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A B S T R A C T   

The creation and optimization of formulated products represents a major challenge for science and industry in 
the food sector. Thereby, different raw materials are mixed and processed to meet predefined and often 
competing targets. During this procedure, applied experimental campaigns not only require expert knowledge, 
but, depending on the complexity, also cause a high consumption of resources and costs. In the present work, a 
fully automized milli-fluidic laboratory driven by the Thomsen sampling efficient multiobjective optimization 
(TSEMO) algorithm was designed. The methodology was successfully applied to optimize the aggregation process 
of a liquid formulation consisting of whey protein isolate, NaCl and CaCl2. Within 48 h 90 experiments could be 
performed without human intervention, resulting in a Pareto front formed by a set of 18 optimal recipes. It is thus 
a successful demonstration of an actively learning, self-driving food formulation process.   

1. Introduction 

Formulation strategies are used in various applications and stages 
during the development of food products, recipes, or ingredients. 
Thereby the formulated product can serve as a raw material for products 
of greater value or be the final product itself. For both cases, the 
formulation process can be described as a simple concept including the 
mixing of components with the objective to obtain a certain function
ality. In reality, formulated product design represents a complex and 
challenging task, once considering the possible interaction of the com
ponents at the molecular level and the influence of the process condi
tions. Additionally, factors such as consumer preferences, costs and 
sustainability often need to be taken into account (Pathania, Bhatia, & 
Tiwari, 2021). The ultimate objective of any formulation development, 
no matter of the application, is to generate a product that performs ac
cording to the intended targets. Therefore, the main goal in formulation 
optimization is to identify the best level of each component, their effect 
and, if required, the critical processing variables (Arteaga, Li-Chan, 
Vazquez-Arteaga, & Nakai, 1994). 

The optimization procedure requires often labor-intensive experi
ments, as well as the involvement of specialists with extensive experi
ence regarding the product under consideration. Although experiments 

and expert knowledge can often lead to success, this approach reaches 
its limits when developing products with increased complexity (e.g., 
more than four input variables). It is almost impossible to screen all 
potential ingredients, their interaction and modification during a pro
cess, not even considering possible influencing parameters of the 
manufacturing technologies and operating conditions. Resulting 
empirical or semi-empirical models provide therefore in some cases only 
an insufficiently accurate prediction. 

One approach to address this limitation is the implementation of 
more system-aided techniques. In the case of multiple targets so called 
multi-objective optimization algorithms (MOOAs) are used. The relation 
between input and output is hereby described by objective functions, 
whereby one objective function exists for each objective, i.e., the tar
geted properties. The objective functions can be divided into fast or slow 
to compute (i.e., cheap or expensive) and analytic or Black-Box (Muel
ler, 2022). A Black-box function is a function, for which neither the 
analytical form (e.g., linear or quadratic) nor any gradient information is 
known. When solving an expensive Black-box optimization problem, 
surrogate models and active learning are therefore implemented. Sur
rogate models are data driven and computationally cheap approxima
tions of the unknown expensive objective function (Booker, Dennis Jr, 
Serafini, Torczon, & Trosset, 1999). Active learning is a subfield of 
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machine learning, using sequential sampling, and the learning algorithm 
can choose the data from which it learns (Settles, 2009). The sequential 
sampling technique is thereby based on two concepts: exploration and 
exploitation. While exploration aims to reduce uncertainties by covering 
poorly sampled areas in the design space, exploitation focuses on 
already highly sampled regions to refine the predictive model locally. 
The active learning algorithm determines the next sample point by 
trading-off both concepts. This technique, combined with the integra
tion of system knowledge during the sample generation, leads to better 
approximations of the system by avoiding under- or oversampling. 

