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The creation and optimization of formulated products represents a major challenge for science and industry in
the food sector. Thereby, different raw materials are mixed and processed to meet predefined and often
competing targets. During this procedure, applied experimental campaigns not only require expert knowledge,
but, depending on the complexity, also cause a high consumption of resources and costs. In the present work, a
fully automized milli-fluidic laboratory driven by the Thomsen sampling efficient multiobjective optimization

(TSEMO) algorithm was designed. The methodology was successfully applied to optimize the aggregation process
of a liquid formulation consisting of whey protein isolate, NaCl and CaCl,. Within 48 h 90 experiments could be
performed without human intervention, resulting in a Pareto front formed by a set of 18 optimal recipes. It is thus
a successful demonstration of an actively learning, self-driving food formulation process.

1. Introduction

Formulation strategies are used in various applications and stages
during the development of food products, recipes, or ingredients.
Thereby the formulated product can serve as a raw material for products
of greater value or be the final product itself. For both cases, the
formulation process can be described as a simple concept including the
mixing of components with the objective to obtain a certain function-
ality. In reality, formulated product design represents a complex and
challenging task, once considering the possible interaction of the com-
ponents at the molecular level and the influence of the process condi-
tions. Additionally, factors such as consumer preferences, costs and
sustainability often need to be taken into account (Pathania, Bhatia, &
Tiwari, 2021). The ultimate objective of any formulation development,
no matter of the application, is to generate a product that performs ac-
cording to the intended targets. Therefore, the main goal in formulation
optimization is to identify the best level of each component, their effect
and, if required, the critical processing variables (Arteaga, Li-Chan,
Vazquez-Arteaga, & Nakai, 1994).

The optimization procedure requires often labor-intensive experi-
ments, as well as the involvement of specialists with extensive experi-
ence regarding the product under consideration. Although experiments
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and expert knowledge can often lead to success, this approach reaches
its limits when developing products with increased complexity (e.g.,
more than four input variables). It is almost impossible to screen all
potential ingredients, their interaction and modification during a pro-
cess, not even considering possible influencing parameters of the
manufacturing technologies and operating conditions. Resulting
empirical or semi-empirical models provide therefore in some cases only
an insufficiently accurate prediction.

One approach to address this limitation is the implementation of
more system-aided techniques. In the case of multiple targets so called
multi-objective optimization algorithms (MOOAs) are used. The relation
between input and output is hereby described by objective functions,
whereby one objective function exists for each objective, i.e., the tar-
geted properties. The objective functions can be divided into fast or slow
to compute (i.e., cheap or expensive) and analytic or Black-Box (Muel-
ler, 2022). A Black-box function is a function, for which neither the
analytical form (e.g., linear or quadratic) nor any gradient information is
known. When solving an expensive Black-box optimization problem,
surrogate models and active learning are therefore implemented. Sur-
rogate models are data driven and computationally cheap approxima-
tions of the unknown expensive objective function (Booker, Dennis Jr,
Serafini, Torczon, & Trosset, 1999). Active learning is a subfield of
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machine learning, using sequential sampling, and the learning algorithm
can choose the data from which it learns (Settles, 2009). The sequential
sampling technique is thereby based on two concepts: exploration and
exploitation. While exploration aims to reduce uncertainties by covering
poorly sampled areas in the design space, exploitation focuses on
already highly sampled regions to refine the predictive model locally.
The active learning algorithm determines the next sample point by
trading-off both concepts. This technique, combined with the integra-
tion of system knowledge during the sample generation, leads to better
approximations of the system by avoiding under- or oversampling.

