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A B S T R A C T

Nucleation is the first step of the phase transformations that we use to control the microstructures of engineering
materials. The starting point for questions of nucleation is usually Classical Nucleation Theory (CNT) but for
solid-state nucleation at low temperatures where atomic mobility is limited, such as in engineering alloys, CNT
has not been very successful is quantitatively predicting nucleation. A strong assumption of CNT is that all
thermally-induced stochastic fluctuations, no matter how far their compositions lie from the bulk alloy
composition, are possible and that they become nuclei when a critical size determined from thermodynamics is
reached.

Here we present a new and complementary model for solid-state nucleation. We consider the other extreme
where atomic mobility is limited and thermally-induced stochastic clusters cannot form in the time scale relevant
for a nucleation event. Instead, we consider the geometric clusters that are a statistical feature of any solution as
the origin of the nuclei and present a simple model for the number of nuclei and their rate of ‘activation’. This
new ‘geometric cluster’ model is shown to be able to successfully predict the competition in phase nucleation
during the crystallization of a series of Al-Ni-Y metallic glass, predict the solvent trapping that is increasingly
seen in solid-state nucleation and predict the peak number density of precipitates observed in Cu-Co and Fe-Cu
alloys.

1. Introduction

Nucleation is the first stage of one phase forming from another. It
occurs all around us in nature (e.g. droplets of rain forming in cloud
vapor) but it is also represents the first step of the phase transformations
that occur in man-made materials such as engineering alloys. Since
phase transformations are one of the most powerful ways to manipulate
the micro and nanostructure of engineering materials, and therefore
influence their properties, controlling nucleation is critical to materials
and microstructure design. The kinetics of nucleation often sets the
lower bound on the characteristic length scale of the microstructure and
this affects many important materials properties. The rate of nucleation
of solid grains in a liquid during solidification determines the lower
bound of the grain size in the as-cast state. The rate of nucleation of
precipitates in an alloy during solid-state precipitation determines the
minimum precipitate spacing. In both cases, these length scales strongly
influence the mechanical properties (e.g. strength). In the case of
nanostructured magnetic materials formed by the crystallization of a
metallic glass, nucleation must be controlled so that the correct phase,
with the correct size and volume fraction appears for the material to

exhibit the desired magnetic properties (e.g. coercivity).
Ideally, a model for nucleation should be able to predict, from the

thermodynamically permissible phases, which phase will nucleate first
during a phase transformation (including the composition of the phase),
and the kinetics of nucleation.

The starting point for questions of nucleation in materials science is
usually Classical Nucleation Theory (CNT), e.g. [1–3]. CNT describes
nucleation as the transient formation of clusters with the crystal struc-
ture (and chemistry) of the new phase by thermally-induced stochastic
fluctuations until a cluster attains a size exceeding the ‘critical’ size, R*,
(associated with a critical energy barrier, ΔG*). It is an energetically
up-hill process until R* is exceeded, after which the nucleus may enter
the growth stage. The stochastic formation of clusters requires atomic
mobility and the degree of mobility is very different in different systems.
In gases and liquids, the mobility may be high, but in solid-state
nucleation, especially at low temperatures, atomic mobility can be
uniformly very limited and also vary significantly from one chemical
species to another. It is exactly these conditions of solid-state nucleation
which are emphasised in this contribution.

The appeal of CNT is its simplicity and that it correctly captures the
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intuitive qualitative trends expected for a given nucleating phase [1–3].
At a given temperature, as the thermodynamic driving force for nucle-
ation increases (leading to a decrease in the energy barrier ΔG*), the
nucleation rate of a given phase increases. As the interfacial energy
decreases, the nucleation rate increases. For a given alloy composition,
as the temperature changes, a competition between atomic mobility and
the thermodynamic driving force for nucleation occurs which can lead
to a non-monotonic dependence of the nucleation rate on temperature.

However, when one tries to quantitatively compare CNT with
experimental data from solid-state phase transformations, problems
appear. CNT is extremely sensitive to the interfacial energy of the phase
nucleating, but even when the interfacial energy is ‘tuned’ by fitting
CNT to experimental data for a given set of conditions (e.g. alloy
composition and temperature), the ability to quantitatively predict the
solid state nucleation rate in conditions slightly different to those used
for calibration (e.g. slight change in temperature or alloy composition),
is poor. This is true even in the alloy systems where CNT is thought to
have the best chance of success, e.g. precipitation of low misfit, spherical
Co particles in a Cu matrix, e.g. [4]. With the increasingly widespread
availability of thermodynamic and kinetic databases, and the avail-
ability of better and better experimental data (e.g. from combinatorial
experiments), more researchers are building kinetic models for
solid-state phase transformations (e.g. precipitation processes), and the
inability to quantitatively describe the experimental kinetics of nucle-
ation is exposing important limitations of CNT.

The difficulties in quantitatively describing solid-state nucleation
using CNT have long been known by those studying the crystallization of
metallic glasses, e.g. [5,6]. In the case of well-defined crystals forming in
an amorphous metallic matrix, reasonable estimates of the interfacial
energies can be made and researchers quickly realised that CNT could
not explain the high number densities of crystals that formed during
devitrification of metallic glasses. Instead, researchers would invoke the
idea of “pre-existing structural and/or chemical heterogeneities” as a
means of explaining the high number densities of phase formed, e.g.
[5–7]. Such heterogeneities have been experimentally shown to exist, e.
g. [7,8], and are also observed in numerical simulations, e.g. [9].

Some might argue that given the extreme sensitively of CNT to the
interfacial energy of the nucleating phase, and the assumptions and
simplifications made in deriving the CNT rate equation, it is unfair to
expect quantitative agreement with experiments in real systems, espe-
cially in the solid-state. However, even if we look only at qualitative
predictions of which phase nucleates first, amongst an array of
competing phases, we find that CNT is unable to correctly predict the
competition in phase formation. Consider the example shown in Fig. 1a
of the crystalline phases that form in an Al-9Ni-4Y metallic glass when

heated [10]. These experiments were performed using in-situ heating in
a synchrotron beam so the order of phase formation could be monitored
quantitatively. Experimentally, the first crystalline phase to form in this
metallic glass is FCC Al at a temperature of ~180 ◦C. From the lattice
parameter of the FCC it is known to be almost pure Al [10]. Al-Ni-Y is a
system where a good thermodynamic description exists [11–13], and
reasonable estimates of the interfacial energies of the competing phases
can be made using broken-bond models [14], allowing a comparison of
the competition in phase formation with the predictions of CNT. This
comparison has been made by Styles et al. [10] and the temperature
dependence of the CNT nucleation barrier (ΔG*) for each thermody-
namically permissible phase is shown in Fig. 1b. At ~180 ◦C, CNT
predicts that the Al19Ni5Y3 phase has the lowest barrier (Fig. 1b) and
should form first. If for some reason that phase was constrained, the next
most likely phase should be Al9Ni2. FCC Al is the 3rd most favored phase
according to CNT, even though experimentally it dominates the initial
crystallization reaction (Fig. 1a). Styles et al. compared such predictions
for five different metallic glass compositions in the Al-Ni-Y system
(showing a range of different first forming phases) and in only one case,
did CNT correctly predict the first phase to form. Even qualitatively,
CNT does not work very well for solid-state nucleation processes.