The optimization process starts with an initial training data set to 
build the surrogate model. This model is used in a next step to select the 
next sample point in the experimental space to be evaluated. Subse
quently, the data set is updated, and the surrogate model trained with 
the gained new information. These steps, surrogate model training and 
selection/ evaluation of new data point, are repeated until a predefined 
stop criterion is reached, e.g., the maximum number of samples 
(Mueller, 2022). The multiple objectives in formulation optimization 
problems are typically opposing, what makes it rarely possible to find a 
unique solution being overall optimal. Instead, the aim of MOOAs is to 
identify a set of solutions that represent an optimal trade-off between the 
different objectives, termed as Pareto set or Pareto front (Censor, 1977). 
Since such a Pareto set is often infinite and the entire front cannot be 
generated analytically, the aim of MOOAs is to find an approximation 
with a finite number of points. 

In the field of chemical engineering, machine learning (ML)-based 
modeling could be applied successfully to solve nontrivial formulation 
optimization problems. Current studies in the field of chemical engi
neering implemented the Thompson sampling efficient multi-objective 
algorithm (TSEMO) for multi-target optimization with continuous 
input and output variables (Cao et al., 2021; Clayton et al., 2020; Knox, 
Parkinson, Wilding, Bourne, & Warren, 2022; Schweidtmann et al., 
2018). 

Besides accurate models with high prediction power, the generation 
of a large number of repeatable and robust data is a key element for an 
efficient and fast optimization of formulated products. However, the 
creation of large data sets usually involves routine operations, which 
imply a high risk of human influence and error during routine opera
tions. Often, environmental conditions, notably the temperature, also 
have a major impact on the results. These challenges can be overcome by 
adopting automated high-throughput experiments using robotics. A 
successful adoption of such systems can be found in chemical and 
pharmaceutical engineering (Fricke et al., 2013; Salley, Keenan, Long, 
Bell, & Cronin, 2020). 

Formulations containing proteins are an example of complex opti
mization problems. Whether as an ingredient for protein-enriched foods 
or as an additive to improve the properties of a final product, proteins 
are of major interest in the development of new products. The functional 
application of whey protein isolate (WPI) is particularly reasoned by the 
water-binding and gelling capacity and their ability to stabilize in
terfaces in foams and emulsions (Boland, 2011). Due to these properties 
WPI is used to achieve desired structural and sensory characteristics in a 
wide range of food products. However, whey protein in its native form is 
not commonly used, as it has a compact globular structure and a small 
molecular weight (Fitzsimons, Mulvihill, & Morris, 2008). Instead, the 
use of polymerized whey protein (PWP) is preferred. In function of the 
applied heat treatment the molecular structure of the protein is hereby 
modified including unfolding, denaturation, and the formation of stable 
soluble protein aggregates. The latter are referred to as whey protein 
aggregates (WPA). Size, shape, and structure of the WPAs after the 
preprocessing are depending on the heating protocol, the protein con
centration, the pH and the concentration and type of the salts added 
(Nicolai, Britten, & Schmitt, 2011). One procedure to generate such 
WPAs is the salt-induced cold-set aggregation. The whey protein is in a 
first step thermally processed to prepare a heat-denatured protein so
lution containing small and soluble primary aggregates with filamentous 

type structure and irreversible bonds (Baussay, Le Bon, Nicolai, Durand, 
& Busnel, 2004; Bryant & McClements, 1998). Once cooled, this step is 
followed by the induction of further aggregation by adding salt. The salt 
ions decrease hereby the electrostatic repulsion by neutralizing the 
charged surface of the protein molecules (Petit, Herbig, Moreau, & 
Delaplace, 2011; Schmitt, Bovay, Rouvet, Shojaei-Rami, & Kolodziejc
zyk, 2007). 

A commonly used method for monitoring the aggregation process is 
the measurement of turbidity. Hereby an increasing turbidity can be 
detected due to the formation of aggregates that are large enough to 
scatter light (approx. > 100 nm) (Bryant & McClements, 2000). The 
turbidity depends on the number of aggregates as well as on their size 
and scattering efficiency (McClements & Keogh, 1995). For solutions 
with a protein concentration below the critical gelation concentration Cg 
the aggregation can be monitored as well with viscosity measurements. 
Hereby the viscosity increases due to the larger effective volume fraction 
of the aggregates compared to the individual molecules (Vardhanabhuti 
& Foegeding, 1999). 