The optimization process starts with an initial training data set to
build the surrogate model. This model is used in a next step to select the
next sample point in the experimental space to be evaluated. Subse-
quently, the data set is updated, and the surrogate model trained with
the gained new information. These steps, surrogate model training and
selection/ evaluation of new data point, are repeated until a predefined
stop criterion is reached, e.g., the maximum number of samples
(Mueller, 2022). The multiple objectives in formulation optimization
problems are typically opposing, what makes it rarely possible to find a
unique solution being overall optimal. Instead, the aim of MOOAs is to
identify a set of solutions that represent an optimal trade-off between the
different objectives, termed as Pareto set or Pareto front (Censor, 1977).
Since such a Pareto set is often infinite and the entire front cannot be
generated analytically, the aim of MOOAs is to find an approximation
with a finite number of points.

In the field of chemical engineering, machine learning (ML)-based
modeling could be applied successfully to solve nontrivial formulation
optimization problems. Current studies in the field of chemical engi-
neering implemented the Thompson sampling efficient multi-objective
algorithm (TSEMO) for multi-target optimization with continuous
input and output variables (Cao et al., 2021; Clayton et al., 2020; Knox,
Parkinson, Wilding, Bourne, & Warren, 2022; Schweidtmann et al.,
2018).

Besides accurate models with high prediction power, the generation
of a large number of repeatable and robust data is a key element for an
efficient and fast optimization of formulated products. However, the
creation of large data sets usually involves routine operations, which
imply a high risk of human influence and error during routine opera-
tions. Often, environmental conditions, notably the temperature, also
have a major impact on the results. These challenges can be overcome by
adopting automated high-throughput experiments using robotics. A
successful adoption of such systems can be found in chemical and
pharmaceutical engineering (Fricke et al., 2013; Salley, Keenan, Long,
Bell, & Cronin, 2020).

Formulations containing proteins are an example of complex opti-
mization problems. Whether as an ingredient for protein-enriched foods
or as an additive to improve the properties of a final product, proteins
are of major interest in the development of new products. The functional
application of whey protein isolate (WPI) is particularly reasoned by the
water-binding and gelling capacity and their ability to stabilize in-
terfaces in foams and emulsions (Boland, 2011). Due to these properties
WPI is used to achieve desired structural and sensory characteristics in a
wide range of food products. However, whey protein in its native form is
not commonly used, as it has a compact globular structure and a small
molecular weight (Fitzsimons, Mulvihill, & Morris, 2008). Instead, the
use of polymerized whey protein (PWP) is preferred. In function of the
applied heat treatment the molecular structure of the protein is hereby
modified including unfolding, denaturation, and the formation of stable
soluble protein aggregates. The latter are referred to as whey protein
aggregates (WPA). Size, shape, and structure of the WPAs after the
preprocessing are depending on the heating protocol, the protein con-
centration, the pH and the concentration and type of the salts added
(Nicolai, Britten, & Schmitt, 2011). One procedure to generate such
WPAs is the salt-induced cold-set aggregation. The whey protein is in a
first step thermally processed to prepare a heat-denatured protein so-
lution containing small and soluble primary aggregates with filamentous
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type structure and irreversible bonds (Baussay, Le Bon, Nicolai, Durand,
& Busnel, 2004; Bryant & McClements, 1998). Once cooled, this step is
followed by the induction of further aggregation by adding salt. The salt
ions decrease hereby the electrostatic repulsion by neutralizing the
charged surface of the protein molecules (Petit, Herbig, Moreau, &
Delaplace, 2011; Schmitt, Bovay, Rouvet, Shojaei-Rami, & Kolodziejc-
zyk, 2007).

A commonly used method for monitoring the aggregation process is
the measurement of turbidity. Hereby an increasing turbidity can be
detected due to the formation of aggregates that are large enough to
scatter light (approx. > 100 nm) (Bryant & McClements, 2000). The
turbidity depends on the number of aggregates as well as on their size
and scattering efficiency (McClements & Keogh, 1995). For solutions
with a protein concentration below the critical gelation concentration Cg
the aggregation can be monitored as well with viscosity measurements.
Hereby the viscosity increases due to the larger effective volume fraction
of the aggregates compared to the individual molecules (Vardhanabhuti
& Foegeding, 1999).

