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• A bit of crystallography

• Diffraction basics

• Diffraction methods + applications
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- Powder 
- Pair distribution function
- Energy dispersive
- Neutron time-of-flight
- Surface x-ray diffraction

X-ray and neutron diffraction
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The crystal structure of diamond Crystal unit cell



Crystal structure – Bravais lattices
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a= b т c  

ɲсɴсϵϬ͕�ɶсϭϮϬΣ 
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a= b = c  

ɲсɴсɶсϵϬΣ 

 

 

 

 

 

4 x 3-fold axis 
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Crystal structure – Bravais lattices



• Volume unit cell:

Crystal structure

200 An Introduction to Synchrotron Radiation

Figure 6.5 The crystal structure of diamond. Each atom is bonded tetrahedrally to four nearest neighbours. The face–
centred unit cell contains four lattice points, each associated with a pair of carbon atoms, highlighted by the yellow
ellipses.
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Figure 6.6 A unit cell of a crystal can be defined by the parameters a, b, c, 𝛼, 𝛽, and 𝛾.

Often, however, nonprimitive cells and bases are chosen, for reasons of convenience and high symmetry. So,
while the simple cubic cell is primitive, the ‘conventional’ body-centred cubic (bcc) cell is nonprimitive and has
twice the volume of the associated primitive cell for a bcc crystal [see Figure 6.4(b)].

The basis associated with the crystal structure consists of N atoms within the volume defined by a, b, and c,
such that

basis = {xja + yjb + zjc, j = 1 · · ·N}, (6.3)

where 0 ≤ xj, yj, zj ≤ 1. The diamond lattice, shown in Figure 6.5, is face-centred cubic with a basis of two identical
atoms at (0, 0, 0) and (1∕4, 1∕4, 1∕4).

Note that the lattice parameters a, b, and c are vectors, and therefore their relative orientations are implicitly
given. Another way of representing a unit cell, be it primitive or nonprimitive, is by using the parameters a = |a|,
b = |b|, and c = |c| and 𝛼, 𝛽, and 𝛾 , as shown in Figure 6.6. In this formalism, the unit-cell volume is given by
the general equation for a parallelepiped, that is,

Vc = abc(1 + 2 cos 𝛼 cos 𝛽 cos 𝛾 − cos2𝛼 − cos2𝛽 − cos2𝛾)1∕2. (6.4)
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T

Basis
Lattice point

a

b

Figure 6.3 A portion of a two-dimensional crystal structure. All lattice points are separated from one another by a
crystal translation vector T, which is itself composed of an integral number of the primitive translation vectors a and
b (in this example, T = −a + 4b). Within the two-dimensional ‘volume’ |a × b| resides the basis, consisting of one or
more atoms.

(b)(a)

Figure 6.4 Wigner–Seitz cells. (a) Construction of a two-dimensional primitive Wigner–Seitz cell. Planes which bisect
lines joining neighbouring atoms define the boundaries of the Wigner–Seitz cell. (b) The Wigner–Seitz cell (shown in
yellow) of a body-centred cubic (bcc) conventional unit cell (black lines) is a truncated octahedron. The square facets
derive from the planes bisecting lines between the body-centre lattice points, while the hexagons are from the planes
bisecting corner lattice points to the body-centre lattice point. The volume of the bcc Wigner–Seitz cell is half that of
the conventional bcc cell.

where u1, u2, and u3 are integers and a, b, and c are the three primitive translation vectors which give the directions
and minimum distances required to translate the crystal, so that it is indistinguishable from its original position.
These vectors form three edges of a parallelepiped of volume

Vc = |a ⋅ b × c|. (6.2)