At the present stage of formulation processing, it is necessary to 
constantly adapt the ingredient concentrations in order to maintain 
consistent product quality and properties. In this study, a milli-fluidic 
robotic platform was therefore developed for fully automated dosing, 
mixing and analyzes of a liquid formulation. The platform was linked to 
an optimization algorithm TSEMO, forming a closed-loop system to 
optimize the salt induced cold-set aggregation process of whey protein 
isolate regarding two continuous targets, i.e. viscosity and turbidity. The 
chosen formulation has a moderate complexity and is scientifically well 
researched. Therefore, the objective of this work was to use this 
formulation as a proof of concept in order to apply such optimization 
systems to more complex problems in the future. 

2. Materials and methods 

2.1. Case study and materials for stock solutions 

The studied and optimized case was a formulation consisting of a 
whey protein isolate (BiPRO 9500, lot JE 0148–20-420) and two salts, i. 
e., sodium chloride (ACS reagent, ≥99%) and calcium chloride (calcium 
chloride dihydrate, ACS reagent, ≥99%). All raw materials came in dry 
form and were dissolved in deionized water with a conductivity of 1.2 
μS/cm. The WPI powder contains on a dry basis 98% protein, whereby 
the composition is about 80% beta-lactoglobulin and 20% alpha- 
lactalbumin in a very native and soluble state. 

2.2. Experimental space 

The limits of the experimental space were set based on literature 
references, with the aim to prevent any gel formation in the samples 
(Baussay et al., 2004; Purwanti et al., 2011). Accordingly, the following 
lower and upper bounds were determined: 1–6% w/w WPI, 0–90 mM 
NaCl and 0–6 mM CaCl2. The resolution of the dosing of each ingredient, 
i.e., the concentration increase per dosing step, was 0.06% w/w for WPI, 
3 mM for NaCl and 0.2 Mm for CaCl2. 

2.3. Preparation of stock solutions 

In a first step a WPI stock solution of 10% w/w was prepared by 
dispersing the WPI powder in deionized water. Bacterial growth was 
prevented by adding Sodium Azide (0.02%) to the solution. The 
dispersion was then stirred at room temperature (20–23 ◦C) for two 
hours and left at 4 ◦C for 16 h to ensure complete hydration. The 
measured pH of the untreated WPI solution after stirring was 6.9–6.93. 
In a second step, the WPI solution was preheated without stirring in a 
water bath to 60 ◦C, followed by a heating procedure in an oil bath at 
85 ◦C for 15 min with gentle stirring (40 rpm). The time it took to reach 
85 ◦C was 10 min. After these heat treatments, the solution was cooled in 
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ice water to 30 ◦C, which took around 5 min. The salt solutions were 
each mixed with deionized water and stirred at room temperature until 
they were completely dissolved. Before each experiment run, the solu
tions were preheated to 30 ◦C. 

2.4. Robotic platform 

The robotic platform was designed as a continuous flow through 
system in a milli-fluidic scale to reduce the needed sample quantity and 
therefore waste. In addition, in-line and real-time measurement tech
nologies for the aggregation monitoring were implemented to avoid any 
human intervention. The platform can be divided into three layers as 
represented in Fig. 1. The basis forms the component layer, which 
consists of all hardware elements, i.e., sensors and actuators. Center
piece of the robotic system is the core layer, containing the control 
software for interfacing with the hardware elements and enabling data 
generation. The complete sequence of an experiment is stored in the 
experimental layer, which interfaces with the core layer in order to 
perform the desired commands. Not part of the robotics platform, but 
connected to the experimental layer, is the analytical layer, which 
contains the optimization algorithm (see section 2.5). 

2.4.1. Component layer 
To ensure a constant operating temperature of 30 ◦C all components 

of the component layer were designed or selected in terms of their di
mensions such that they fitted under a heatingamber CERTOMAT® HK 
from Sartorius. Fig. 2 shows a picture of the complete experimental 
setup. A supplementary overview of all components and a scheme in top 
view of the robotic platform are given in Fig. 3. 