At the present stage of formulation processing, it is necessary to
constantly adapt the ingredient concentrations in order to maintain
consistent product quality and properties. In this study, a milli-fluidic
robotic platform was therefore developed for fully automated dosing,
mixing and analyzes of a liquid formulation. The platform was linked to
an optimization algorithm TSEMO, forming a closed-loop system to
optimize the salt induced cold-set aggregation process of whey protein
isolate regarding two continuous targets, i.e. viscosity and turbidity. The
chosen formulation has a moderate complexity and is scientifically well
researched. Therefore, the objective of this work was to use this
formulation as a proof of concept in order to apply such optimization
systems to more complex problems in the future.

2. Materials and methods
2.1. Case study and materials for stock solutions

The studied and optimized case was a formulation consisting of a
whey protein isolate (BiPRO 9500, lot JE 0148-20-420) and two salts, i.
e., sodium chloride (ACS reagent, >99%) and calcium chloride (calcium
chloride dihydrate, ACS reagent, >99%). All raw materials came in dry
form and were dissolved in deionized water with a conductivity of 1.2
uS/cm. The WPI powder contains on a dry basis 98% protein, whereby
the composition is about 80% beta-lactoglobulin and 20% alpha-
lactalbumin in a very native and soluble state.

2.2. Experimental space

The limits of the experimental space were set based on literature
references, with the aim to prevent any gel formation in the samples
(Baussay et al., 2004; Purwanti et al., 2011). Accordingly, the following
lower and upper bounds were determined: 1-6% w/w WPIL, 0-90 mM
NaCl and 0-6 mM CaCl,. The resolution of the dosing of each ingredient,
i.e., the concentration increase per dosing step, was 0.06% w/w for WPI,
3 mM for NaCl and 0.2 Mm for CaCls.

2.3. Preparation of stock solutions

In a first step a WPI stock solution of 10% w/w was prepared by
dispersing the WPI powder in deionized water. Bacterial growth was
prevented by adding Sodium Azide (0.02%) to the solution. The
dispersion was then stirred at room temperature (20-23 °C) for two
hours and left at 4 °C for 16 h to ensure complete hydration. The
measured pH of the untreated WPI solution after stirring was 6.9-6.93.
In a second step, the WPI solution was preheated without stirring in a
water bath to 60 °C, followed by a heating procedure in an oil bath at
85 °C for 15 min with gentle stirring (40 rpm). The time it took to reach
85 °C was 10 min. After these heat treatments, the solution was cooled in
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ice water to 30 °C, which took around 5 min. The salt solutions were
each mixed with deionized water and stirred at room temperature until
they were completely dissolved. Before each experiment run, the solu-
tions were preheated to 30 °C.

2.4. Robotic platform

The robotic platform was designed as a continuous flow through
system in a milli-fluidic scale to reduce the needed sample quantity and
therefore waste. In addition, in-line and real-time measurement tech-
nologies for the aggregation monitoring were implemented to avoid any
human intervention. The platform can be divided into three layers as
represented in Fig. 1. The basis forms the component layer, which
consists of all hardware elements, i.e., sensors and actuators. Center-
piece of the robotic system is the core layer, containing the control
software for interfacing with the hardware elements and enabling data
generation. The complete sequence of an experiment is stored in the
experimental layer, which interfaces with the core layer in order to
perform the desired commands. Not part of the robotics platform, but
connected to the experimental layer, is the analytical layer, which
contains the optimization algorithm (see section 2.5).

2.4.1. Component layer

To ensure a constant operating temperature of 30 °C all components
of the component layer were designed or selected in terms of their di-
mensions such that they fitted under a heatingamber CERTOMAT® HK
from Sartorius. Fig. 2 shows a picture of the complete experimental
setup. A supplementary overview of all components and a scheme in top
view of the robotic platform are given in Fig. 3.