CNT was originally derived for the formation of spherical liquid
droplets from a vapor without a change in composition [3]. It has been
adapted for use in solid-state nucleation [1–3], and some authors have
coupled the stochastic fluctuations to long range diffusion to try and
account for the change in composition that occurs in many solid-state
nucleation events [3]. However, the assumptions underlying the deri-
vation of the most common form of the CNT rate equation are very
strong, and one of the most important is the assumption that all
thermally-induced stochastic fluctuations are possible, no matter how
far their compositions lie from the bulk alloy composition [3]. This as-
sumes that there always exists clusters with the correct chemistries and
structures in the matrix, and the nucleation event occurs when a
thermally-induced stochastic fluctuation brings a suitable one of them
over the critical size (R*) for nucleation. The most commonly used CNT
rate equation in solid-state phase transformations [1] does not consider
the kinetics of formation of these clusters. This can be illustrated by the
Gibbs energy curves shown in Fig. 2a. Consider a matrix with compo-
sition Cb at a temperature T1. According to CNT, clusters with the
compositions indicated by the red dots always exist in the matrix, and
the driving forces for the nucleation of phases P1-P3 are represented by
the magnitudes DF1-DF3. Note that the construction shown in Fig. 2a
suggests that the largest driving force for nucleation (DF3) exists for the
phase (P3) with a composition furthest from the bulk alloy composition
(Cb). Experimentally, such phases are rarely seen to nucleate first, and

Fig. 1. a) Evolution of the phase fraction of different crystalline phases forming from an Al-9Ni-4Y metallic glasses heated at 10 ◦C/min in a synchrotron beam
(experimental data replotted from Ref [10]), b) Calculated critical barrier to nucleation from CNT, ΔG*, as a function of temperature for the thermodynamically
permissible phases in an Al-9Ni-4Y metallic glass [10].
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rather the phase that nucleates first is usually the one with the compo-
sition closest to the matrix composition subject to the existence of a
thermodynamic driving force and a reasonable interfacial energy.

Thermally-induced stochastic clusters that may evolve into nuclei of
a new phase require atomic mobility. Whether the assumption that all
thermally-induced stochastic clusters are possible is a good assumption
will depend on a comparison of the time it takes for stochastic clusters to
form, with the characteristic time for a nucleation event. Let us define a
characteristic time for both processes: tc being the characteristic time for
stochastic clusters to form (which will be a strong function of the atomic
mobility under the conditions considered), and tn being the character-
istic time for a nucleation event. If tn>>tc, one might expect the
assumption that all thermally-induced stochastic clusters are possible to
be a reasonable approximation. This is shown at the right end of the
timeline in Fig. 3. Under such conditions, one might expect the CNT
framework to work reasonably well. These conditions will correspond to
small driving forces (slow nucleation), systems with high mobility such
as gases and liquids (fast stochastic cluster formation), and cases where
the nucleating phase occurs without a change in chemistry.

However, in solid-state phase transformations we are often inter-
ested in nucleation of phases that exhibit a significant change in
chemistry compared to the matrix, forming at relatively low tempera-
tures where atomic mobility is limited, and where the nucleation rate is
still high (giving a high number density of new phases). It is exactly
these conditions that allow us to generate the nanostructures that
deliver interesting properties to our materials for practical applications.
In many cases of solid-state nucleation we are probably located closer to
the left end of the timeline in Fig. 3 where the characteristic time for
stochastic cluster formation is long compared to the nucleation time, tn/
tc<<1. Under such conditions, it is difficult to imagine how clusters with

chemistries that lie far from the bulk alloy chemistry could form in the
matrix by stochastic fluctuations. From this perspective, it may not be
surprising that CNT does not work well for solid-state nucleation (not
even qualitatively for predicting the competition in phase formation,
Fig. 1).

This contribution presents a new model for nucleation (Section 2),
applicable to systems where atomic mobility is limited, such as solid-
state nucleation in engineering alloys at low temperature, although
one may also find it interesting to apply to ceramics or inorganic glasses.
It is a description designed to complement (and not replace) CNT. It is a
nucleation description designed to apply at the left end of the timeline in
Fig. 3, whereas CNT can be thought to be more appropriate at the right
end of the timeline in Fig. 3. The connection between these two de-
scriptions will be briefly discussed in Section 4.

2. A new model for solid-state nucleation based on geometric
clusters

In systems where atomic mobility is limited, such as engineering
alloys at low temperature, or metallic glasses undergoing devitrification,
solid-state nucleation can still occur quicky. Under such conditions, the
time to form thermally-induced stochastic clusters with the composition
of the nucleating phases, is probably large compared to the character-
istic time for nucleation (ie. tn/tc<<1, Fig. 3). In this case, it is difficult
to accept that nucleation is due to the formation of thermally-induced
stochastic cluster formation in the framework of CNT.

If the local sites in a matrix with the correct chemistry for nucleation to
occur do not form from stochastic fluctuations, then the alternative is that
they must have already been there.

The approach to nucleation outlined below simply asks: what is the

Fig. 2. Schematic Gibbs energy curves for a matrix and three precipitate phases (P1-P3) at a temperature of T=T1. a) quantification of the onset driving force for
nucleation (DF1-DF3) of each phase from a matrix composition Cb using the tangent construction. The red dots represent the compositions of stochastic clusters
formed in the matrix in the context of CNT, b) an alternative quantification of the driving force for nucleation (DF1-DF3) of each phase from a matrix composition Cb
assuming the cluster chemistries indicated by the red dots are long-lived geometric clusters instead of stochastically formed clusters.

Fig. 3. Schematic timeline expressed in terms of the ratio of the characteristic time for thermally-induced stochastic clusters to form, tc, and the characteristic time
for a nucleation event to occur, tn. Under conditions where tn/tc>>1, the assumption that all thermally-induced stochastic clusters are possible which underlies CNT
may be a good approximation. When tn/tc<<1, this assumption must break down.
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probability of finding a nuclei-sized volume in a solid solution that has
the chemistry corresponding to one of the thermodynamically permis-
sible phases? Such regions are referred to as ‘geometric clusters’ since
they are a statistical feature of the atomic configuration of a solid so-
lution and not a result of stochastic fluctuations. Even in a random solid
solution, the chemical composition is not uniform at the length scale of
the nuclei. This has been shown previously in numerical simulations and
the geometric clusters emphasised here likely correspond to the het-
erogeneities identified in numerical simulations by Spowart et al. [9].

To calculate the probability of finding a nuclei-sized volume in a
solid solution with the chemistry corresponding to one of the thermo-
dynamically permissible phases, consider a simplified A-B system
quenched from high temperature so the atomic configuration of B in A
may be well approximated as random. In this first treatment, we assume
all species and phases have the same molar volume and we do not
consider defect effects (e.g. surfaces, dislocations) on nucleation. The
concentration of B atoms in the A-B alloy is Cb (#B atoms per unit vol-
ume) and we assume the nuclei is spherical with radius, R̃.