They describe a primitive cell for which there are lattice points only at the cell’s corners. All crystals can be
mapped out using such primitive cells. The associated primitive basis contains the minimum number of atoms that
can be used to describe the crystal structure and one lattice point each. An important type of primitive cell, called
the Wigner–Seitz cell, is constructed by the volume enclosed by planes that perpendicularly bisect lines between
pairs of lattice points, shown in Figure 6.4.
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A family of lattice planes is a set of parallel equally spaced lattice planes which together contain all 
the points of the Bravais lattice. Such families play an important role in X-ray diffraction as we will 
see later. ). In the example above all planes on the left hand side picture belong to one family, all 
planes on the right hand side to another family 

 

Notation of family of planes in crystals 

The general equation of a plane is of the form 

px + qy + rz=1   

and any other plane parallel to this can be written as px + qy + rz=c 
The value of p,q,r,c are found by filling into the equation the coordinates of points lying on the plane 

In crystallography one expresses the coordinates as a fraction of the unit vector along the axis x,y,z. 

 

               

 

 A lattice plane family is characterized by its Miller indices (hkl) 
The Miller indices are integers with no common factors. Negative indices 
are indicated with horizontal bars, as in directions. 

Any other plane from the same family can be written as 

 

where C is a constant. The value of C is determined by the coordinates of a point in the plane.  
C = zero is the plane through the origin of the unit cell 

 

In practice, 
To determine the Miller indices of a family of planes one takes the plane which is nearest to the 
origin but does not go through the origin. The Miller indices of the family are proportional to the 
inverse of the intercepts of that plane with the unit cell (in the basis of the lattice vectors). If a plane 
is parallel with a unit vector, the intersection is at infinity and the Miller index will be zero. If the 
plane intersects the unit cell in the origin, the plane has to be shifted away from the origin to the 
find the Miller indices.  

Notation used:  
Miller indices of a family of planes:  (hkl) 
 

b

(

Cz
c
l

y
b
k

x
a
h

 ��



Miller indices - planes
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(100) (110) (111)

(200)

Figure 6.7 Miller indices of crystal planes in a cubic lattice. The indices of the last two examples are left to the reader
to determine.

6.3.2 Crystal Planes

A plane can be defined by any three points in a volume, provided they are not collinear. The orientation of a crystal
plane defined by three lattice points is specified by the so-called ‘Miller indices’ (hkl), which are themselves
determined in the following manner.

• Find the intercepts of the plane on the crystal axes in units of their respective lattice constants a, b, and c.
• Take the reciprocals of these numbers and then reduce these to the smallest three integers that have the same

ratio. The result (hkl) is called the index of the plane. Some examples are given for a cubic crystal in Figure 6.7.

An important quantity to determine is the spacing dhkl between (hkl) planes, as shown schematically for a
two-dimensional crystal in Figure 6.8. This is in general given by

dhkl =
X
Y
, (6.5)

whereby
X = [1 − cos2𝛼 − cos2𝛽 − cos2𝛾 + 2 cos 𝛼 cos 𝛽 cos 𝛾]1∕2 (6.6)

and

Y =
[(h

a

)2
sin2𝛼 +

( k
b

)2
sin2𝛽 +

( l
c

)2
sin2𝛾

− 2kl
bc

(cos 𝛼 − cos 𝛽 cos 𝛾) − 2lh
ca

(cos 𝛽 − cos 𝛾 cos 𝛼)

− 2hk
ab

(cos 𝛾 − cos 𝛼 cos 𝛽)
]1∕2

. (6.7)

In general, the interplanar spacing decreases as the Miller indices increase, and the density of lattice points in a
plane – i.e. the number of lattice points per unit area of the plane – decreases as the Miller indices increase. Note
that Equations (6.6) and (6.7) become significantly simpler for high-symmetry systems such as orthorhombic,
tetragonal, and cubic unit cells, for which 𝛼 = 𝛽 = 𝛾 = 90∘.
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• Miller indices of the set of all planes that are equivalent by symmetry of the lattice: {hkl}
• Be careful! The multiplicity depends on the symmetry, so on the crystal system

