MSE-441 Exercise-3 Solutions

1. High field approximation (HFA): $|\eta| > 0.1 \text{ V}$

Anodic current; $i = i_0 \exp\{(1 - \alpha) \eta F/RT\}$

Cathodic current; $i = -i_0 \exp{-\alpha \eta F/RT}$

2. Low field approximation (LFA): $|\eta| < 0.01 \text{ V}$

 $i = 2i_0 sin (F\eta/2RT) \approx 2i_0 (F\eta/2RT) = i_0 (F\eta/RT)$

3. For $\eta \approx 0.01 \text{ V} - 0.1 \text{ V}$

Use the BV-equation.

4. BV equation can be used as it is under any circumstances.

Exercise 1:

Calculate the ratio of the rates of the reaction: $Ag^+ + e^- \rightarrow Ag$ at:

- a) $\eta = -0.15 \text{V} \& \eta = 0.15 \text{ V}.$
- b) $\eta = -0.2V \& \eta = 0.2 V$.

Assume room temperature at 25°C.

rate = i/(nF)

Therefore, rate₁/ rate₂ = i_1/i_2

Since it is a cathodic reaction, we compare the cathodic rate for both η .

 $i_c = i_o \exp \{-\alpha \eta F/RT\}$

a)
$$\frac{i_{c1}}{i_{c2}} = \frac{e^{-0.5(-0.2)\frac{96500}{8.314(298)}}}{e^{-0.5(0.2)\frac{96500}{8.314(298)}}} = \frac{18.56}{0.054} = 344$$
b)
$$\frac{i_{c1}}{i_{c2}} = \frac{e^{-0.5(-0.2)\frac{96500}{8.314(298)}}}{e^{-0.5(0.2)\frac{96500}{8.314(298)}}} = \frac{49}{0.02} = 2450$$

b)
$$\frac{i_{c1}}{i_{c2}} = \frac{e^{-0.5(-0.2)\frac{8.314(298)}{8.314(298)}}}{e^{-0.5(0.2)\frac{96500}{8.314(298)}}} = \frac{49}{0.02} = 2450$$

A small change in potential from – 0.2 to +2V increases the rate by 2450 times

Exercise 2:

For an overpotential of $\eta = 10$ mV, a current I = 0.62 mA is passed through a 2 cm² Pt electrode for a H^+/H_2 half reaction given as: $H^+ + e^- \rightarrow \frac{1}{2} H_2$.

What will be the current density i for (a) $\eta = 100$ mV? (b) $\eta = -100$ mV?

Assume the symmetry factor as 0.5 and a room temperature of 25°C

For $\eta = 10 \text{ mV} = 0.01\text{V}$, we have $i = I/A = 0.62/2 = 0.31 \text{ mA.cm}^{-2}$

The exchange current density io is obtained using the BV equation

$$i = i_o (e^{(1-\alpha) \eta F/RT} - e^{-\alpha \eta F/RT})$$

$$0.31 = i_o [e^{0.5 \times 0.01/F/RT} - e^{-0.5 \times 0.01 F/RT}]$$

 $i_0 = 0.79 \text{ mA.cm}^{-2}$

a) For
$$\eta = 100 \text{ mV} = 0.1 \text{ V}$$

 $i = 0.79 \text{ (e}^{0.5 \times 0.1 \times 96500 / 8.314 \times 298} - \text{e}^{-0.5 \times 0.1 \times 96500 / 8.314 \times 298})$
 $i = 5.42 \text{ mA.cm}^{-2}$

b) For
$$\eta = -100 \text{ mV} = -0.1 \text{ V}$$

 $i = 0.79 \text{ (e}^{0.5 \times -0.1 \times 96500 / 8.314 \times 298} - \text{e}^{-0.5 \times -0.1 \times 96500 / 8.314 \times 298})$
 $i = -5.42 \text{ mA.cm}^{-2}$

Exercise 3:

The exchange current density of a Pt electrode for the H^+/H_2 half reaction is $i_0 = 0.79$ mA.cm⁻² at 25°C.

Calculate the current density across it when the over potential is (a) $\eta = 10$ mV (b) $\eta = -200$ mV.

a) For
$$\eta = 10 \text{ mV} = 0.01 \text{ V}$$
,
$$i = i_0 \, \eta \text{F/RT} = 0.79 \, \frac{(0.01) \, 96500}{8.314 \, (298)} = \textbf{0.308 mA.cm}^{-2}$$

b)
$$\eta$$
 = -200 mV = -0.2 V, negative (net cathodic current) $i = i_o e^{-\alpha\eta F/RT} = 0.79 e^{-0.5 \times 0.2 \times 96,500/RT} = 38.79 mA.cm-2 $i = i_a - i_c = -i_c = -38.79 mA.cm^{-2}$$

Exercise 4:

Calculate the effective resistance across 1 cm² of

- a) Pt, H2, H $^{+}$; i_o = 0.79 mA.cm $^{-2}$
- b) Hg, H2, H⁺; $i_0 = 0.79 \times 10^{-12} \text{ A.cm}^{-2}$

What conclusion you can draw from the result?

For η < 0.01 V and using $I=i_0\frac{\eta F}{RT}$, the overpotential is obtained as $\eta=I\frac{\eta F}{RT}$.