Each reservoir of stock solution or deionized water was coupled with 
an assembly of peristaltic pumps driven by stepper motors, with a res
olution of 0.1 g per step. In order to achieve a higher accuracy and to 
avoid errors during the dosing, the quantities dispensed by the motor- 
pump assembly were counter-checked by a balance. All stock solutions 
were directly dispensed into a reaction vial, with a total quantity of each 
sample fixed to 15 g. The vial was made of glass and held by a 3D printed 
stand which enabled a stable positioning on the balance. An outlet at the 
bottom allowed complete emptying, controlled by a normally closed 
micro electric solenoid valve. To detect the temperature of the mixed 
solution a temperature sensor was places in the vial. A complete mixing 
of the dosed stock solutions was ensured by implementing a micro 
surface stirrer adjusted to a speed of 60 rpm. The mixing time was set to 

20 min and followed by in-line measurements of viscosity and turbidity 
(in Nephelometric Turbidity Units NTU). 

The design of the implemented in-line viscometry system follows the 
concept of a capillary viscometer. Based on the principles of the Hagen- 
Poiseuille equation, the viscosity can hereby be determined by 
measuring the pressure drop in a cylindrical pipe at a constant laminar 
flow. With Δp representing the pressure drop, η the dynamic viscosity, l 
the length of the measurement section, Q the volumetric flow rate and r 
the pipe radius, the notation of this fluidic law is the following [Eq. (1)]: 

η =
π⋅r4⋅Δp

8⋅Q⋅l
(1) 

The resulting experimental set-up is illustrated in Fig. 4. 
An accurate, constant and pulsation free flow was generated by the 

syringe pump (LA-110 from LANDGRAF HLL). A passive non-return 
valve with three luer lock connections controlled the varying flow di
rections of withdrawing and pumping. The geometry of the custom-built 
glass-capillary was determined by the following factors: the spatial ca
pacity under the heating chamber, the necessary conditions of laminar 
and fully developed flow, the expected measurement range of the 
pressure drop and the prevention of any interaction of fluid particles and 
capillary wall. Taking all these aspects into account, the total length of 
the capillary was 28 cm, with 10 cm for the inlet section of the hydro
dynamic flow stabilization and 15 cm for the measurement section itself. 
With an inner diameter di of 0.84 mm and a flow rate of 15 ml/min, the 
chosen geometry resulted in a Reynolds number of Re = 385, repre
senting therefore a laminar flow. As a reference, the values of viscosity 
and density ρ were set to those of water. With the given geometry and 
flow conditions, the shear rate was 4296.4 s− 1. The capillary was posi
tioned horizontally at the same height as the syringe and had a 
connection for the differential pressure sensor at the beginning and end 
of the measuring section. A pressure differences in the range of 0–100 
mbar could be measured with the pressure sensor module DRMOD-I2C 
from B + B SENSORS. In order to test the functionality of the developed 
capillary viscometer, the viscosity of water at different temperatures and 
flow rates was measured and compared to literature values. In addition, 
nine samples with different WPI and salt concentration were tested in 
parallel with the capillary viscometer and modular compact rheometer 
from Anton Paar using a double-gap system. Since a shear rate of 4296.4 
s− 1 is too high to be replicated with the double-gap system without 
causing turbulence, the highest feasible shear rate was set (around 500 
s− 1) and the data was fitted with the Sisko model to calculate the infinite 
shear viscosity η∞, according to Eq. 2. 

τ = c⋅γ̇p + η∞⋅γ̇ (2) 

Herein, τ is the shear stress, γ̇ the shear rate, c the consistency index 
and p the power law index. This model specifically describes the 
behavior at high shear rates (Mezger, 2020). Measurement results of the 
capillary were below those of the rheometer, due to the strong deviation Fig. 1. Hardware and software architecture of the robotic system split into 

three distinct layers. The fourth layer represents the coupled optimization step. 

Fig. 2. Photo of the complete experimental setup.  

