
rise to magnetic volume charges (which are proportional to the divergence of
the magnetization) and only generates surface charges (proportional to the
magnetization vector component, normal to the surface) in the region of the core
at the surfaces of the pillar. The total energy (exchange plus surface magnetostatic)
of the magnetic vortex has a minimum when varying the vortex core size™.
However, as the length of the pillar is increased to infinity, the equilibrium vortex
core size diverges due to the diminishing role of the surfaces. In finite pillars, the
vortex core has a barrel-like shape that is narrow at the top/bottom surfaces and
wide in the middle of the pillar. However, these surface charges do not explain
the stability of the structures in the bulk of our pillar, which do not extend to the
surfaces of the sample.

It is well known that, in thin films, vortices and antivortices can form bound
states, such as in cross-tie walls™. A simple theoretical model for such a wall
can be given directly in terms of the complex function w of a (complex)
variable u (ref. ¥7):

we—t(u,4,z) = o tan(u/s) (8)

where s is the spatial scale (width) of the domain wall. The corresponding
magnetization structure has both volume and surface magnetic charges. The
magnetostatic energy associated to these charges stabilizes the wall, yielding a
certain equilibrium value of s as a function of the film thickness L and the exchange
length Lgx = /2A/(uyM2), where A is the exchange constant of the material, 1, is
the vacuum permeability and M; the saturation magnetization. It should be noted,
however, that, due to the presence of magnetic volume charges, the domain wall
width for the model given by equation (8) does not diverge as the film thickness
goes to infinity L — oo, but assumes a finite bulk limit:

[ 3
-8 L 9
S - = ®)

which can be directly computed using the magnetostatic function for the cross-tie
wall”’. For GdCo, with an exchange length L ~ 20 nm, the resulting value of

S = 189 nm, corresponding to the distances between the vortex and antivortex
centres of 5,1/2 ~ 296 nm, can serve as a ballpark theoretical estimate for the size of
vortex rings.

Unlike a cross-tie domain wall, the magnetic vortex rings we observe are
quasi-uniform states and exist as a perturbation of a mostly uniform background.
Because the magnetization vector is included in both the exchange energy (squared
gradients of components) and the magnetic volume charges density (product
of divergences) via derivatives, a constant background is irrelevant and we can
roughly assume that, in the quasi-uniform state, only the spatial variation of the
magnetization vector is reduced compared to the case of fully developed vortices
and antivortices. For the quasi-uniform cross-tie domain wall, this can be modelled
by representing its total energy as

2

Ecrx ¢ % + oF(s) (10)
where the case ¢, =¢, =1 corresponds to the energy of the fully developed cross-tie
wall” and F(s) is the magnetostatic function. The parameters ¢, and ¢, then account
for the reduced variation of the magnetization in the quasi-uniform case, which has
different effects on the exchange and magnetostatic energy terms. It is important
to note that, provided c,,c, #0, this reduced variation does not destroy the energy
minimum for s, but merely rescales the equilibrium wall width. This means that
the quasi-uniform bound state of vortices and antivortices can also be stable with
respect to scaling, as for the cross-tie wall in a bulk magnet.

Data availability
Experimental data and analysis codes used for this manuscript can be found at
https://doi.org/10.5281/zenodo.4041745.
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Extended Data Fig. 1| Detailed overview of the vortex ring with circulating magnetic vorticity (presented in Fig. 2), shown in successive slices
through the loop. The magnetization within each slice is represented by the streamlines. The colourscale in the top row indicates the X component of
the magnetization, while the colour scale in the bottom row indicates the X component of the vorticity. The vorticity associated with the vortex structure
extending throughout the pillar changes sign in slice d due to the presence of a Bloch point, while the vortex-antivortex pair conserves its vorticity
throughout. In slices b and ¢, the magnetization forms a structure similar to that of a cross-tie wall, which dissolves as the pair unwinds, at slices a and d,

resulting in a single vortex.
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Extended Data Fig. 2 | Analytical models of vortex loops with different magnetization structures. Top, middle and bottom rows: Magnetization,
pre-images and vorticity distribution for the different 2+1 dimensional analytical models. The magnetization plots (top row) only include the projection

of the magnetization onto the shown plane, while the rings correspond to the positions of the vortex and antivortex centres. The colour indicates the m,
component of the magnetization. The pre-images are shown as volumes where the magnetization vectors deviate only slightly from certain directions d,
indicated by the colour-coded arrows on each corresponding sphere. The opacity and colour on the vorticity plots indicate the magnitude of local vorticity
vectors. The structure in ¢ is comparable to the vortex rings in Fig. 2, while the structure in d is comparable to that in Fig. 3.
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Extended Data Fig. 3 | Detailed overview of the magnetic state of the vortex loop containing Bloch points (presented in Fig. 3), shown in successive
slices through the loop. The magnetization within each slice is represented by the streamlines. The colour scale in the top row indicates the x component
of the magnetization, while the colourscale in the bottom row indicates the X component of the vorticity. The vorticity along the vortex core reverses
between slices b and ¢, while the vorticity along the antivortex core reverses between slices ¢ and d. f, The white isosurface, plotted along with the vortex
loop, corresponds to m,=0 and separates regions of m,=+1and m,=-1, thus highlighting the presence of a complicated domain wall structure. The Bloch
points are located at the intersection of the loop with this isosurface (locations indicated by the dashed circles).
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200 nm

Extended Data Fig. 4 | The vortex loop containing magnetization singularities (presented in Fig. 3) seen from multiple directions. The vortex loop
containing Bloch points is plotted using the isosurfaces m,= + 1 (a,c) and pre-images (b,d). In a and b, the vortex loop and its pre-images have the same
spatial orientation as in Fig. 3a. In ¢ and d, the loop and pre-images are presented with the same orientation as in Fig. 3g.
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OA

Extended Data Fig. 5 | Effect of different field and thermal protocols on the presence and distribution of regions of high magnetic vorticity, and
magnetization singularities. a,c, Vorticity distribution following the application of a 7 T saturating field (a) and following saturation and field cooling (c).
b, Regions of high divergence of the magnetic vorticity indicate the presence of Bloch points (red) and anti-Bloch points (blue) at remanence, following
saturation. d, In the same way, singularities are identified after heating at 400 K and field cooling ina 7 T field. Noticeably fewer magnetic structures with
high vorticity are present following the field-cooling procedure.
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Extended Data Fig. 6 | A diffraction pattern from the GdCo, pillar. The substructure of the Bragg peaks, magnified in the inset to the right, indicates the
polycrystalline nature of the material.
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Extended Data Fig. 7 | Location of the central vortex following the two different protocols. The position of the central vortex core is plotted using red and
blue isosurfaces for the remanent magnetic structure after (red) the application of a 7 T magnetic field, and after (blue) the application of the field-cooling
protocol. After both protocols, the vortex core occupies almost the same position.
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