Each reservoir of stock solution or deionized water was coupled with
an assembly of peristaltic pumps driven by stepper motors, with a res-
olution of 0.1 g per step. In order to achieve a higher accuracy and to
avoid errors during the dosing, the quantities dispensed by the motor-
pump assembly were counter-checked by a balance. All stock solutions
were directly dispensed into a reaction vial, with a total quantity of each
sample fixed to 15 g. The vial was made of glass and held by a 3D printed
stand which enabled a stable positioning on the balance. An outlet at the
bottom allowed complete emptying, controlled by a normally closed
micro electric solenoid valve. To detect the temperature of the mixed
solution a temperature sensor was places in the vial. A complete mixing
of the dosed stock solutions was ensured by implementing a micro
surface stirrer adjusted to a speed of 60 rpm. The mixing time was set to

Analytical Layer
Optimization Algorithm (MATLAB)

Experimental Layer
Automation/ perform experiments (Python)

|

Core Layer
Data generation - Control System Software (Arduino)

Robotic platform

Component Layer
Sensors, actuators, Control System Hardware (Arduino)

Fig. 1. Hardware and software architecture of the robotic system split into
three distinct layers. The fourth layer represents the coupled optimization step.
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Fig. 2. Photo of the complete experimental setup.

20 min and followed by in-line measurements of viscosity and turbidity
(in Nephelometric Turbidity Units NTU).

The design of the implemented in-line viscometry system follows the
concept of a capillary viscometer. Based on the principles of the Hagen-
Poiseuille equation, the viscosity can hereby be determined by
measuring the pressure drop in a cylindrical pipe at a constant laminar
flow. With Ap representing the pressure drop, # the dynamic viscosity, [
the length of the measurement section, Q the volumetric flow rate and r
the pipe radius, the notation of this fluidic law is the following [Eq. (1)]:

_mrtAp
8.0l

The resulting experimental set-up is illustrated in Fig. 4.

An accurate, constant and pulsation free flow was generated by the
syringe pump (LA-110 from LANDGRAF HLL). A passive non-return
valve with three luer lock connections controlled the varying flow di-
rections of withdrawing and pumping. The geometry of the custom-built
glass-capillary was determined by the following factors: the spatial ca-
pacity under the heating chamber, the necessary conditions of laminar
and fully developed flow, the expected measurement range of the
pressure drop and the prevention of any interaction of fluid particles and
capillary wall. Taking all these aspects into account, the total length of
the capillary was 28 cm, with 10 cm for the inlet section of the hydro-
dynamic flow stabilization and 15 cm for the measurement section itself.
With an inner diameter d; of 0.84 mm and a flow rate of 15 ml/min, the
chosen geometry resulted in a Reynolds number of Re = 385, repre-
senting therefore a laminar flow. As a reference, the values of viscosity
and density p were set to those of water. With the given geometry and
flow conditions, the shear rate was 4296.4 s~'. The capillary was posi-
tioned horizontally at the same height as the syringe and had a
connection for the differential pressure sensor at the beginning and end
of the measuring section. A pressure differences in the range of 0-100
mbar could be measured with the pressure sensor module DRMOD-I2C
from B + B SENSORS. In order to test the functionality of the developed
capillary viscometer, the viscosity of water at different temperatures and
flow rates was measured and compared to literature values. In addition,
nine samples with different WPI and salt concentration were tested in
parallel with the capillary viscometer and modular compact rheometer
from Anton Paar using a double-gap system. Since a shear rate of 4296.4
s71 is too high to be replicated with the double-gap system without
causing turbulence, the highest feasible shear rate was set (around 500
s™1) and the data was fitted with the Sisko model to calculate the infinite
shear viscosity 7, according to Eq. 2.