We define two characteristic parameters, λ and ϕ:

λ = Cb
4
3

πR̃
3

(1)

ϕ = Cb
4
3

πR̃
3
k = λk (2)

λ has units of #B atoms and it represents the average number of B
atoms found in a matrix volume equivalent to the nuclei volume. λ is a
measure of the bulk alloy composition.

ϕ is the number of B atoms in the nuclei. It must be an integer and
may be larger (solute rich nuclei) or smaller than λ (solute poor nuclei).
k is a measure of the deviation of the nuclei chemistry from the bulk
chemistry. If k=1, then the nuclei has the same composition as the bulk.
If k<1, the nuclei is solute poor, if k>1, the nuclei is solute rich.

The number of potential nuclei per unit volume, Npv , is the number of
nuclei sized regions per unit volume multiplied by the probability, P, of a
region having the chemistry (ϕi) of one of the permissible precipitate
phases, i:

Npv =
3

4πR̃
3⋅P =

Cb
λ

⋅P (3)

P is the probability of finding a volume 4
3 πR̃

3
containing ϕB atoms in

the random solid solution.
For a random solution, P is defined by a discrete Poisson distribution,

(Eq. (4)). A Poisson distribution describes the probability of a particular
event occurring (ϕ) when we know the average frequency of events (λ),
and those events are independent of each other. In our case, the event we
are interested in is finding a nuclei sized volume containing the number
of B atoms (ϕi) corresponding to the composition of one of the permis-
sible phases, i. We know the average number of B atoms found in a
nuclei-sized volume (λ) since this is defined by the bulk alloy
composition.

P =
λϕexp(− λ)

ϕ!
(4)

In Eq. (4), ϕ must be an integer: 0, 1, 2, 3…. since ϕ represents the
number of B atoms in a nuclei.

Using Stirling’s approximation, and after rearrangement, we obtain
Eq. (5) for P and substituting into Eq. (3), we obtain an expression for the
potential number of nuclei, Npv , Eq. (6).

P =
exp(− λα)

̅̅̅̅̅̅̅̅̅̅
2πλk

√ for λk taking on positive integer values 1, 2, 3… (5)

Npv =
Cb
λ
exp(− λα)

̅̅̅̅̅̅̅̅̅̅
2πλk

√ (6)

where α is a dimensionless parameter associated with the nuclei chem-
istry: α = 1 − k+ klnk.

Because of the use of Stirling’s approximation, Eq. (6) is valid only
for ϕ = λk = 1, 2, 3….. i.e. it is not valid for ϕ=0, which would corre-
spond to a nucleus containing no solute. However, the ϕ=0 case is
straightforward since 0!=1, and for ϕ =0 to be true, k = 0 which means
no solute in the nucleus. For the ϕ =0 case, Eq. (4) reduces to a simple
form and when combined with Eq. (3) we arrive at Eq. (7).

Npv =
Cb
λ

⋅exp(− λ) for ϕ = 0, or equivalently k = 0 (7)

Eqs. (6) and (7) describe the number of potential nucleation sites

based on the probability of finding nuclei sized volumes (4
3 πR̃

3
) with

certain chemistries (ϕi) in a random solid solution.
Eq. (7) (for a nuclei containing no solute) has obviously the expected

behaviour: for a given bulk alloy composition (Cb), as R̃ increases (λ
increases (Eq. (1))) there are fewer sites corresponding to nuclei sized
volumes with no B atoms. Similarly, for a given R̃, as the bulk solute
content (Cb) increases (λ increases) there are fewer sites corresponding
to nuclei sized volumes with no B atoms. The behaviour of Eq. (6) is less
obvious. Fig. 4a shows a plot of the potential number of nucleation sites
calculated using Eqs. (6) and (7), as a function of ϕ, in a series of hy-
pothetical A-xB alloys. A molar volume of 1×10− 5 (m3/mol) has been
used and a R̃ of 5×10− 10 m is assumed for the purposes of calculations
(corresponding to a nucleus containing 32 atoms).

Two important trends can be observed in Fig. 4a: a) the number of
potential nucleation sites decreases as the solute content of the precip-
itate (ϕ) deviates from the bulk alloy composition, and b) the number of
nucleation sites for a given precipitate chemistry (e.g. ϕ = 8, corre-
sponding to A3B) is higher in the alloy with a bulk solute content closer
to the precipitate composition. Both of these trends show the expected
behaviour.

It is also interesting to look at the quantitative numbers of potential
nucleation sites for these hypothetical A-xB alloys which use physically
reasonable input parameters. Consider a precipitate of composition A3B.
Fig. 4b shows the number of potential nucleation sites in the different
hypothetical A-xB alloys as a function of the nuclei radius. For a nuclei
radius of 5×10− 10 m (corresponding to 32 atoms), alloys such as A-
0.05B will contain 1023–1024 nuclei-sized volumes with a composition of
A3B (corresponding to ϕ=8B atoms) in the random solid solution. This
corresponds to the order of magnitude of precipitates seen in many
engineering alloys, e.g. [15,16].

Npv (Eqs. (6) and (7)) is the potential number of nuclei with a certain
size (R̃) and chemistry (ϕ). The geometric clusters with a suitable
chemistry still need to change crystal structure and create an interface
for a nucleation event to occur (we refer to such a process as ‘activa-
tion’). There must be a driving force to pay for this interface formation
but this driving force is not the traditional driving force calculated in
CNT using the tangent construction (Fig. 2a). Since the geometric clus-
ters that represent the potential nucleation sites are long-lived compared
to thermally-induced stochastic fluctuations, we instead calculate the
driving force as the difference between the Gibbs energy of the matrix
phase at the composition of the precipitate, Gm, and the Gibbs energy of
the precipitate at its nuclei composition, Gp (Fig. 2b).

The number of potential nuclei that are ‘activated’, N, might then be
written as:

N = Npv ⋅exp
(
− ΔG̃
kT

)

where ΔG̃∝
γ3

(Gm − Gp)2
(8)

N can then be expressed as:

N =
Cb
λ

⋅exp(− λ)⋅exp
(
− ΔG̃
kT

)

for ϕ = 0, or equivalently k = 0 (9)
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N =
Cb
λ
exp(− λα)

̅̅̅̅̅̅̅̅̅̅
2πλk

√ ⋅exp
(
− ΔG̃
kT

)

for ϕ

= λk taking on integer values 1, 2, 3… (10)

The effect of the barrier (exp
(

− ΔG̃
kT

))

on the number of activated

nucleation sites depends on the size of the nuclei. In CNT, the critical
nuclei size is defined as 2γ

DF (where DF is the onset driving force for
nucleation shown in Fig. 2a) since the clusters grow by stochastic fluc-
tuations and 2γ

DF is the smallest size from which they could survive and
grow.