• Example: 
- multiplicity of  {100} plane in cubic system= 6  

 (100), (010), 001), (-100), (0-10), (00-1)
- multiplicity of  {001} plane in tetragonal system= 2  

 (001), (00-1)
- multiplicity of  {100} plane in tetragonal system = 4

 (100), (-100), (010), (0-10)

Miller indices - multiplicity



Miller indices - multiplicity



Direction OP:
Coordinates point P: ½, 0, 1 Vector OP = ½ a + c or [ ½ 0 1]
Coordinates point Q: ½, 0, ½ Vector OQ = ¼ a + ½ c or [ ¼ 0 ½ ]

Direction SN 
consider OM which is parallel to SN
Coordinates OM: 1, -1,0
Vector OM= a – b
Direction SN and OM: [1-10]

Miller indices - directions
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5.2 Lattice direction 

Lattice direction 

A lattice vector is a vector joining any two lattice points. Any lattice vector can be written as a linear 
combination of the unit cell vectors a, b, and c. The direction is the vector t passing though the origin 
of the lattice 

t= ua + vb+ wc 

where u,v and w are the coordinates of a point ( any point) in this direction when a,b and c are the 
unit vectors resp. along the x,y,z axis.  Note that the vectors are either written bold or have a bar i.e. 

Ԧܽ, ሬܾԦ, Ԧܿ 
The direction is written in the form       [UVW] where U,V,W are integers. 

Example:  

 

Direction OP 
Coordinates point P:  ½, 0,1   vector OP = ½ a + c  or   [1/2 0 1 ] 
Coordinates point Q:  ½ ,0, ½   vector  OQ = ¼  a + ½ c                or   [1/4 0 ½] 

Both vectors define the direction OP=OQ=OL. Directions are expressed with whole numbers i.e  
the [102] direction 

Direction SN  
consider OM which is parallel to SN 
Coordinates OM:   1, -1,0 
Vector OM= a – b   
Direction SN and OM:    [11ത0]    Note: when the number is negative, a bar is added above the 
number 

Ö  direction of the basics lattice vectors a,b,c  are resp.  [100], [010] and [001] 

A family of directions 

Due to the symmetry of crystal systems, different directions can be equivalent. 
e.g. For cubic crystals, the directions [1 0 0], [ -1 0 0], [0 1 0], [0 -1 0], [0 0 1], [0 0 -1 ] are all 



Due to the symmetry of crystal systems, different directions can be equivalent. e.g. For 
cubic crystals, the directions [1 0 0], [ -1 0 0], [0 1 0], [0 -1 0], [0 0 1], [0 0 -1 ] are all 
equivalent by symmetry. There is a special notation for directions of the same form: <100>, 
which in this case means the family made of the three basis axis a,b,c

Miller indices - directions
58 
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equivalent by symmetry. There is a special notation for directions of the same form: <100>, which in 
this case means the family made of the three basis axis a,b,c 

Similarly, there are 8 equivalent <111> directions in a cubic system , as shown below. The number of 
equivalent directions is called the multiplicity of the direction.  

 

 

Angles between directions 

Angle between two directions is given by the scalar product of two vectors of the resp. directions 
t1.t2= t1.t2 cos੥  where t1 and t2  are the length of the lattice vectors  t1 and t2 , ੥ is the angle between  
two vectors 

Or in the notation of the directions 
The angle between the directions [u1 v1 w1] and [u2 v2 w2] is 

cosߴ ଶݑଵݑ = + ଶݒଵݒ +  ଶݓଵݓ 
ඥݑଵଶ ଵଶݒ + + ଶଶݑଵଶ  .  ඥݓ + ଶଶݒ  +  ଶଶݓ

 

 

 

5.3 Lattice planes 

A lattice plane is a plane passing through at least three lattice points. Because of the translational 
symmetry of the Bravais lattice, a lattice plane contains an infinite number of lattice points which 
form a 2D Bravais lattice. Below a picture of two types of lattice planes in a simple cubic Bravais 
lattice. As exercise, draw the 2D lattice of both type of planes. ( taken from Ashcroft-Mermin fig 5.3) 

 

Similarly, there are 8 equivalent <111> directions in a cubic 
system. The number of equivalent directions is called the 
multiplicity of the direction.