(€8]

T=cV Hle 7 2

Herein, 7 is the shear stress, 7 the shear rate, c the consistency index
and p the power law index. This model specifically describes the
behavior at high shear rates (Mezger, 2020). Measurement results of the
capillary were below those of the rheometer, due to the strong deviation



D. Becker et al.

Peristaltic
pump

Reservoir for
stock solution

Turbidity sensor

Innovative Food Science and Emerging Technologies 83 (2023) 103232

Syringe pump

Passive valve
|—————— Mixing chamber |

\

Waste

o[mmmm}

GO@@@

ol

Capillary

- Differential

pressure sensor

Fig. 3. Scheme of the subgroups 2) the dosing system, 3) the reaction chamber, 4) viscometry system and 5) turbidity sensor.
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Fig. 4. Experimental set-up of the capillary viscometer.

of the shear rate, but for all samples systematically in line. Therefore,
differences in the viscosity of each sample could be detected with high
reliability, which was critical for the proof of concept.

To measure the turbidity a TST-10 turbidity sensor was integrated in
the system. The sensor operates according to the transmitted light
method, whereby the intensity of the transmitted light through the
sample is measured in an angle of 180°. Installed vertically in the sys-
tem, air bubble free measurement was enabled, as these were rising to
the top and thus out of the relevant measuring section before the mea-
surement started. To minimize the influence of the surrounding light,
the housing was additionally shielded with aluminum foil (not shown in
Fig. 2). The sensor was calibrated with a dilution series based on For-
mazin Standard TURB4000 from Sigma-Aldrich.

To prevent any cross contamination with the former sample, all tubes
and devices were cleaned twice with deionized water after each
experiment.

The accuracy of the pump and motor assembly was determined by
calculating the deviation between the target dosage value and the actual
performed dosing quantity for all experiments, detected by the balance.
In addition, the overall platform accuracy was tested by dosing and
analyzing a randomly selected sample composition four times. The re-
sults are listed in Table 1.

The step size of the dosage of 0.1 g was not exceeded by any as-
sembly. The deviations of the viscosity and turbidity measurements
were also small enough to enable detection of variations between
different sample compositions and therefore prevent a distortion of the
optimization process.

Table 1

2.4.2. Core and experimental layer

Apart from two components (the balance and the syringe pump) the
control for the entire system was realized through Arduino (Arduino
Mega 2560). The balance and the syringe pump were programmed
internally and therefore only required data transfer via R$232. The exact
procedure of an experiment was managed by a custom written program
in Python.

2.5. TSEMO algorithm

In constant exchange with the experimental layer was the analytical
layer. The latter consists of an optimization algorithm named “Thomp-
son sampling efficient multi-objective optimization” (TSEMO) (Brad-
ford, Schweidtmann, & Lapkin, 2018). The TSEMO algorithm solves
expensive black-box problems by using Gaussian processes (GPs) as
surrogates for each objective function (more information about GPs can
be found in Schulz, Speekenbrink, and Krause (2018)). To build the
initial GPs a primary training dataset needs to be provided, which was
done by using Latin hypercube sampling. An initial number of 30 ex-
periments was chosen according to the 10xd rule of thumb, with d rep-
resenting the number of input variables, which are the concentrations of
WPI, NaCl and CaCl, (Loeppky, Sacks, & Welch, 2009).

During the optimization procedure the GPs are trained, and single-
objective Thompson Sampling (TS) is used to sample distinct functions
from the independent GPs using spectral sampling. In a next step the
approximate Pareto set of each sampled function is determined by
implementing the generic algorithm NSGA II, a fast and elitist algorithm
performing non-dominated and crowding distance sorting to obtain a

Accuracy of the dosing system (from 94 experiments) and sample analysis (from four repetitions).

Assembly 1 WPI [g] Assembly 2 NaCl [g]

Assembly 3 CaCl, [g] Viscosity [pPas] Turbidity [NTU]

Average deviation -+0.04 -+0.03

+0.05 +7.1 +5
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Pareto front (Deb, Pratap, Agarwal, & Meyarivan, 2002). The obtained
front contains all possible points for evaluating the objective function in
the following iteration. To choose finally the next sampling point from
this candidate set, the hypervolume quality indicator is used. Hereby the
hypervolume improvement of each point of the candidate set, once
added to the current Pareto front, is calculated. The point that gives the
largest improvement is chosen as the next evaluation point.