In the new approach proposed here, the regions corresponding to
potential nuclei already exist in the matrix as geometric clusters with the
chemistry corresponding to one of the thermodynamically permissible
phases. They do not necessarily need to grow to pass some critical size,
they just need to create an interface and change crystal structure (i.e. be
‘activated’). They obviously must be equal to or greater in size than 2γ

DF
(where DF is defined as shown in Fig. 2b), otherwise once they have
been activated they could not grow due to capillarity effects, but we may
expect that the nuclei size which is first activated is the size that allows

the fastest nucleation.
Consider the Gibbs energy change on forming a nucleus of compo-

sition A3B in the A-B system as a function of nucleus size in Fig. 5a. In
this example, a driving force of 7.108 J/m3 (corresponding to 7000 J/
mol for a molar volume of 1×10− 5 m3/mol) and an interfacial energy, γ,
of 0.15 J/m2 is used. A cluster containing only 1 B atom is indicated in
Fig. 5a by ϕ=1. The smallest cluster that could be activated and survive
to grow is indicated by ϕ=5 and contains 5 B atoms (and 20 atoms in
total). This corresponds to a size close to 2γ

DF. A nucleus of this size has a
barrier of ~ 0.72eV in this example. Also highlighted in Fig. 5a is a
cluster containing 17 B atoms (ϕ=17, and 68 atoms in total). This cluster
corresponds to a size close to 3γ

DF and such a cluster would not experience
an energetic barrier to formation of an interface.

The effect of the potential barrier to creating an interface

(exp
(

− ΔG̃
kT

))

on the number of activated nuclei (Eq. (10)) is shown in

Fig. 5b for the different A-xB alloys. A nuclei of composition A3B is again
assumed and the driving force and interfacial energy used in Fig. 5a is
used. Fig. 5b indicates that in most cases the nuclei size that provides the
largest number of activated sites (and hence the fastest nucleation)

Fig. 4. a) Number of potential nucleation sites as a function of ϕ for A-0.02B, A-0.05B, A-0.1B and A-0.25B A nuclei radius R̃ of 5×10− 10 m and a molar volume of
1×10− 5 m3/mol has been used for the calculations (corresponding to a nucleus containing 32 atoms), b) Number of potential nucleation sites as a function of nuclei
radius for the same A-B alloys assuming a precipitate composition of A3B.

Fig. 5. a) Gibbs energy change as a function of nuclei size for a precipitate of composition A3B forming in a hypothetical A-B alloy with a nucleation driving force of
DF = 7.108 J/m3 and an interfacial energy, γ = 0.15 J/m2, b) number of activated nucleation sites (Eq. (10)) of composition A3B in a series of A-xB alloys as a
function of nuclei size using the thermodynamic parameters in a).
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corresponds to a size of ~ 3γ

ΔG̃
(R = 0.65nm) and contains 17 B atoms (and

68 atoms in total) in this example.
Eqs. (9) and (10) contain no kinetics. Changing crystal structure and

creating an interface does require atoms to move. One approximation
might be to assume that the atomic motion required is similar to that

which would be required for atoms to jump across the interface, β∗ = R̃
2
D

a4

[1], where D is the solute diffusivity in the matrix at the temperature of
interest and a is the lattice parameter.

We would then obtain for the nucleation rates:

dN
dt

=
R̃

2
D
a4

Cb
λ

⋅exp( − λ)⋅exp
(
− ΔG̃
kT

)

for ϕ = 0, or equivalently k = 0

(11)

Eqs. (11) and (12) obviously show the expected C-shape behaviour,
reflecting the competition between thermodynamic and kinetics with
temperature.

The above approach to solid-state nucleation is based on a random
solution. It would give rise to a homogeneous distribution of pre-
cipitates, although this is not homogeneous nucleation in the spirit of
CNT. Rather it is a reflection of the fact that in a random solution, the
geometric clusters giving rise to the nucleation events are randomly
distributed.

3. Comparison with experimental observations

To test the predictions of the geometric cluster nucleation model we
consider two sets of experiments. In Section 3.1 we examine the
competition in phase formation during the crystallization of Al-Ni-Y
metallic glasses of different compositions [10]. In Section 3.2, we
consider solvent trapping in Cu-Co [17,18] and Fe-Cu [19,20], which is
predicted by the new nucleation model but which cannot be easily
explained by CNT.

3.1. Competition in phase formation in Al-Ni-Y metallic glasses

Styles et al. [10] performed a series of in-situ synchrotron XRD ex-
periments where they monitored the crystallization of different Al-Ni-Y
metallic glasses during heating at 10 ◦C/min. An example of the quan-
tification of crystallization in Al-9Ni-4Y was shown in Fig. 1. In that case
FCC Al was the first phase to form at ~180 ◦C. The five glass

compositions considered by Styles et al. are listed in the first column of
Table 1. They include variations in both Ni and Y bulk contents. The first
phase experimentally observed to form, and the temperature at which it
forms, is listed in the 2nd column, as well as an estimate of the peak
number density of particles of the first phase formed (calculated from
the volume fraction and estimates of particles sizes from quantitative
XRD).

There are advantages and disadvantages to using this metallic glass
system to test the predictions of the nucleation model outlined in Section
2. The big advantage is that the system shows a competition in phase
formation during crystallization which changes across the different glass
compositions (Table 1). In some glass compositions the FCC Al appears
first and in other compositions the Al9Ni2, or Al19Ni5Y3 appear first. A
model for nucleation should be able to predict this change in the
competition in phase formation. An additional (simplifying) advantage
is that the phases that appear during crystallization are mostly inter-

metallic phases showing little compositional deviation from their stoi-
chiometry. We will treat them as stoichiometric compounds. Even for
the FCC Al phase which forms first in two of the glass compositions
(Table 1), lattice parameter measurements suggests that it is almost pure
Al with little solvent trapping [10]. We treat it as pure Al in the following
calculations. Solvent trapping during nucleation is addressed in Section
3.2.

An amorphous matrix also means that more reasonable estimates of
the interfacial energies of the nucleating phases can be made consid-
ering only the chemical contribution (using broken-bond models [14] as
done by Styles et al. [10]). Two independent CALPHAD thermodynamic
descriptions of the Al-Ni-Y system also exist (Golumbfskie et al. [11–12]
and Huang et al. [13]) and the different descriptions show good agree-
ment for the phases that are in common which provides some confidence

Table 1
Comparison of experimental observations [10] and calculations (CNT and geometric cluster model) of the first phase to form during heating of a series of Al-Ni-Y
metallic glasses.

Alloy (at.
%)

Experimentally observed 1st phase (T),
estimated Nv [10]

CNT predicted 1st phase (and 2nd most likely) phase
at crystallization T

New model prediction of 1st phase at crystallization
temperature, N, (Eq. (9) or (10))

Al-9Ni-4Y FCC Al (180 ◦C), 4×1023 m− 3 Al19Ni5Y3 (Al9Ni2) FCC Al, 2.48×1026 m− 3

Al-10Ni-
4Y

FCC Al (218 ◦C), 9×1022 m− 3 Al19Ni5Y3 (Al9Ni2) FCC Al, 7.36×1025 m− 3

Al-13Ni-
4Y

Al9Ni2 (270 ◦C), 9×1023 m− 3 Al19Ni5Y3 (Al9Ni2) Al9Ni2, 3.55×1025 m− 3

Al-15Ni-
4Y

Al9Ni2 & Al3Ni (300 ◦C), both 5×1023 m− 3 Al19Ni5Y3 (Al9Ni2) Al3Ni, 4.87×1025 m− 3

Al9Ni2, 2.80×1025 m− 3

Al-15Ni-
10Y

Al19Ni5Y3 (376C), - Al19Ni5Y3 (Al23Ni6Y4) Al19Ni5Y3, 8.13×1025 m− 3

Table 2
Interfacial energy between the precipitating phases and the metallic
glass matrix, calculated by Styles et al. [10] using the broken-bond
model.