The angle between the directions [u1 v1 w1] and [u2 v2 w2] 
is:
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equivalent by symmetry. There is a special notation for directions of the same form: <100>, which in 
this case means the family made of the three basis axis a,b,c 

Similarly, there are 8 equivalent <111> directions in a cubic system , as shown below. The number of 
equivalent directions is called the multiplicity of the direction.  
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5.3 Lattice planes 

A lattice plane is a plane passing through at least three lattice points. Because of the translational 
symmetry of the Bravais lattice, a lattice plane contains an infinite number of lattice points which 
form a 2D Bravais lattice. Below a picture of two types of lattice planes in a simple cubic Bravais 
lattice. As exercise, draw the 2D lattice of both type of planes. ( taken from Ashcroft-Mermin fig 5.3) 

 



In the cubic system the (hkl) plane and the vector [hkl] are normal to one another but 
this characteristic is unique to the cubic crystal system and does not apply to crystal 
systems of lower symmetry.

A zone is defined as “a set of planes in a crystal whose intersections are parallel”. The 
common direction of the intersections is called the zone axis. Therefore one often has to 
calculate the intersection of two planes. For instance the [001] direction is the zone axis 
of the {100} and {110} family of planes. 

Miller indices – directions/planes



• Electromagnetic wave far away from the source: flat wavefront

• Single slit (Huygens' Principle )

Interference

Destructive interference when:

BC =  λ/2 = (w/2) sinα

or

sinα= λ/w, 2λ/w, 3λ/w, …

 



Diffraction pattern depends strongly on ratio λ
width slit 

Interference



In 1803, Thomas Young showed in a two-slit experiment that the distance between the 
maximum of a detector and the center of the pattern was proportional to the reciprocal of 
the distance between the slits. 

Diffraction from a grating

The conditions for constructive 
interference are very similar as for 
diffraction at one gap, but here the path 
difference is a function of the distance a 
between the openings in the diffraction 
grating: 

asinα = nλ where n is an integer 



• To have constructive interference among slits nλ ≤ a (distance between slits). This means 
that we need a wavelength of the order of the distance between the slits. If the 
wavelength is much smaller, the maxima will be very close to the forward direction i.e. 
the interference fringes will be very close to each other.

• When the width w of the slit is only slightly larger than λ smaller and w<a, the envelope 
function becomes broader and the first min induced by the width of the slit might not be 
visible. The pattern will look like 

Diffraction from grating

w < a
w <  λ



• When w is larger than λ but still w<a, the diffraction pattern will look like

• The diffraction angles are invariant under scaling; that is, they depend only on the ratio 
of the wavelength to the size (w) of the diffracting object 

• While diffraction occurs whenever propagating waves encounter slits, its effects are 
generally most pronounced for waves whose wavelength is roughly similar to the 
dimensions of the diffracting objects  

Diffraction from grating

w < a
w of order 
of λ



• The pictures below show the diffraction patterns for a planar diffracting grating 
consisting of circular openings.

Diffraction from grating
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5. When multiple slits are present, the spacing between a maximum on the detector 
and the center of the pattern is proportional to the reciprocal of the separation 
between the slits 

 
The pictures below show the diffraction patterns for a planar diffracting grating consisting of circular 
openings, illustrating the same trends  for this 2D grating (Hammond fig. 7.3) 



• Classical diffraction theory at a series of line slits (2D aperture grating) can be 
extended to diffraction at a 3D crystal lattice. That is in principle the contribution of 
Max von Laue and William Lawrence and William Henry Bragg (father and son). In 
1912 Von Laue had the idea to send a beam of X-rays through a copper sulfate crystal 
and showed that there were diffraction spots surrounding the central spot of the 
primary beam. Around the same time, crystallographers were becoming convinced of 
the lattice-like construction of crystals.