D. Becker et al.                                                                                                                                                                                                                                  



Innovative Food Science and Emerging Technologies 83 (2023) 103232

4

of the shear rate, but for all samples systematically in line. Therefore, 
differences in the viscosity of each sample could be detected with high 
reliability, which was critical for the proof of concept. 

To measure the turbidity a TST-10 turbidity sensor was integrated in 
the system. The sensor operates according to the transmitted light 
method, whereby the intensity of the transmitted light through the 
sample is measured in an angle of 180◦. Installed vertically in the sys
tem, air bubble free measurement was enabled, as these were rising to 
the top and thus out of the relevant measuring section before the mea
surement started. To minimize the influence of the surrounding light, 
the housing was additionally shielded with aluminum foil (not shown in 
Fig. 2). The sensor was calibrated with a dilution series based on For
mazin Standard TURB4000 from Sigma-Aldrich. 

To prevent any cross contamination with the former sample, all tubes 
and devices were cleaned twice with deionized water after each 
experiment. 

The accuracy of the pump and motor assembly was determined by 
calculating the deviation between the target dosage value and the actual 
performed dosing quantity for all experiments, detected by the balance. 
In addition, the overall platform accuracy was tested by dosing and 
analyzing a randomly selected sample composition four times. The re
sults are listed in Table 1. 

The step size of the dosage of 0.1 g was not exceeded by any as
sembly. The deviations of the viscosity and turbidity measurements 
were also small enough to enable detection of variations between 
different sample compositions and therefore prevent a distortion of the 
optimization process. 

2.4.2. Core and experimental layer 
Apart from two components (the balance and the syringe pump) the 

control for the entire system was realized through Arduino (Arduino 
Mega 2560). The balance and the syringe pump were programmed 
internally and therefore only required data transfer via RS232. The exact 
procedure of an experiment was managed by a custom written program 
in Python. 

2.5. TSEMO algorithm 

In constant exchange with the experimental layer was the analytical 
layer. The latter consists of an optimization algorithm named “Thomp
son sampling efficient multi-objective optimization” (TSEMO) (Brad
ford, Schweidtmann, & Lapkin, 2018). The TSEMO algorithm solves 
expensive black-box problems by using Gaussian processes (GPs) as 
surrogates for each objective function (more information about GPs can 
be found in Schulz, Speekenbrink, and Krause (2018)). To build the 
initial GPs a primary training dataset needs to be provided, which was 
done by using Latin hypercube sampling. An initial number of 30 ex
periments was chosen according to the 10xd rule of thumb, with d rep
resenting the number of input variables, which are the concentrations of 
WPI, NaCl and CaCl2 (Loeppky, Sacks, & Welch, 2009). 

During the optimization procedure the GPs are trained, and single- 
objective Thompson Sampling (TS) is used to sample distinct functions 
from the independent GPs using spectral sampling. In a next step the 
approximate Pareto set of each sampled function is determined by 
implementing the generic algorithm NSGA II, a fast and elitist algorithm 
performing non-dominated and crowding distance sorting to obtain a 

Fig. 3. Scheme of the subgroups 2) the dosing system, 3) the reaction chamber, 4) viscometry system and 5) turbidity sensor.  

Fig. 4. Experimental set-up of the capillary viscometer.  

Table 1 
Accuracy of the dosing system (from 94 experiments) and sample analysis (from four repetitions).   

Assembly 1 WPI [g] Assembly 2 NaCl [g] Assembly 3 CaCl2 [g] Viscosity [μPas] Turbidity [NTU] 

Average deviation +0.04 +0.03 +0.05 ±7.1 ±5  
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Pareto front (Deb, Pratap, Agarwal, & Meyarivan, 2002). The obtained 
front contains all possible points for evaluating the objective function in 
the following iteration. To choose finally the next sampling point from 
this candidate set, the hypervolume quality indicator is used. Hereby the 
hypervolume improvement of each point of the candidate set, once 
added to the current Pareto front, is calculated. The point that gives the 
largest improvement is chosen as the next evaluation point. 