Nucleating phase Interfacial energy (J/m2)

FCC Al 0.08
Al9Ni2 0.11
Al3Ni 0.20
Al3Y 0.27
Al19Ni5Y3 0.17
Al23Ni6Y4 0.12
Al9Ni3Y 0.14

dN
dt

=
R̃

2
D
a4

Cb
λ
exp( − λα)

̅̅̅̅̅̅̅̅̅̅
2πλk

√ ⋅exp
(
− ΔG̃
kT

)

for ϕ = λk taking on integer values 1, 2, 3⋯ (12)
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in the descriptions. For the following calculations, we use the thermo-
dynamic description provided by Golumbfskie et al. [11–12] but we
make two modifications. Firstly, we include the thermodynamic
description of the Al9Ni3Y phase which was included in Golumbfskie’s
PhD thesis [11] (also used by Styles et al. [10]) but not in the published
article [12]. Secondly, we make a change to the thermodynamic
description of the Al9Ni2 phase. Golumbfskie et al. artificially added
energy to the Al9Ni2 phase in their description to deliberately destabilise
it at high temperature [12]. Unfortunately, the intermetallic Al9Ni2
phase does not exist in the Huang et al. [13] description but it is included
in the ThermoCalc TCAL5 database. We have manually adjusted the
description of this stoichiometric Al9Ni2 to match the Gibbs energy as a
function of temperature in the TCAL5 database, so as to avoid the arti-
ficial destabilising imposed by Golumbfskie et al. [12]. The interfacial
energies used for each phase are taken from [10] and listed in Table 2.

The disadvantage of using a metallic glass system to test the pre-
dictions of the nucleation model outlined in Section 2 is that we do not
have a thermodynamic description for the glass matrix. We use the Gibbs
energy of the supercooled liquid as an estimate for the glassy matrix but
they are not exactly the same. This will lead to an overestimation of the
driving forces for nucleation but we expect this to be systematic and not
favour one nucleating phase over another. This means we assume that
the statistical geometric fluctuations in the glass are the same as those in
the liquid. As a result, we emphasise a comparison of the experimental
and predicted first phase formed during crystallization, rather than the
absolute number densities of particles.

We expect the phase to nucleate first during crystallization to be the
phase with the highest nucleation rate at the temperature of crystalli-
zation. We will use Eqs. (9) and (10), describing the expected number of
activated nucleation sites, to test predictions of which phase should form
first according to the geometric cluster nucleation model. The new
nucleation model was presented as a binary A-B system. To apply this to
a ternary A-B-C system, such as Al-Ni-Y, we must calculate the proba-
bility of finding nuclei-sized volumes with the Ni and Y chemistries
corresponding to one of the thermodynamically permissible phases. As a
first approximation, we assume the Ni and Y are both randomly
distributed in the matrix with no correlation (ie. short range ordering
(SRO) does not exist). The probability can then be calculated as the
product of the probability a volume will have the correct Ni chemistry
(PNi) and the probability it will have the correct Y chemistry (PY). The
calculations for the geometric cluster model are summarised in Tables 3
to 7. Each Table corresponds to one of the Al-Ni-Y compositions and the
calculations apply at the temperature of crystallization observed
experimentally.

Consider the Al-9Ni-4Y alloy as an example (Table 3). As shown in
Fig. 1a, this glass starts to crystallise at 180 ◦C and the first phase to form
is the FCC Al. The seven most likely phases to form are listed in column 1
of Table 3. The nucleation driving force (DF) for each phase to form at
180 ◦C is defined as shown in Fig. 2b and listed in the 2nd column. Using
the interfacial energies (Table 2), a first estimate of the nuclei radius is
calculated as 3γ/DF (column 3). The corresponding numbers of Ni and Y
atoms in the nuclei from this first estimate of the nuclei size are listed as
ϕNi (column 4) and ϕY (column 5). We model the FCC Al as pure Al so the
nuclei contains no Ni or Y atoms. However, the other phases do contain

Ni and/or Y atoms, but the number of Ni and Y atoms are not necessarily
integer values in the ϕNi and ϕY columns of Table 3 as they must be. The
closest values of ϕNi and ϕY that are integer values and respect the
stoichiometry of each phase are listed as ϕModNi and ϕModY (columns 6 and
7) and these values define the most suitable choice for the nuclei radius,
R̃ (column 8). As can be seen from Table 3, typical nuclei sizes are 10–30
atoms in total and lie between 3–5Å. The probability of finding a nuclei-
sized volume in the matrix with the Ni or Y composition of the relevant
phase is then listed as PNi or PY (columns 10 and 11). These probabilities
show interesting behaviours and capture the essence of the geometric
cluster nucleation model. The values of these probabilities are a com-
bination of how far away the Ni or Y composition of the phase is from the
bulk alloy content as well as the size of the nuclei. Consider the FCC Al
and the Al3Y phases in Table 3. Both of these phases contain no Ni, but
the probability of finding a Ni-free volume with the size of the FCC Al
nuclei is 17.4%, whereas for the Al3Y, it is 48.7%. This large difference is
entirely because the nuclei volume of the Al3Y phase is much smaller
than the FCC Al in this example (8 atoms vs 20 atoms, column 9). The
comparison between FCC Al and Al3Ni in Table 3 is also interesting. In
this case, their nuclei sizes are closer (20 atoms for the FCC Al vs 16
atoms for the Al3Ni) and both have Ni contents that deviate significantly
from the 9% present in the alloy. The FCC Al has a Ni content that de-
viates from the bulk by -9%, whereas the Al3Ni has a Ni content that
deviates from the bulk by +16%. As shown in Fig. 4a, as the composition
of the nuclei deviates further and further from the bulk composition, the
numbers of volumes with a suitable chemistry decreases. This is the
reason why the probability of finding an Al3Ni nuclei-sized volume with
25% Ni is 4x smaller than the probability of finding an FCC Al nuclei-
sized volume with no Ni, in this alloy composition. Since this is a
ternary alloy, the probability of finding a suitable nuclei volume with
the correct Ni and Y chemistries is PNi x PY (column 12) (assuming
random distributions for both Ni and Y and no correlation between the
species) and from here the maximum expected number of nuclei, N, can
be calculated for each phase. For the Al-9Ni-4Y alloy crystallizing at 180
◦C, the largest number of nuclei corresponds to the FCC Al phase and this
would be expected to be the first phase to form at this temperature ac-
cording to the geometric cluster model. This agrees well with the
experimental observations (Fig. 1 and Table 1).

Similar calculations have been made for each alloy composition
(Tables 3 to 7). The phase with the largest number of nuclei (and hence
faster rate) for each alloy composition is summarised in column 3 of
Table 1. In each of the metallic glass compositions, the geometric cluster
model correctly predicts the first phase to form experimentally. The
predictions of CNT (made using plots such as that shown in Fig. 1b) are
also summarised in Table 1. In only one case (Al-15Ni-10Y) does CNT
provide a correct prediction of the first phase to form.