• If one derives it from an analogy with the slits, the distance between the atoms is the 
grating distance and the size of the atoms is the width of the slit.

• Distance between atoms is of the order of 10-10m, size of the atoms is smaller
⇒This means that w<a, so one can have constructive interference. 

Diffraction from crystal lattice



• X-rays, neutrons and electrons can be used. Typical wavelengths are:

• X-rays and electrons fulfill the conditions for the relations between a, w and λ, the 
diffraction patterns will however differ i.e. the relation between λ and θ will differ. For 
instance, when one uses hard X-rays, the angle at which one will see constructive 
interference will be smaller than when using soft X-rays. Cold neutrons have a too large 
wavelength for diffraction from typical metals. 

Which radiation?

Energy Wavelength
Neutrons 1 – 5 meV (cold)

25 – 50 meV (thermal)
9 – 4 Å
1.8 – 1.3 Å

X-rays 100 keV
40 keV
5 keV

0.12 Å (hard X-rays)
0.31 Å
2.48 Å (soft X-rays)

Electrons 200 keV 0.025 Å



Max von Laue William Lawrence Bragg William Henry Bragg

Historical figures
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The picture below shows that the Bragg law is simply the criteria that the path difference (AB + BC) 
where AB=BC=dsin੥  ŝƐ�ĂŶ�ŝŶƚĞŐĞƌ�ŽĨ�ƚŚĞ�ǁĂǀĞůĞŶŐƚŚ�ʄ͘ 

 

 

 
The discoveries of von Laue and Bragg gave birth to two new sciences, X-ray crystallography and X-
ray spectroscopy, and two Nobel Prizes in physics: Max von Laue “for his discovery of the diffraction 
of X-rays by crystals” in 1914 and to Bragg and his father, Sir William Henry Bragg, “for their services 
in the analysis of crystal structure by means of X-rays” in 1915. William was then 25 years old! 

 

Max von Laue made already in 1912 the analogy between grating interference and diffraction at 
crystals but he took the 3D crystal as an ensemble of rows of atoms. His theory did not become 
immediately popular because it was rather complex. Father (W.H. Bragg) and son (W.L.) Bragg 
explained these patterns as layers of planes of atoms which behave as reflecting planes. This is not 
really correct in physical sense since planes of atoms do not reflect Xrays ( lattice planes are an 
geometrical construction and not real) but the electrons in the atom interact with the Xrays.  

Bragg law defines on a purely geometrical basis for which angles constructive interference 
can occur 

The discoveries of von Laue and Bragg gave birth to two new sciences, X-ray crystallography and X- ray spectroscopy, 
and two Nobel Prizes in physics: Max von Laue “for his discovery of the diffraction of X-rays by crystals” in 1914 and to 
Bragg and his father, Sir William Henry Bragg, “for their services in the analysis of crystal structure by means of X-rays” 
in 1915. William was then 25 years old! Max von Laue made already in 1912 the analogy between grating interference 
and diffraction at crystals but he took the 3D crystal as an ensemble of rows of atoms. His theory did not become 
immediately popular because it was rather complex. Father (W.H. Bragg) and son (W.L.) Bragg explained these patterns 
as layers of planes of atoms which behave as reflecting planes. 



• Within a year of the discovery that X-rays diffract 
at crystals, father and son Bragg, have exploited 
the phenomenon to solve the first crystal structure 
and determined the rule governing a diffraction

• The scattering vector Q always lies perpendicular 
to the scattering planes, or in other words, the 

angle subtended by 𝒌𝒊𝒏 = !"
#

(or kout) and the 
scattering planes is 𝜃. 