2.6. Closed-loop optimization procedure 

The optimization problem presented here comprised three input 
variables, concentration of WPI, NaCl and CaCl2 converted as quantity in 
g and was simultaneously optimized with respect to the two objectives 
turbidity and viscosity. To create a non-trivial problem with conflicting 
objectives, the turbidity was to be maximized and the optimization 
problem resulted in the following [Eq. (3)]: 

minimize[ − NTU, η ] (3) 

With respect to the application of a whey protein-salt mixture, this 
optimization targeted a formation of a large number of small aggregates. 
A general scheme of the workflow is represented in Fig. 5. The robotic 
platform and optimization algorithm were coupled and formed a closed- 
loop system. At each iteration a sample was mixed from the previously 
prepared stock solutions and analyzed regarding viscosity and turbidity. 
These measurement data, as well as weighed dosed quantities served as 
input for the linked TSEMO algorithm which generated a suggestion for 
a new sample composition based on all prior experiments. In the 
following iteration step the stock solutions were dosed based on this 
suggestion and the entire procedure was repeated until the defined 
maximum number of iterations was reached. The stop criterion was set 
to a maximum number of 60 iterations. Analytical and experimental 
layer communicated via a constantly updating file. 

3. Results 

The 30 initial data points were analyzed with the robotic platform 
and used to initiate the coupled TSEMO algorithm. The optimization 
process itself comprised 60 iteration steps, with these being divided into 
two runs of 30 samples and a duration of 16 h each run. This division 
was intended to prevent any change in the properties of the WPI stock 
solution when stored too long at 30 ◦C. The process was started imme
diately after preparation of the stock solutions, continued to run over
night, and stopped automatically after the maximum number of 
iterations was reached. On average, the calculation time of each new 
predicted sample point took between 10 and 15 s. The results of the 
optimization are shown in. 

Fig. 6, including the 30 initial sample points and the 60 sample 
points predicted by the TSEMO algorithm. A moderate increase in vis
cosity can be seen on the left side, followed by a strong rise in the values 
on the right side. A Pareto front consisting of 18 solutions was formed, 
containing 17 points generated by the algorithm and one data point 

resulting from the initial data set. All data points of the pareto front are 
listed in Table 2. The optimum viscosity value, i.e., the minimum, was 
944.66 μPas with a turbidity value of 380.79 NTU. Conversely, a 

Fig. 5. Scheme of the closed-loop optimization workflow where continuous lines represent the material flow, whereas the information flow is represented by 
dotted lines. 

Fig. 6. Results of the multi-objective optimization aiming to minimize the 
viscosity and maximize the turbidity of a formulation consisting of WPI, NaCl 
and CaCl2. The initial LHS size was 30 and the TSEMO algorithm conducted 60 
additional experiments. 

Table 2 
Set of non-dominated solutions that build the pareto front of the optimized data. 
The maximal value for the turbidity was achieved in iteration 56 and the min
imal viscosity value was measured in iteration 33.   

Iteration WPI 
[% 
w/w] 

NaCl 
[mM] 

CaCl2 

[mM] 
Viscosity 
[μPas] 

Turbidity 
[NTU] 

Training data 26 1.56 39.16 5.84 1046.32 496.94 

Optimization 
data 

33 0.99 0.00 1.45 944.66 380.79 
36 1.17 15.50 5.89 951.17 450.83 
40 2.04 30.66 5.97 1135.71 556.08 
41 2.24 26.29 5.98 1165 585.8 
44 2.45 78.84 2.77 1221.93 596.42 
46 2.19 78.45 3.18 1153.53 574.18 
48 3.53 5.91 3.59 1414.61 686.65 
49 2.35 3.25 5.97 1259.11 640.8 
52 5.23 0.00 5.35 2190.8 811.18 
53 4.96 65.42 4.93 2265.84 831.88 
54 1.70 17.90 5.43 1069.82 538.84 
55 4.24 87.16 5.81 1936.95 795.1 
56 5.11 82.91 5.40 2540.11 853.92 
57 4.06 35.90 5.52 1721.27 754.39 
58 3.50 5.43 5.75 1511.87 703.09 
59 3.50 87.29 6.01 1623.38 747.03 
60 3.11 58.73 1.09 1329.23 660.45  
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viscosity of 2540.11 μPas was measured at the optimum turbidity value 
of 853.92 NTU. These values point out the trade-off between the two 
objectives, thus an increase in turbidity is always correlated with an 
increase in viscosity. 