Whilst the geometric cluster model can predict well the competition
of phase nucleation during crystallization in the different Al-Ni-Y glasses
experimentally investigated by Styles et al. [10], the maximum number
densities of particles predicted by the geometric cluster model are a
factor of 100 higher than the numbers observed experimentally
(Table 1). There are two reasons for this. The first is that we have esti-
mated the Gibbs energy of the glassy matrix with the Gibbs energy of the
supercooled liquid. This is known to lead to an overestimation of the

Table 3
Calculations of the expected number of nuclei to form for the different phases in Al-9Ni-4Y at 453K (180C).

Phase DF (J/m3) 3γ/DF (Å) ϕNi ϕY ϕModNi ϕModY R̃ (A) # atoms PNi PY PNi x PY N (#/m3)

FCC Al 5.64£108 4.25 0 0 0 0 4.25 20 0.174 0.460 0.0799 2.48£1026

Al3Ni 1.50×109 3.99 4 0 4 0 3.99 16 0.043 0.527 0.0228 8.60×1025

Al9Ni2 7.32×108 4.51 4.20 0 6 0 5.08 33 0.050 0.267 0.0132 2.42×1025

Al19Ni5Y3 1.59×109 3.22 1.55 0.93 5 3 4.75 27 0.063 0.073 0.0046 1.03×1025

Al23Ni6Y4 9.85×108 3.65 2.24 1.49 6 4 5.08 33 0.050 0.035 0.0017 3.12×1024

Al9Ni3Y 1.00×109 4.19 4.27 1.42 6 2 4.69 26 0.022 0.199 0.0044 1.03×1025

Al3Y 2.62×109 3.09 0 1.86 0 2 3.17 8 0.487 0.039 0.0188 1.46×1026
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nucleation driving force and leads to smaller nuclei and higher number
densities. This is the reason why we have emphasised the comparative
nucleation rates between phases in the context of the competition in
nucleation, rather than absolute numbers. The second reason is the
geometric cluster model describes the maximum number density (not all
nuclei may survive). This needs to be coupled with growth and coars-
ening models into an integrated precipitation model to be able to
compare quantitatively with experimental nucleation rates and
maximum number densities.

3.2. Solvent trapping during solid-state nucleation

The example shown in Section 3.1 considered the competition in
nucleation between a range of phases of fixed (stoichiometric) compo-
sitions. Most of the precipitating phases in the Al-Ni-Y system are in-
termetallics, and even the case of FCC Al appears to be close to pure Al in
practice [10].

However, in situations where solution phases nucleate in the solid,
experimental observations have reported substantial solvent trapping in

some cases. These reports of solvent trapping have mostly emerged since
the advent of atom probe tomography (APT), which allows measure-
ment of local chemistries at the nm scale. Setna et al. [17] report solvent
trapping of 24% Cu in Co precipitates formed in a Cu-2Co alloy at short
times at 450 ◦C. The Co precipitates at equilibrium are almost 100%
pure Co. Cerezo et al. [18], also using APT, report solvent trapping of
more than 10% Cu in small Co precipitates precipitated at temperatures
around 500 ◦C. They report that Co precipitates with compositions of
100% Co are only observed during coarsening.

Morley et al. [19] studied the solvent trapping of Fe in Cu pre-
cipitates formed in dilute Fe-Cu alloys at low temperature. The Cu
precipitates are almost 100% pure Cu under equilibrium conditions.
Morley et al. also used APT for their measurements but specifically tried
to account for the artifacts in APT measurements (aberrations in the
trajectories of different ions) which was becoming better recognized as
the field matured. Morley et al. claim that the amount of Fe solvent
trapping depends on the temperature of Cu precipitation. At tempera-
tures of ~330 ◦C, solvent Fe trapping of 17% is observed in the Cu
precipitates. At 365 ◦C, the Fe trapping is 14% and at 400 ◦C, the

Table 4
Calculations of the expected number of nuclei to form for the different phases in Al-10Ni-4Y at 491K (218C).

Phase DF (J/m3) 3γ/DF (Å) ϕNi ϕY ϕModNi ϕModY R̃ (A) # atoms PNi PY PNi x PY N (#/m3)

FCC Al 5.19£108 4.62 0 0 0 0 4.62 25 0.083 0.369 0.0305 7.36£1025

Al3Ni 1.42×109 4.21 4.72 0 5 0 4.29 20 0.037 0.449 0.0165 4.97×1025

Al9Ni2 6.86×108 4.81 5.11 0 6 0 5.08 33 0.067 0.267 0.0179 3.27×1025

Al19Ni5Y3 1.53×109 3.33 1.72 1.03 5 3 4.75 27 0.082 0.073 0.0060 1.34×1025

Al23Ni6Y4 9.23×108 3.90 2.72 1.81 6 4 5.08 33 0.067 0.035 0.0023 4.22×1024

Al9Ni3Y 9.54×108 4.40 4.97 1.66 6 2 4.69 26 0.032 0.199 0.0064 1.49×1025

Al3Y 2.52×109 3.21 0 2.09 0 3 3.62 12 0.301 0.012 0.0035 1.77×1025

Table 5
Calculations of the expected number of nuclei to form for the different phases in Al-13Ni-4Y at 543K (270C).

Phase DF (J/m3) 3γ/DF (Å) ϕNi ϕY ϕModNi ϕModY R̃ (A) # atoms PNi PY PNi x PY N (#/m3)

FCC Al 4.58×108 5.24 0 0 0 0 5.24 36 0.009 0.233 0.0021 3.40×1024

Al3Ni 1.31×109 4.57 6.02 0 7 0 4.81 28 0.045 0.326 0.0146 3.13×1025

Al9Ni2 6.23£108 5.30 6.83 0 7 0 5.34 39 0.106 0.214 0.0227 3.55£1025

Al19Ni5Y3 1.46×109 3.49 1.99 1.19 5 3 4.75 27 0.135 0.073 0.0099 2.21×1025

Al23Ni6Y4 8.38×108 4.30 3.64 2.42 6 4 5.08 33 0.120 0.035 0.0042 7.58×1024

Al9Ni3Y 8.86×108 4.74 6.20 2.07 9 3 5.37 39 0.039 0.137 0.0053 8.16×1024

Al3Y 2.38×109 3.40 0 2.48 0 3 3.62 12 0.210 0.012 0.0025 1.24×1025

Table 6
Calculations of the expected number of nuclei to form for the different phases in Al-15Ni-4Y at 543K (300C).

