
MSE-441 Exercise-3

Exercise 1:

(a) The figure below shows a potential-current plot (black), along with plots of diffrent overpotential losses at increasing currents (A-D). Specify which plots correspond to the thermodynamic losses (standard vs. open-circuit potential), ohmic losses, activation losses, and mass-transfer losses.

Solution:

A = ohmic (linear)

B = mass-transfer (dominates as j→ jlim)

C = activation (dominates at $j \rightarrow j0$)

D = thermodynamic losses (occur at j = 0 and remains constant)

(b) Calculate the concentration overpotential (η conc) for the cathodic deposition of silver:

$$Ag++e-\rightarrow Ag$$

from a solution of 0.1 M AgNO3 in 2 M HNO3 at 25° C using a current density of 10A/m² (mass transfer coefficient Km = 10 $^{-5}$ ms $^{-1}$). Assume α_c = 1

Solution:

$$j_{lim,c} = FK_m[Ag]_{bulk}$$

$$j_{lim,c} = 96500 \frac{C}{mol \ e^-} \times 1 \frac{mol \ e^-}{mol \ Ag} \times 10^{-5} \frac{m}{s} \times 100 \frac{mol \ Ag}{m^3} = 96.5 \frac{A}{m^2}$$

As this is cathodic current it should be negative → jlim,c= -96.5 A/m⁻²

$$\eta_{conc} = \frac{RT}{(1 - \alpha_a)ZF} ln \frac{|j - j_{lim,c}|}{|j_{lim,c}|} = \frac{8.314 \frac{V \cdot C}{mol K} \times 298 K}{96500 \frac{C}{mol e^-} \times 1 \frac{mol e^-}{mol}} ln \left| \frac{-10}{-96.5} - 1 \right| = -0.0028 V$$

(c) Silver is deposited in an electrochemical cell from a solution of AgNO3 in 1 M HNO3 at 25 °C. If the cell operates at 50% of the limiting current density, calculate the total (activation + concentration) cathodic overpotential at this current density. Given jlim =200A m $^{-2}$; j° = 5A m $^{-2}$; α = 0.5.

Solution:

For a cathodic reaction, both j and jlim are negative:

$$j_{lim,c} = -200 \frac{A}{m^2}, \ j = -100 \frac{A}{m^2}$$

Use B-V equation with mass transfer:

$$j = -j^{o}(1 - \frac{j}{j_{lim.c}})e^{\frac{-(1 - \alpha_a)ZF}{RT}\eta}$$

Rearrange:

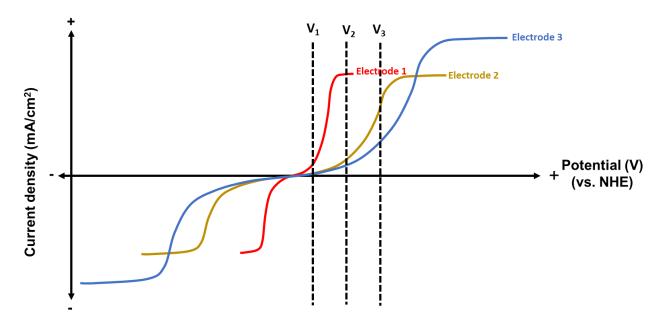
$$\eta = \frac{RT}{(1 - \alpha_a)ZF} ln \frac{|j - j_{lim,c}|}{|j_{lim,c}|} + \frac{RT}{(1 - \alpha_a)ZF} ln \frac{|j^o|}{|j|}$$

$$\eta = -0.19 V$$

Activation overpotential:

$$\eta_{act} = \frac{RT}{(1 - \alpha_a)ZF} ln \frac{|j^o|}{|j|} = -0.154 V$$

Concentration overpotential:


$$\eta_{conc} = \frac{RT}{(1 - \alpha_a)ZF} ln \frac{|j - j_{lim,c}|}{|j_{lim,c}|} = -0.036 V$$

Exercise 2:

Consider a reversible 1:1 O:R, single-electron reaction occurring on the surface of an electrode at standard conditions:

$$O + e \rightarrow R$$

This same reaction is being performed on three different electrodes, and the corresponding current-voltage plot for each electrode is shown below.

Assume $|j_{lim,a}| = |j_{lim,c}| = 2 \text{ A/m}^2$ for Electrodes 1 and 2, and $|j_{lim,a}| = |j_{lim,c}| = 2.5 \text{ A/m}^2$ for Electrode 3. At an applied potential of $V_1 = 0.03 \text{ V}$, we observe a net current density of $j = 0.3 \text{ A/m}^2$ for Electrode 1 and $j = 0.02 \text{ A/m}^2$ for Electrode 3. Assume $\alpha_a = 0.5$ for all electrodes.