2.6. Closed-loop optimization procedure

The optimization problem presented here comprised three input
variables, concentration of WPI, NaCl and CaCl; converted as quantity in
g and was simultaneously optimized with respect to the two objectives
turbidity and viscosity. To create a non-trivial problem with conflicting
objectives, the turbidity was to be maximized and the optimization
problem resulted in the following [Eq. (3)]:

minimize| — NTU, 7 | 3

With respect to the application of a whey protein-salt mixture, this
optimization targeted a formation of a large number of small aggregates.
A general scheme of the workflow is represented in Fig. 5. The robotic
platform and optimization algorithm were coupled and formed a closed-
loop system. At each iteration a sample was mixed from the previously
prepared stock solutions and analyzed regarding viscosity and turbidity.
These measurement data, as well as weighed dosed quantities served as
input for the linked TSEMO algorithm which generated a suggestion for
a new sample composition based on all prior experiments. In the
following iteration step the stock solutions were dosed based on this
suggestion and the entire procedure was repeated until the defined
maximum number of iterations was reached. The stop criterion was set
to a maximum number of 60 iterations. Analytical and experimental
layer communicated via a constantly updating file.

3. Results

The 30 initial data points were analyzed with the robotic platform
and used to initiate the coupled TSEMO algorithm. The optimization
process itself comprised 60 iteration steps, with these being divided into
two runs of 30 samples and a duration of 16 h each run. This division
was intended to prevent any change in the properties of the WPI stock
solution when stored too long at 30 °C. The process was started imme-
diately after preparation of the stock solutions, continued to run over-
night, and stopped automatically after the maximum number of
iterations was reached. On average, the calculation time of each new
predicted sample point took between 10 and 15 s. The results of the
optimization are shown in.

Fig. 6, including the 30 initial sample points and the 60 sample
points predicted by the TSEMO algorithm. A moderate increase in vis-
cosity can be seen on the left side, followed by a strong rise in the values
on the right side. A Pareto front consisting of 18 solutions was formed,
containing 17 points generated by the algorithm and one data point

L

Reaction

Stock solutions

Robotic platform
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Fig. 6. Results of the multi-objective optimization aiming to minimize the
viscosity and maximize the turbidity of a formulation consisting of WPI, NaCl
and CaCl,. The initial LHS size was 30 and the TSEMO algorithm conducted 60
additional experiments.

resulting from the initial data set. All data points of the pareto front are
listed in Table 2. The optimum viscosity value, i.e., the minimum, was
944.66 pPas with a turbidity value of 380.79 NTU. Conversely, a

Table 2

Set of non-dominated solutions that build the pareto front of the optimized data.
The maximal value for the turbidity was achieved in iteration 56 and the min-
imal viscosity value was measured in iteration 33.

Iteration ~ WPI NaCl CaCl,  Viscosity Turbidity
[% [mM]  [mM]  [pPas] [NTU]
w/w]
Training data 26 1.56 39.16 5.84 1046.32 496.94
33 0.99 0.00 1.45 944.66 380.79
36 1.17 15.50 5.89 951.17 450.83
40 2.04 30.66 5.97 1135.71 556.08
41 2.24 26.29 5.98 1165 585.8
44 2.45 78.84 2.77 1221.93 596.42
46 2.19 78.45 3.18 1153.53 574.18
48 3.53 5.91 3.59 1414.61 686.65
Optimization 49 2.35 3.25 5.97 1259.11 640.8
data 52 5.23 0.00 5.35 2190.8 811.18
53 4.96 65.42 4.93 2265.84 831.88
54 1.70 17.90 5.43 1069.82 538.84
55 4.24 87.16 5.81 1936.95 795.1
56 5.11 82.91 5.40 2540.11 853.92
57 4.06 35.90 5.52 1721.27 754.39
58 3.50 5.43 5.75 1511.87 703.09
59 3.50 87.29 6.01 1623.38 747.03
60 3.11 58.73 1.09 1329.23 660.45
TS-EMO
......... »
Z zZ
S =
Max.
iteration VES, STOP

reached
?