Phase DF (J/m3) 3γ/DF (Å) ϕNi ϕY ϕModNi ϕModY R̃ (A) # atoms PNi PY PNi x PY N (#/m3)

FCC Al 3.72×108 6.45 0 0 0 0 6.45 68 0.00004 0.0665 2.5×10− 6 2.28×1021

Al3Ni 1.25£109 4.80 6.99 0 7 0 4.81 28 0.0694 0.3263 0.0227 4.87£1025

Al9Ni2 5.86×108 5.63 7.88 0 8 0 5.63 45 0.1265 0.1652 0.0209 2.80×1025

Al19Ni5Y3 1.42×109 3.59 2.17 1.30 5 3 4.75 27 0.1609 0.0733 0.0118 2.63×1025

Al23Ni6Y4 7.89×108 4.56 4.36 2.91 6 4 5.08 33 0.1468 0.0345 0.0051 9.24×1024

Al9Ni3Y 8.47×108 4.96 7.09 2.36 9 3 5.37 39 0.0643 0.1367 0.0088 1.36×1025

Al3Y 2.30×109 3.52 0 2.74 0 3 3.62 12 0.1653 0.0117 0.0019 9.73×1024

Table 7
Calculations of the expected number of nuclei to form for the different phases in Al-15Ni-10Y at 648K (375C).

Phase DF (J/m3) 3γ/DF (Å) ϕNi ϕY ϕModNi ϕModY R̃ (A) # atoms PNi PY PNi x PY N (#/m3)

FCC Al 2.89×108 8.30 0 0 0 0 8.30 144 4×10− 10 5×10− 7 2.3×10− 16 9.60×1010

Al3Ni 1.09×109 5.51 10.53 0 11 0 5.59 44 0.036 0.012 0.00044 5.97×1023

Al9Ni2 4.95×108 6.67 13.58 0 14 0 6.73 77 0.084 4.5×10− 4 0.00004 2.96×1022

Al19Ni5Y3 1.31£109 3.88 2.73 1.64 5 3 4.75 27 0.161 0.227 0.0365 8.13£1025

Al23Ni6Y4 6.66×108 5.40 7.24 4.83 9 6 5.81 50 0.114 0.147 0.0167 2.03×1025

Al9Ni3Y 7.50×108 5.60 10.24 3.41 12 4 5.91 52 0.044 0.172 0.0075 8.68×1024

Al3Y 2.10×109 3.85 0 3.60 0 4 3.99 16 0.091 0.056 0.0051 1.92×1025
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trapping is ~ 7%. However, not all agree with the claims of solvent
trapping measured by APT. Shu et al. [20] used a combination of
characterization tools (including SANS) to study the composition of Cu
precipitates formed in a similarly dilute Fe-Cu alloy aged at low tem-
peratures and subjected to neutron irradiation. They claim there is no
significant solvent trapping in the Cu precipitates under these condi-
tions, although care should be taken to generalize given the different
experimental conditions.

To avoid potential artifacts associated with APT measurements of
solvent trapping in very small solid-state precipitates, Orthacker et al.
[21–22] used scanning transmission electron microscopy combined with
electron tomography to examine the compositions of small L12 Al3(Sc,
Zr) precipitates formed in Al-Sc-Zr alloys. Even though the L12 particles
are usually assumed to be stoichiometric with respect to the Al content,
these authors showed that significant Al solvent trapping is observed
even in these compounds. They report an Al content of 88% instead of
the expected 75%.

It appears that solvent trapping during solid state precipitation is real
(and not simply an artifact of APT) and it is rather a question of accurate
quantification of the amount of solvent trapping and how this may vary
with different precipitation conditions. This solvent trapping is not easy
to explain using CNT. Non-classical models for nucleation can ratio-
nalize nuclei compositions that deviate from equilibrium, e.g. Chapter 4
of [3], but they do not account for the large solvent trapping summa-
rized above.

Solvent trapping is predicted by the geometric cluster nucleation
model and in the following we use the dilute Cu-2Co (at. %) and Fe-2Cu
(at. %) alloy systems as examples for illustration. The Gibbs energy
curves for FCC Cu(Co) and Co(Cu) phases at 500 ◦C are shown in Fig. 6a.
Instead of representing the Gibbs energy as a miscibility gap, we use
separate Gibbs energy curves for each phase by extrapolating the Cu rich
end of the curve (from ThermoCalc TCCu4 database) to the Co rich re-
gion for FCC Cu(Co), and the Co rich end of the curve to the Cu rich
region for FCC Co(Cu). A similar formulation is shown in Fig. 6b for the
Fe-Cu system at 500 ◦C for the BCC Fe(Cu) and BCC Cu(Fe) phases. For
the cases shown in Fig. 6, the equilibrium composition of the precipi-
tating phase is almost 100% pure Co in Cu (Fig. 6a), or pure Cu in Fe
(Fig. 6b). However, if we consider dilute matrix compositions such as
Cu-2Co or Fe-2Cu, there will exist within the matrix geometric clusters
of different Co or Cu contents. In both systems, if those geometric

clusters contain more than 50% solute, then a driving force (DF)
(defined as shown in Fig. 2b) exists for nucleation (Fig. 6).

Let us consider first the Cu-2Co system at 500 ◦C. One can appreciate
from Fig. 6a that the nucleus size (assumed to be 3γ/DF for the purposes
of this calculation) will be smaller for a nucleus with a composition of
100% Co, than one with a composition of 70% or 80% Co (since the
driving force is larger). However, the number of geometric clusters with
a composition of 100% Co in a random solid solution of Cu-2Co will be
much smaller than the number with a composition of 70% or 80% Co.
There are two competing effects – higher driving forces (for nuclei with
compositions closer to 100% Co) mean smaller nuclei which means
more potential sites. However, the probability of a potential site having
the correct chemistry decreases as the chemistry deviates further and
further from the bulk alloy chemistry (Fig. 4).

Calculations of the number of “activated” nuclei in an Cu-2Co alloy
at 500 ◦C, as a function of the composition of the nuclei are shown in
Fig. 7, for three different assumptions for the interfacial energy (γ = 0.1
J/m2 in Fig. 7a, 0.15 J/m2 in Fig. 7b and 0.2 J/m2 in Fig. 7c). The best
estimate for the interfacial energy of the Co precipitates in this system is
0.15 J/m2 [23]. Consider Fig. 7a where it is assumed γ = 0.1 J/m2. The
smallest, and most numerous nuclei are those containing three Co atoms
(ϕ=3), corresponding to a nucleus composition of ~66% Co and a radii
of ~2.3A. If one felt that such a nucleus size contained too few atoms to
be physically reasonable, then the next most numerous choice of nuclei
contains four Co atoms (ϕ=4), corresponding to a nucleus composition
of ~65% Co and a radii of ~2.6A. For a nuclei containing five Co atoms
(ϕ=5), the nucleus composition would be ~64% Co and a radii of
~2.8A. Regardless of the choice, for an interfacial energy of 0.1 J/m2,
the geometric cluster model would predict solvent trapping of around
35% at 500 ◦C in an alloy such as Co-2Co. The effect of different choices
of the interfacial energy are shown in Fig. 7b and c. As the interfacial
energy increases, the degree of predicted solvent trapping decreases, but
for interfacial energies thought appropriate for Co precipitation in dilute
Cu-Co (ie. ~0.15 J/m2 [23]), solvent trapping of ~25% is predicted
(ϕ=3) and this is quantitatively similar to the values reported by Setna
et al. [17]. Incidentally, the number of nuclei predicted in Fig. 7 for the
Cu-2Co system at 500 ◦C is 1023–1024 m− 3, which also corresponds well
to the peak number densities observed experimentally in this alloy at
this temperature [4].