Bragg law

Scattering Techniques 203

square of the) Fourier transform of the electron-density distribution within the crystal’s unit cell. Each peak, a
so-called Fourier component, represents a sinusoidal wave of electron density with a certain frequency, amplitude,
and direction determined by the peak’s position [its (hkl)-values] within the pattern. The phase of the wave is
unknown, as only the intensity, proportional to the absolute square of the amplitude, is measured. Note that, as
each wave component of this pattern must have a spatial frequency equal to a multiple integer of the structure’s
periodicity, the diffraction maxima (variously also referred to as the ‘Fourier components’ or ‘structure factors’) are
distributed in a regular, equally spaced array in so-called ‘Fourier space’4. Once the phase relationship between all
these Fourier components is known through the process of ‘phase retrieval’ detailed in Section 6.6, the sinusoidal
waves they represent, when superimposed upon one another, reconstruct the electron density within the unit cell.

As discussed in Appendix C, nonperiodic structures have Fourier transforms which are no longer a series of
evenly separated and precisely defined components, but contain instead a continuous distribution of spatial fre-
quencies. They are, however, no less deterministic in nature. We will discuss the investigation of noncrystalline
structures by scattering at the end of this chapter in Section 6.15.

Once Fourier transforms are understood, they help considerably in interpreting the meaning of the profiles of
diffraction peaks, the overall envelope of intensity change in a diffraction pattern, and the general shapes of the
crystallites contributing to a given diffraction pattern.

To begin, however, we will avoid the formal use of Fourier transforms – we will be using them, but for the
innocent bystander this may not be obvious. Instead, we consider the conditions which lead to constructive inter-
ference. We will discover that although the periodic spacings in the crystal can be derived from the positions of the
peaks in the diffraction pattern using simple geometrical considerations (the Bragg law), the peak intensities are
determined by the positions and types of the scattering centres (i.e. the atoms) within the unit cell of the crystal,
and that it is this information that enables us (sometimes only after considerable effort) to regenerate the atomic
basis.

In Figure 6.9, basic examples of scattering from arrays of scattering centres plus their resulting diffraction
patterns are given. What general features do diffraction patterns have in common? A few of the most important
points are listed here.

• The scattering vector Q, i.e. the vector joining up the incoming beam kin and the diffracted beam kout, always
lies perpendicular to the scattering planes (see below).

• The sharpness of the diffraction signal is proportional to the number of scattering planes that are involved.
• The separation between the peaks in the diffraction pattern is inversely proportional to the separation of the

diffracting planes in real space.
• The maximum number of accessible reflections N in a diffraction pattern is directly proportional to the unit cell

volume Vc and the cube of the photon energy. Precisely,

N = 33.5
Vc

𝜆3
. (6.10)

The maximum potential volume of data for protein crystals, which have unit cell dimensions of the order of
100 Å, can therefore easily exceed ten million structure factors, though geometrical considerations always
means that this number is never achieved.

6.4.2 The Bragg Law and Reciprocal Lattice

The peak positions of an x-ray diffraction pattern were explained by W. L. Bragg and his father W. H. Bragg in
1913 by their famous eponymous equation

m𝜆 = 2d sin 𝜃. (6.11)

4 Fourier space is also called ‘reciprocal space’ (as the axes have dimensions of inverse length), ‘k-space’, or ‘momentum space’.

 D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/ by Paul Scherrer Institut PSI, W

iley O
nline Library on [16/02/2023]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License

204 An Introduction to Synchrotron Radiation

scattering
array

diffraction
pattern

Figure 6.9 Diffraction from regular one- and two-dimensional arrays of scatterers. The diffraction maxima become
sharper with increasing number of scatterers. Two other important aspects are highlighted in the array on the far right:
an increase in distance between the scatterers causes the diffraction spots to move closer in an inversely proportional
manner, while an acute angle 𝜃 in the monoclinic real-space arrangement results in a diffraction pattern with an obtuse
angle of 𝜋 − 𝜃.