Fig. 5. Scheme of the closed-loop optimization workflow where continuous lines represent the material flow, whereas the information flow is represented by

dotted lines.
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viscosity of 2540.11 pPas was measured at the optimum turbidity value
of 853.92 NTU. These values point out the trade-off between the two
objectives, thus an increase in turbidity is always correlated with an
increase in viscosity.

The TSEMO algorithm also reports the values of the final hyper-
parameters, presented in Table 3. Hyperparameters are included in the
surrogate GP models and provide qualitative process information. The
hyperparameters 14 correspond to the input variables and reveal the
relevance of each. A lower value of 14 indicates a greater contribution to
the objective (Bradford et al., 2018).

The final hyperparameters of the decision variables show, that WPI
has the highest contribution to both objectives, closely followed by
CaCly in the case for the turbidity. NaCl, on the other hand, has a less
significant impact.

In order to gain further information about the effect of each ingre-
dient, the turbidity and viscosity values are visualized as a function of
the sample composition in Figs. 7 and 8 respectively.

As indicated in Fig. 7, the sample with the lowest measured turbidity
value was composed of 1% w/w WPI and 0 mM NacCl, which is the limit
of the lower bound for both ingredients. The concentration of CaCly was
hereby 1.45 mM. The sample having the highest turbidity value was
mixed out of 5.1% w/w WPI, 83 mM NaCl and 5.4 mM CaCl,. The
turbidity profile of all points along the z-axis indicates that varying the
concentration of NaCl between 0 and 90 mM has little effect on this
objective. In contrast, an increase of the WPI concentration results in a
large increase of the turbidity. The CaCl, concentration also shows an
increasing effect on the turbidity of the sample. In addition, the distri-
bution of data points in the design space reveals the trend with which the
algorithm has chosen the sample composition. The positioning of the
points on the WPI-CaCl, plane shows a diagonal progression from [0%
w/w, 0 mM] to [6% w/w, 6 mM], whereby the concentration of NaCl
increases the more the sample is located near the latter point.

In Fig. 8, the measured viscosity values are represented. The point
with the lowest viscosity also had the lowest turbidity and thus the
composition was identical: 1% w/w WPI, 0 mM NaCl and 1.45 mM
CaCly. The highest measured viscosity value was at 2554.26 pPas with a
sample composition of 5.4% w/w WPI, 50 mM NaCl and 6.1 mM CaCl,.
When considering the color gradient of all data points, the concentration
of WPI shows a strong influence on the viscosity. The influence of CaCl,
is not clearly detectable from this plot. There seems to be an enhancing
effect with an increase of CaCly concentration, but the color pattern is
not consistent especially in the range of higher CaCly concentrations.
The concentration of NaCl shows a low effect on the viscosity.

4. Discussion

The visualization of the results in Figs. 7 and 8 does not give an
obvious indication of the correlations between the components of the
formulation and the respective objective. This shows that even the non-
complex system chosen here cannot be considered as trivial. By means of
the information obtained by the hyperparameters, a reduction of
complexity is possible with NaCl not being further considered as an
influencing factor.

In Fig. 9a, the turbidity is plotted as a function of the protein con-
centration, including the range of CaCly concentration in form of a
scatter plot. Darker points in blue indicate a low salt concentration,
while light point in yellow indicate a high concentration. A clear cor-
relation between the WPI concentration and the turbidity values can be

Table 3
The hyperparameters Aq of the GP models for each objective after 60 iterations.
Turbidity Viscosity
Awpr 29.65 10.93
ANacl 56.99 31.09

Acact, 30.04 18.88
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Fig. 7. Scatter plot visualizing the dependency of the turbidity on the three
ingredients of the studied formulation, showing the 60 optimization sam-
ple points.
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Fig. 8. Scatter plot visualizing the dependency of the viscosity on the three
ingredients of the studied formulation, showing the 60 optimization sam-
ple points.

detected, characterized by a strong increase of the turbidity at WPI
concentrations between 1 and 4% w/w. The color gradient, representing
the different CaCl, concentrations, reveals once more the influence of
the salt addition. At the same level of WPI concentration, a higher salt
addition leads to an increase in turbidity. This effect seems to be more
pronounced for samples with a higher protein content. Fig. 9b shows the
viscosity as a function of the WPI concentration. The viscosity increases
exponentially with the protein concentration. The influence of CaCly is
less pronounced here and only detectable when having WPI concen-
trations above 4.5% w/w in the sample.