Note that the plot is not drawn to scale.

- (a) For each electrode, specify the regime(s) (linear, Tafel, or mass transfer-limited) you expect to dominate for each of the three voltages highlighted in bold (V₁, V₂, V₃). Of these nine cases, specify the two cases that most likely represent the transition between two regimes, and indicate the relevant regimes for these two cases.
- (b) Approximate the exchange current density j° for Electrodes 1 and 3. (If you are unable to find a solution, you may assume j° = 0.2 mA/cm^2 for Electrode 1 and j° = 0.1 mA/cm^2 for Electrode 3 for the following parts).
- (c) Assume $j^{\circ} = 0.1 \text{ A/m}^2$ for Electrode 2. Derive an implicit expression that can be used to approximate the current density j around V_2 , with the current density terms arranged on the same side of the equation.
- (d) Consider the relative kinetics of the electrodes.
 - (i) Quantitatively rank order the electrodes from the most kinetically controlled to the least-kinetically-controlled (lowest to fastest relative kinetics).
 - (ii) Comment on whether these rankings are qualitatively reflected in the plots, explaining any discrepancies.
- (e) Improvements in the reactor design led to increases in $|j_{lim,c}|$ for all electrodes. How will this improvement affect the j at V_1 ? Discuss the relative extent of these effects on the three electrodes (which are more strongly or less strongly affected).

a)

Electrode 1 = Tafel Electrode 1 = Mass transfer limited Electrode 1 = Mass transfer limited

Electrode 2 = Linear Electrode 2 = Tafel Electrode 2 = Tafel/mass transfer limited

Electrode 3 = Linear Electrode 3 = Tafel/Linear Electrode 3 = Tafel

b)

$$v_1 = 0.03V$$

 $j($ Electrode $1) = ?$
 $j($ Electrode $3) = ?$

Electrode $1 \rightarrow$ Tafel regime, anodic

$$|j_{lim,a}| = |j_{lim,c}| = 2A/m^2, j = 0.3A/m^2$$

$$\eta = \frac{RT}{\alpha ZF} \ln \frac{j_{lim,a}}{j^0} + \frac{RT}{\alpha zF} \ln \frac{j}{j_{lim,a} - j} \rightarrow \frac{RT}{\alpha zF} \ln \frac{j_{lim,a}}{j^0} = \eta - \frac{RT}{\alpha zF} \ln \frac{j}{j_{lim,a} - j}$$

$$\ln \frac{j_{lim,a}}{j^0} = \frac{\alpha zF}{RT} \eta - \ln \frac{j}{j_{lim,a} - j} \rightarrow \ln \frac{j^0}{j_{lim,a}} = \ln \frac{j}{j_{lim,a} - j} - \frac{\alpha zF}{RT} \eta$$

$$\frac{j^0}{j_{lim,a}} = exp \left(\ln \frac{j}{j_{lim,a} - j} - \frac{\alpha zF}{RT} \eta \right) \rightarrow j^0 = j_{lim,a} \frac{e^{\ln \frac{j}{j_{lim,a} - j}}}{e^{RT} \eta} = \frac{j_{lim,a} j}{j_{lim,a} - j} e^{-\frac{\alpha zF}{RT} \eta}$$

Plugging in values:

$$j^{0} = \frac{(2 A/m^{2})(0.3 A/m^{2})}{2 A/m^{2} - 0.3 A/m^{2}} exp\left(-\frac{0.5(1 \, mole^{-}/mol)(96485 \, C/mole^{-})}{(8.314 \, J/mol.K)(298 \, K)}\right) = 0.197 \, A/m^{2} \text{(Electrode 1)}$$

Electrode 3 → linear regime

$$|j_{lim,a}| = |j_{lim,c}| = 2.5A/m^2, j = 0.02A/m^2$$

$$\eta = j \left[\frac{RT}{j^0 zF} + \frac{RT}{j_{lim,a} zF} - \frac{RT}{j_{lim,c} zF} \right] \rightarrow \frac{RT}{j^0 zF} = \frac{\eta}{j} - \frac{RT}{j_{lim,a} zF} + \frac{RT}{j_{lim,c} zF}$$

$$\frac{1}{j^0} = \frac{zF\eta}{RTj} - \frac{1}{j_{lim,a}} + \frac{1}{j_{lim,c}} \rightarrow j^0 = \frac{1}{\frac{zF\eta}{RTj} - \frac{1}{j_{lim,a}} + \frac{1}{j_{lim,c}}}$$