The TSEMO algorithm also reports the values of the final hyper
parameters, presented in Table 3. Hyperparameters are included in the 
surrogate GP models and provide qualitative process information. The 
hyperparameters λd correspond to the input variables and reveal the 
relevance of each. A lower value of λd indicates a greater contribution to 
the objective (Bradford et al., 2018). 

The final hyperparameters of the decision variables show, that WPI 
has the highest contribution to both objectives, closely followed by 
CaCl2 in the case for the turbidity. NaCl, on the other hand, has a less 
significant impact. 

In order to gain further information about the effect of each ingre
dient, the turbidity and viscosity values are visualized as a function of 
the sample composition in Figs. 7 and 8 respectively. 

As indicated in Fig. 7, the sample with the lowest measured turbidity 
value was composed of 1% w/w WPI and 0 mM NaCl, which is the limit 
of the lower bound for both ingredients. The concentration of CaCl2 was 
hereby 1.45 mM. The sample having the highest turbidity value was 
mixed out of 5.1% w/w WPI, 83 mM NaCl and 5.4 mM CaCl2. The 
turbidity profile of all points along the z-axis indicates that varying the 
concentration of NaCl between 0 and 90 mM has little effect on this 
objective. In contrast, an increase of the WPI concentration results in a 
large increase of the turbidity. The CaCl2 concentration also shows an 
increasing effect on the turbidity of the sample. In addition, the distri
bution of data points in the design space reveals the trend with which the 
algorithm has chosen the sample composition. The positioning of the 
points on the WPI-CaCl2 plane shows a diagonal progression from [0% 
w/w, 0 mM] to [6% w/w, 6 mM], whereby the concentration of NaCl 
increases the more the sample is located near the latter point. 

In Fig. 8, the measured viscosity values are represented. The point 
with the lowest viscosity also had the lowest turbidity and thus the 
composition was identical: 1% w/w WPI, 0 mM NaCl and 1.45 mM 
CaCl2. The highest measured viscosity value was at 2554.26 μPas with a 
sample composition of 5.4% w/w WPI, 50 mM NaCl and 6.1 mM CaCl2. 
When considering the color gradient of all data points, the concentration 
of WPI shows a strong influence on the viscosity. The influence of CaCl2 
is not clearly detectable from this plot. There seems to be an enhancing 
effect with an increase of CaCl2 concentration, but the color pattern is 
not consistent especially in the range of higher CaCl2 concentrations. 
The concentration of NaCl shows a low effect on the viscosity. 

4. Discussion 

The visualization of the results in Figs. 7 and 8 does not give an 
obvious indication of the correlations between the components of the 
formulation and the respective objective. This shows that even the non- 
complex system chosen here cannot be considered as trivial. By means of 
the information obtained by the hyperparameters, a reduction of 
complexity is possible with NaCl not being further considered as an 
influencing factor. 

In Fig. 9a, the turbidity is plotted as a function of the protein con
centration, including the range of CaCl2 concentration in form of a 
scatter plot. Darker points in blue indicate a low salt concentration, 
while light point in yellow indicate a high concentration. A clear cor
relation between the WPI concentration and the turbidity values can be 

detected, characterized by a strong increase of the turbidity at WPI 
concentrations between 1 and 4% w/w. The color gradient, representing 
the different CaCl2 concentrations, reveals once more the influence of 
the salt addition. At the same level of WPI concentration, a higher salt 
addition leads to an increase in turbidity. This effect seems to be more 
pronounced for samples with a higher protein content. Fig. 9b shows the 
viscosity as a function of the WPI concentration. The viscosity increases 
exponentially with the protein concentration. The influence of CaCl2 is 
less pronounced here and only detectable when having WPI concen
trations above 4.5% w/w in the sample. 