Here, 𝜆 is the wavelength of the x-ray light, d is the interplanar spacing of the (hkl) planes, 𝜃 is the angle of
incidence above the plane surface, and m is an integer (Figure 6.10). The law describes the difference in the optical
path length between reflections from adjacent crystal planes, which must be an integer multiple of wavelengths for
constructive interference to occur. This therefore also implies that the phase difference between scattering from
adjacent planes is a multiple of 2𝜋. We will come back to this shortly in Section 6.4.3, in which we discuss the
influence of the basis.

We can re-express Bragg’s law in terms of the photon energy by substituting 𝜆 with hc∕E. This yields

sin 𝜃 = 6.1992
dhkl[Å] E[keV]

, (6.12)

where dhkl is the spacing of the (hkl)-scattering plane.
One of the most important conclusions of Bragg’s law is that when Equation (6.11) is satisfied, the scattering

vector Q always lies perpendicular to the scattering planes, or in other words, the angle subtended by kin = 2𝜋∕𝜆
(or kout) and the scattering planes is 𝜃.

Moreover, when the condition for detecting a diffraction maximum is met, the scattering vector Q always con-
nects the (000) diffraction spot (in other words, the spot produced by the direct beam) to another maximum in the
diffraction pattern.

How are the diffraction maxima positioned relative to one another? We have already argued above that they
should be regularly spaced in a three-dimensional periodic array with the (000) direct spot at the centre. The three
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Bragg law defines on a purely geometrical basis for which angles constructive interference can occur 



Reciprocal lattice

• Reciprocal lattice:

• A geometric lattice is an infinite, regular array of vertices (points) in space
• The reciprocal lattice represents the Fourier transform of this lattice
• It exists in the space of spatial frequencies, known as reciprocal space or k space, 

where k refers to the wave vector
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Q

kout

kin

2θ

θ

θ
d

Figure 6.10 The Bragg law describes interference between rays elastically scattered off successive atomic planes,
separated from one another by a distance d. When the optical path difference (shown here in red) between adjacent
rays is an integer multiple m of the x-ray wavelength, interference is constructive, and a diffraction peak will be seen at
that angle. The scattering vector Q is the vectorial difference between the incoming wavevector kin and the outgoing
wavevector kout. The magnitudes of kin and kout are equal to 2𝜋∕𝜆.

periodicities describing this array, known as the ‘reciprocal lattice’, are called the ‘reciprocal-lattice vectors’ and
are related to the lattice vectors in real space by

a∗ = 2𝜋 b × c
a ⋅ (b × c) ;

b∗ = 2𝜋 c × a
b ⋅ (c × a) ;

c∗ = 2𝜋 a × b
c ⋅ (a × b) . (6.13)

The denominators in the above three equations are all equal to the unit-cell volume Vc, a scalar quantity without
a direction. The numerators, on the other hand, are the cross-products of two of the lattice vectors, and therefore
have their direction perpendicular to the planes defined by those two vectors. So, for example, the reciprocal lattice
vector a∗ is perpendicular to the plane containing the two vectors b and c.

The above rules can be very simply and intuitively represented by the so-called ‘Ewald construction’ in recip-
rocal space, shown in Figure 6.11: the incident wavevector kin must end, and the scattering vector 𝚫k = Q, must
begin at the (000) diffraction spot of the direct beam, while, for constructive interference to occur, Q and kout
must end at another diffraction maximum (a ‘reciprocal-lattice point’). As x-ray diffraction is an elastic process,
this means that these two points must lie on the surface of a sphere (the ‘Ewald sphere’) of radius |k| and whose
centre lies at the base of the kin and kout vectors. This therefore geometrically defines the value of 𝜃 (and 2𝜃) by
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The incident wavevector kin must end, and 
the scattering vector 𝚫k = Q, must begin at 
the (000) diffraction spot of the direct beam, 
while, for constructive interference to occur, 
Q and kout must end at another diffraction 
maximum (a ‘reciprocal-lattice point’). As x-
ray diffraction is an elastic process, this 
means that these two points must lie on the 
surface of a sphere (the ‘Ewald sphere’) of 
radius |k| and whose centre lies at the base 
of the kin and kout vectors. 