Similar calculations are shown in Fig. 8 for the predicted

Fig. 6. Gibbs energy curves for the a) FCC Co(Cu) and Cu(Co) phases, and b) BCC Fe(Cu) and Cu(Fe) phases, at 500 ◦C. The Gibbs energy of the matrix phase is shown
in black, and that of the precipitate phase is shown in red.
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Fig. 7. Calculations of the predicted number of nuclei in the Cu-2Co system at 500 ◦C, as a function of nuclei composition, a) assuming γ = 0.1 J/m2, b) assuming γ =

0.15 J/m2, assuming γ = 0.2 J/m2.

Fig. 8. Calculations of the predicted number of nuclei in the Fe-2Cu system at 500 ◦C, as a function of nuclei composition, a) assuming γ = 0.27 J/m2, b) assuming γ
= 0.38 J/m2.
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compositions of nuclei forming in Fe-2Cu alloys at 500 ◦C. Literature
estimates of the interfacial energy of the BCC Cu precipitates in the Fe
matrix range from 0.27–0.38 J/m2 [24]. The effects of these values of
the interfacial energies are shown in Fig. 8a and b. For an interfacial
energy of 0.27 J/m2 (Fig. 8a), the smallest nuclei according to the
geometric cluster model contains three Cu atoms and would exhibit only
~ 2–3% solvent trapping at 500 ◦C. Nuclei containing 4 or 5 Cu atoms
could exhibit trapping of ~ 10% Fe. The number density of nuclei pre-
dicted in this case (1023–2024 m− 3) also agrees well with the number
density observed experimentally in Fe-2Cu at temperatures close to 500
◦C [25–26]. With a higher interfacial energy (0.38 J/m2, Fig. 8b), the
predicted level of solvent trapping is less than 2% Fe at 500 ◦C. As shown
in Figs. 7 and 8, solvent trapping, at levels consistent with experimental
reports, is a natural prediction of the geometric cluster model for
nucleation, which also demonstrates good agreement for the predicted
number of nuclei at 500 ◦C in these two alloys.

Many more measurements of the compositions of very small solid-
state precipitates should be encouraged and understanding their
dependence on temperature of formation and bulk alloy composition
will provide an excellent test of the predictions of the geometric cluster
model for nucleation.

4. Transition between a model based on geometric fluctuations
and CNT

In the introduction, we used a timeline (Fig. 3) to discuss potential
issues with the assumption that all possible clusters could form sto-
chastically, no matter how far their compositions lie from the average
matrix composition, when applied to solid-state nucleation in systems
where mobility is limited. This timeline was expressed in terms of the
ratio of the characteristic time for nucleation, tn, and the characteristic
time for thermally-induced stochastic cluster formation (in the picture of
CNT), tc. We suggested that the CNT approach to nucleation is more
likely to be applicable at the right end of the timeline where tn/tc>>1,
and that the geometric cluster model outlined in Section 2 is more likely
to be a better representation at the left end of the timeline where tn/
tc<<1. Indeed, we suggest that the two models represent two extremes
on the tn/tc spectrum and a transition between the two descriptions
should be expected.

In all systems, both stochastic clusters (in the spirit of CNT) and
geometric clusters can exist. Which type of cluster dominates the
nucleation event will depend on their relative time scales for formation
and lifetimes of existence. The geometric clusters emphasised in this
contribution obviously have a formation time of zero – they are a sta-
tistical feature of the solution. At low temperatures, they are long-lived
compared to the time for nucleation but they are not infinitely long-
lived. Individual clusters will exhibit a lifetime of τ = R2 /D. Stochas-
tic clusters, on the other hand, take time to form since they require
mobility. Their formation is a strong function of the interfacial attach-
ments rates and the long range diffusion rates, e.g. [3]. Depending on the
relative time scales for the dissolution of geometric clusters and the
formation of stochastic clusters, we should expect a transition from a
description of nucleation dominated by geometric clusters (left end of
time line in Fig. 3) to a description dominated by stochastic clusters
(right end of timeline in Fig. 3). This transition will occur under different
conditions in different systems and at different temperatures. In this
respect, the geometric cluster model for nucleation should be seen as a
complementary approach to CNT.

Since the geometric cluster model presented here does not consider
stochastic cluster formation effects, it cannot, on its own, describe time-
dependent nucleation (i.e. nucleation showing an incubation period due
to the adjustment of the thermally-induced stochastic cluster size dis-
tribution). However, time-dependent nucleation is observed experi-
mentally in some cases [3]. In such cases, either the incubation time has
a physical origin other than the adjustment in the thermally-induced
stochastic cluster size distribution, or the conditions of nucleation are

not at the left end of the timeline in Fig. 3, but closer to the centre or the
right hand end of the timeline, where thermally-induced stochastic
clusters are more important. Combining the types of analysis shown in
Section 3 (competition in phase formation, and solvent trapping), where
the geometric cluster model appears very successful, with detailed
measurements of the nucleation rates and possible incubation times
would provide valuable data to help identify transitions between the
geometric cluster model and CNT, and to help position experimental
conditions on the timeline shown in Fig. 3. It is likely conditions exist (e.
g. in the middle of the timeline in Fig. 3) where features of both the
geometric cluster model and CNT both play critical roles and this would
be particularly interesting to probe experimentally.

5. Next steps

For problems of solid-state precipitation in engineering materials, a
useful model for nucleation should be able to predict:

• which phase forms first, from the thermodynamically permissible
phases

• the composition of the new phase that forms (i.e. any solvent
trapping)

• the rate of formation (dN/dt) of the new phase
• the effect of structural & chemical heterogeneities
• how all the above depend on time, temperature and alloy

composition

The geometric cluster model introduced in Section 2 has been shown
to describe well the competition in phase nucleation (point #1), solvent
trapping (point #2) and correctly describe the maximum number of
precipitate particles (partially point #3), in several experimental sys-
tems (Al-Ni-Y, Cu-Co and Fe-Cu). In addition to greatly expanding the
ranges of alloy systems for comparison, important next steps are inte-
gration of the above model into nucleation, growth and coarsening
models for precipitation (e.g. KWM class models, e.g. [27–28]) so that
quantitative nucleation rates can be compared with experimental data,
especially regarding the temperature and bulk alloy content
dependence.

In real alloy systems, defects also exist and we know these act as
important heterogeneous nucleation sites. Introducing such effects into
the geometric cluster model will be an important step for the future. One
can easily imagine how strain and surface effects may modify the barrier
for nucleation and the nuclei size, but the above model also provides a
path for considering segregation effects (e.g. at dislocations). The basic
idea of the geometric cluster model is that nucleation occurs in the
matrix at locations where a nuclei-sized volume with the correct
chemistry exists. This could include defects with segregation.

6. Conclusions

A new model for solid-state nucleation applicable to systems with
limited mobility has been presented. This model emphasises the role of
geometric clusters which are a statistical feature of the solution and not
a result of thermally-induced stochastic fluctuations in the spirit of CNT.
This model has been shown to successfully predict the competition in
phase nucleation in a series of Al-Ni-Y glasses where the phase that
forms first changes depending on the glass composition. It has also been
shown to predict solvent trapping during the nucleation of solution
phases and predicts maximum number densities of precipitates that
agree well with experimental measurements.
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