With V = IR, then area specific resistance $ASR = \frac{RT}{i_0F}$ and the resistance is R = ASR x A

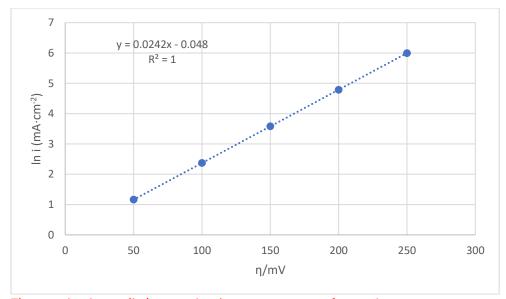
a)
$$ASR = \frac{8.314 (298)}{(0.790 * 10^{-3}) 96,495} = 32.5 \Omega. cm^2$$

Less resistance, the electrode can be less polarizable (non-polarizable)

b)
$$ASR = \frac{8.314 (298)}{(0.790 * 10^{-12}) 96,495} = 3.25 * 10^{10} \Omega. cm^2$$

Greater resistance, the electrode can be more polarizable

Exercise 5:


In an experiment involving Pt, H_2 , H^+ electrode, the following data were obtained at 298 K. Determine α_{anodic} and i_0

η/mV	50	100	150	200	250
i / mA·cm⁻²	3.19	10.69	35.88	120.00	402.00

Answer:

Do the Tafel plot:

$$\eta/mV$$
 50 100 150 200 250 $\ln(i)$ / $mA \cdot cm^{-2}$ 1.16064768 2.369496 3.58018 4.787492 5.996452

The reaction is anodic (η >0, and i>0), use B-V equation for anode:

$$i = i_0 \times \exp\left(\frac{z\alpha_{anodic}F\eta}{RT}\right)$$

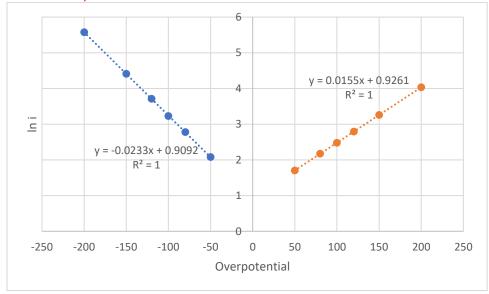
$$\ln(i) = \ln(i_0) + \frac{z\alpha_{anodic}F\eta}{RT}$$

$$slope = 0.0242 = \frac{z\alpha_{anodic}F}{RT} = \frac{2 \times \alpha_{anodic} \times 96485 \, A \cdot \frac{s}{mol} \times 0.001 \frac{V}{mV}}{8.314 \, \frac{J}{mol \cdot K} \times 298 \, K}$$

$$\alpha_{anodic} = 0.689$$

$$intercept = -0.048 = \ln(i_0)$$

$$i_0 = 0.953 \, mA/cm^2$$


Exercise 6:

For the system Pt /Fe³+, Fe²+ at 298K the i were measured as shown below: Determine α_{anodic} , $\alpha_{cathodic}$ and i_0

η/mV	-50	-80	-100	-120	-150	-200
i / mA·cm⁻²	-8.01	-16.1	-25.17	-41	-82.4	-264
η/mV	50	80	100	120	150	200
i / mA·cm⁻²	5.50	8.78	11.91	16.30	26.00	56.60

Answer:

Do the Tafel plot:

For anodic plot (η >0, and i>0):

$$i = i_0 \times \exp\left(\frac{z\alpha_{anodic}F\eta}{RT}\right)$$
 $\ln(i) = \ln(i_0) + \frac{z\alpha_{anodic}F\eta}{RT}$
 $slope = 0.0155 = \frac{z\alpha_{anodic}F}{RT}$
 $\alpha_{anodic} = 0.398$
 $intercept = 0.9261 = \ln(i_0)$
 $i_0 = 2.52 \, mA/cm^2$

For cathodic plot (η <0, and i<0),

$$|i| = i_0 \times \exp\left(\frac{-z\alpha_{cathodic}F\eta}{RT}\right)$$

$$\ln(|i|) = \ln(i_0) + \frac{-z\alpha_{cathodic}F\eta}{RT}$$

$$slope = -0.0233 = \frac{-z\alpha_{cathodic}F}{RT}$$

$$\alpha_{cathodic} = 0.598$$

$$intercept = 0.9092 = \ln(i_0)$$

$$i_0 = 2.48 \text{ mA/cm}^2$$

The value of i_0 estimated from anode and cathode plot should be close.

Not that the sum of $\alpha_{cathodic}$ and α_{anodic} is approximately 1.

$$\alpha_{cathodic} + \alpha_{anodic} = 1$$

Exercise 7:

The exchange current density of Pt /Fe³⁺, Fe²⁺ is 2.5 mA·cm ⁻² . Calculate the current density across the electrode at 25 °C maintained at 1V when [Fe ²⁺] = 0.1 M and [Fe ⁺³]= 0.2 M (Standard reduction potential = 0.77I V, $\alpha_{cathodic}$ = 0.58)

Answer:

Reaction is

$$Fe^{3+} + e^{-} \rightarrow Fe^{2+}$$

First, the thermodynamic potential of the reaction at operation condition is

$$E = E^{o} - \frac{RT}{nF} \ln \frac{[Fe^{2+}]}{[Fe^{3+}]} = 0.771 - \frac{8.314 \times 298}{1 \times 96485} \ln \frac{1}{2} = 0.788 V$$

To calculate overpotential:

$$E_{applied} = E + \eta$$

$$\eta = 1 - 0.788 = 0.212 \text{ V}$$

The reaction is anodic, use anodic B-V equation:

$$i = i_0 \times \exp\left(\frac{z\alpha_{anodic}F\eta}{RT}\right)$$

 $\alpha_{anodic} = 1 - \alpha_{cathodic}$

$$i = 2.5 \times \exp\left(\frac{1 \times (1 - 0.58) \times 96485 \times 0.212}{8.314 \times 298}\right) = 80.3 \ mA/cm^2$$