Plugging in values:

$$j^0 = \frac{\frac{1}{\frac{(1 \, mole^-/mol)(96485 \, C/mole^-)(0.03 \, \text{V})}{(8.314 \, J/mol.K)(298 \, K)(0.02A/\text{m}^2)} - \frac{1}{\frac{2.5A/\text{m}^2}{-2.5A/\text{m}^2}} + \frac{1}{\frac{1}{2.5A/\text{m}^2}}} = \ 0.017A/\text{m}^2 \ \text{(Electrode 3)}$$

c)
$$j^0 = 0.1 \text{A/m}^2$$

Electrode 2@ $v_2 \rightarrow$ Tafel linear regime, $: \eta_{Tafel} \sim \eta_{linear}$

$$\begin{split} \frac{\mathrm{RT}}{\alpha \mathrm{zF}} l \, n \frac{j_{lim,a}}{j^0} + \frac{\mathrm{RT}}{\alpha \mathrm{zF}} l \, n \frac{j}{j_{lim,a} - j} &\approx j \left[\frac{\mathrm{RT}}{j^0 \mathrm{zF}} + \frac{\mathrm{RT}}{j_{lim,a} \mathrm{zF}} - \frac{\mathrm{RT}}{j_{lim,c} \mathrm{zF}} \right] \\ & \frac{1}{\alpha} l n \, \frac{j_{lim,a}}{j^0} + \frac{1}{\alpha} l n \, \frac{j}{j_{lim,a} - j} &\approx j \left[\frac{1}{j^0} + \frac{1}{j_{lim,a}} - \frac{1}{j_{lim,c}} \right] \\ & \frac{1}{\alpha j} l n \, \left[\frac{j_{lim,a}}{j^0} \cdot \frac{j}{j_{lim,a} - j} \right] &= \frac{1}{j^0} + \frac{1}{j_{lim,a}} - \frac{1}{j_{lim,c}} \\ & l n \, \left[\frac{j_{lim,a}}{j^0} \cdot \frac{j}{j_{lim,a} - j} \right]^{1/\alpha j} &\approx \frac{1}{j^0} + \frac{1}{j_{lim,a}} - \frac{1}{j_{lim,c}} \end{split}$$

d)

Electrode 1:

Electrode 2:

Electrode 3:

$$\frac{j^0}{j_{lim}} = \frac{0.197 \text{ A/m}^2}{2 \text{ A/m}^2} = 0.0985$$

$$\frac{j^0}{i_{\text{lim}}} = \frac{0.1 \text{ A/m}^2}{2 \text{ A/m}^2} = 0.05$$

$$\frac{j^0}{j_{lim}} = \frac{0.197 \text{ A/m}^2}{2 \text{ A/m}^2} = 0.0985 \qquad \frac{j^0}{j_{lim}} = \frac{0.1 \text{ A/m}^2}{2 \text{ A/m}^2} = 0.05 \qquad \qquad \frac{j^0}{j_{lim}} = \frac{0.017 \text{ A/m}^2}{2.5 \text{ A/m}^2} = 0.0068$$

Fastest → Least kinetically controlled Slowest → Most kinetically controlled

They are consistent with the plots, since Electrode 3 shows kinetic behavior over a larger range of potentials before leveling off

e)

$$\frac{j}{j^0} = \left[1 - \frac{j}{j_{lim,a}}\right] e^{\frac{\alpha z F}{RT}\eta} - \left[1 - \frac{j}{j_{lim,a}}\right] e^{\frac{-(1-\alpha)z F}{RT}\eta}$$
this term beco

Electrode 1: Tafel

$$\eta = \frac{RT}{\alpha zF} \ln \frac{j_{lim,a}}{j^0} + \frac{RT}{\alpha zF} \ln \frac{j}{j_{lim,a} - j} \rightarrow \text{No dependence on } j_{lim,c} \text{ (negligible effect only)}$$

Electrodes 2 and 3: Linear

$$\eta = j \left[\frac{RT}{j^0 z F} + \frac{RT}{j_{lim,a} z F} - \frac{RT}{j_{lim,c} z F} \right]$$
 \rightarrow Dependence on $j_{lim,c}$ Greater effect of cathodic mass transfer resistance at higher current