The following conclusions can be drawn from the graphical 
illustrations: 

1) As indicated by the hyperparameters in Table 3, the WPI concen
tration has the strongest effect on both objectives. Turbidity as well 
as viscosity increase with increasing protein concentration, but a 
different course of the correlation is observed. While the viscosity 
increases exponentially with increasing WPI addition, the trend of 
turbidity shows an attenuation of the increase at WPI concentrations 
>3.5% w/w.  

2) The addition of CaCl2 has an increasing effect on turbidity when 
comparing samples with the same WPI concentration. The effect 

Table 3 
The hyperparameters λd of the GP models for each objective after 60 iterations.   

Turbidity Viscosity 

λWPI 29.65 10.93 
λNaCl 56.99 31.09 
λCaCl2 

30.04 18.88  

Fig. 7. Scatter plot visualizing the dependency of the turbidity on the three 
ingredients of the studied formulation, showing the 60 optimization sam
ple points. 

Fig. 8. Scatter plot visualizing the dependency of the viscosity on the three 
ingredients of the studied formulation, showing the 60 optimization sam
ple points. 
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increases with increasing WPI concentration. An influence on vis
cosity is not so clearly detectable and if so, then only in areas of high 
WPI concentration (> 4.5% w/w). These results are as well in cor
relation with the hyperparameters, which revealed a higher rele
vance of WPI compared to CaCl2, especially for the viscosity.  

3) No effect on both objectives is detectable for the studied range of 
NaCl (0–90 mM). Also in this case, hyperparameters and experi
mental data come to the same conclusion. 

That both objectives increase with increasing WPI concentration is 
consistent with observations given in literature. Inthavong, Kharlamova, 
Nicolai, and Chassenieux (2016) studied the effect of fractal aggregates 
from heated β-lactoglobulin solutions on the viscosity and reported an 
exponential increase of the viscosity with the protein concentration for a 
given aggregate size. In addition, the increase was steeper for larger 
aggregates due their lower density (Inthavong et al., 2016). As the 
turbidity depends on the volume fraction of the protein, it is therefore 
increasing with a higher WPI concentration. With CaCl2 addition, the 
electrostatic repulsion between the primary filament protein aggregates 
is shielded, resulting in larger aggregates. Those larger aggregated fil
aments scatter light more effectively than the primary filaments, which 
causes an increase in turbidity (McClements & Keogh, 1995). The in
crease in turbidity at higher CaCl2 concentrations (as seen in Fig. 9a) is 
therefore due formation of larger aggregates. The influence of CaCl2, 
hence formation of large aggregates, seems to be particularly pro
nounced above a WPI concentration of about 3.5–4.5% w/w. Both plots 
in Fig. 9 show larger deviations between samples with low and high 
CaCl2 content, starting from these values. The effect on the aggregation 
rate and particle size of the monovalent salt NaCl is much less strong, 
compared to the divalent salt CaCl2. The latter promotes the aggregation 
faster and at lower concentrations, due to the higher valency of the 
counterion and therefore greater screening power (Bryant & McCle
ments, 2000; Jeyarajah & Allen, 1994). In the case of mixed salt addi
tion, the bivalent cation determines furthermore the aggregation 
characteristics (Kuhn & Foegeding, 1991). The upper bound of 90 mM 
for NaCl used in this study might not be high enough to show an effect on 
the aggregation. 

5. Conclusion 

In conclusion a fully automated closed-loop system for the optimi
zation of liquid formulations could be developed, by coupling robotic 
experiments with a machine learning algorithm. This time- and 
resource-saving methodology enabled the identification of a set of 

optimal solutions without human intervention. The outcome shows the 
great potential of implementing active learning and automation during 
the development of food products and food ingredients, especially at the 
early stages. The gained knowledge about the prevailing effects in 
complex systems can be derived, and used to guide further research, 
reduce complexity and support the transition from laboratory scale to 
production scale. 
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