
Electrolysers

1) A lab scale 1 kW alkaline water electrolyser operates at 70% HHV efficiency. The stack is operated at 60° C and is electrically connected in series, with each cell having a surface of 100 cm^2 . The supporting electrolyte used is 1 M potassium hydroxide (pH=14), in conjunction with Zirfon Perl UTP $500\mu m$ thick diaphragm separator. The nominal current density of operation is 0.5 A cm^{-2} . The Pourbaix diagram for water electrolysis is given in the figure below.

Calculate:

- i) Reversible cell potential for hydrogen evolution ($E_{rev,H2}$) and oxygen evolution ($E_{rev,O2}$) reactions. (considering pH=14)
- ii) The thermoneutral voltage (E_{tn}) at 25°C and at 60°C. (E_{tn} corresponds to - $\Delta H/nF$)
- iii) The number of cells in the stack and the corresponding operating voltage of each cell.
- iv) The water flowrate in L min⁻¹ necessary at the cathode to reach a conversion rate of 80%, assuming a Faradaic efficiency (=current efficiency) of 100%.

Further thinking:

- a) Is Faradaic efficiency of 100% a relevant assumption?
- b) How does the thermoneutral voltage change with the phase change of water to steam?

Hints:

HHV efficiency is defined as:
$$\eta_{HHV} = \frac{E_{tn}}{E_{Gell}}$$

for the reaction $H_2O(I) \rightarrow H_2(g) + O_2(g)$ assume

$\Delta H_{25C} = 285.83 \text{ kJ mol}^{-1}$
$\Delta H_{60C} = 284.72 \text{kJ mol}^{-1}$
HHV = 141.88 MJkg ⁻¹
$\rho_{H2} = 0.0813 \text{ gL}^{-1}$