The following conclusions can be drawn from the graphical
illustrations:

1) As indicated by the hyperparameters in Table 3, the WPI concen-
tration has the strongest effect on both objectives. Turbidity as well
as viscosity increase with increasing protein concentration, but a
different course of the correlation is observed. While the viscosity
increases exponentially with increasing WPI addition, the trend of
turbidity shows an attenuation of the increase at WPI concentrations
>3.5% w/w.

2) The addition of CaCl, has an increasing effect on turbidity when
comparing samples with the same WPI concentration. The effect
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Fig. 9. Scatter plots presenting a) the turbidity and b) the viscosity as a function of the WPI concentration. The visualization of the corresponding CaCl, concen-

tration of each sample point is included by a colormap.

increases with increasing WPI concentration. An influence on vis-
cosity is not so clearly detectable and if so, then only in areas of high
WPI concentration (> 4.5% w/w). These results are as well in cor-
relation with the hyperparameters, which revealed a higher rele-
vance of WPI compared to CaCl,, especially for the viscosity.

No effect on both objectives is detectable for the studied range of
NaCl (0-90 mM). Also in this case, hyperparameters and experi-
mental data come to the same conclusion.

3

—

That both objectives increase with increasing WPI concentration is
consistent with observations given in literature. Inthavong, Kharlamova,
Nicolai, and Chassenieux (2016) studied the effect of fractal aggregates
from heated p-lactoglobulin solutions on the viscosity and reported an
exponential increase of the viscosity with the protein concentration for a
given aggregate size. In addition, the increase was steeper for larger
aggregates due their lower density (Inthavong et al., 2016). As the
turbidity depends on the volume fraction of the protein, it is therefore
increasing with a higher WPI concentration. With CaCl, addition, the
electrostatic repulsion between the primary filament protein aggregates
is shielded, resulting in larger aggregates. Those larger aggregated fil-
aments scatter light more effectively than the primary filaments, which
causes an increase in turbidity (McClements & Keogh, 1995). The in-
crease in turbidity at higher CaCl, concentrations (as seen in Fig. 9a) is
therefore due formation of larger aggregates. The influence of CaCly,
hence formation of large aggregates, seems to be particularly pro-
nounced above a WPI concentration of about 3.5-4.5% w/w. Both plots
in Fig. 9 show larger deviations between samples with low and high
CaCl; content, starting from these values. The effect on the aggregation
rate and particle size of the monovalent salt NaCl is much less strong,
compared to the divalent salt CaCl,. The latter promotes the aggregation
faster and at lower concentrations, due to the higher valency of the
counterion and therefore greater screening power (Bryant & McCle-
ments, 2000; Jeyarajah & Allen, 1994). In the case of mixed salt addi-
tion, the bivalent cation determines furthermore the aggregation
characteristics (Kuhn & Foegeding, 1991). The upper bound of 90 mM
for NaCl used in this study might not be high enough to show an effect on
the aggregation.

5. Conclusion

In conclusion a fully automated closed-loop system for the optimi-
zation of liquid formulations could be developed, by coupling robotic
experiments with a machine learning algorithm. This time- and
resource-saving methodology enabled the identification of a set of

optimal solutions without human intervention. The outcome shows the
great potential of implementing active learning and automation during
the development of food products and food ingredients, especially at the
early stages. The gained knowledge about the prevailing effects in
complex systems can be derived, and used to guide further research,
reduce complexity and support the transition from laboratory scale to
production scale.
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