Ewald sphere
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Ewald
sphere

Qkout

kin

(hkl)

θ 2θ

(000)

Figure 6.11 The Ewald construction. The incident beam kin, ending at (000), and the diffracted beam kout, ending at
(hkl), define the Ewald sphere.

the magnitude of Q. If one rotates the crystal in real space, the array of diffraction maxima is rotated around the
(000) point by the same amount in reciprocal space.

Diffraction patterns are all too often plotted out as a function of the scattering angle 2𝜃. In order to determine
the scattering plane separations, however, one must also know the photon energy (or wavelength). It is more
convenient, therefore, to plot the pattern out as a function of Q. It is clear from Figure 6.10 that

Q = 2|k| sin 𝜃 = 4𝜋
𝜆

sin 𝜃. (6.14)

Note that for angles close to 𝜃 = 90∘, the maximum accessible scattering vector expressed in reciprocal angstroms
is approximately equal to the photon energy given in keV, that is,

Q[Å
−1] = 1.0135 E [keV] sin 𝜃. (6.15)

Substituting for sin 𝜃∕𝜆 using Equation (6.11), we obtain

|Q| = 2𝜋
dhkl

, (6.16)

which, importantly, is independent of the photon energy. We are able to drop the order m from the equation, as
this is implicitly given by the Miller indices (hkl).

As we have already discussed, each Bragg peak represents a Fourier component of the electron density within
the unit cell, that is, a wave with periodicity dhkl. Thus, the best resolution obtainable from any given diffraction
pattern is determined by the largest recorded value of Q and is equal to 2𝜋∕Q.

The Bragg law reflects the periodicity of the lattice, but tells us nothing of the basis within the unit cell. It is the
composition of the basis, however, which determines the relative intensities of the diffraction peaks. We turn now
to this problem.

6.4.3 The Influence of the Basis

The earliest structures to be investigated by x-ray diffraction by the Braggs, including rock salt and diamond,
could be solved using symmetry arguments and the Bragg law, without having to resort to knowing in detail the
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Ewald
sphere

Qkout

kin

(hkl)

θ 2θ

(000)

Figure 6.11 The Ewald construction. The incident beam kin, ending at (000), and the diffracted beam kout, ending at
(hkl), define the Ewald sphere.

the magnitude of Q. If one rotates the crystal in real space, the array of diffraction maxima is rotated around the
(000) point by the same amount in reciprocal space.

Diffraction patterns are all too often plotted out as a function of the scattering angle 2𝜃. In order to determine
the scattering plane separations, however, one must also know the photon energy (or wavelength). It is more
convenient, therefore, to plot the pattern out as a function of Q. It is clear from Figure 6.10 that

Q = 2|k| sin 𝜃 = 4𝜋
𝜆

sin 𝜃. (6.14)

Note that for angles close to 𝜃 = 90∘, the maximum accessible scattering vector expressed in reciprocal angstroms
is approximately equal to the photon energy given in keV, that is,

Q[Å
−1] = 1.0135 E [keV] sin 𝜃. (6.15)

Substituting for sin 𝜃∕𝜆 using Equation (6.11), we obtain

|Q| = 2𝜋
dhkl

, (6.16)

which, importantly, is independent of the photon energy. We are able to drop the order m from the equation, as
this is implicitly given by the Miller indices (hkl).

As we have already discussed, each Bragg peak represents a Fourier component of the electron density within
the unit cell, that is, a wave with periodicity dhkl. Thus, the best resolution obtainable from any given diffraction
pattern is determined by the largest recorded value of Q and is equal to 2𝜋∕Q.

The Bragg law reflects the periodicity of the lattice, but tells us nothing of the basis within the unit cell. It is the
composition of the basis, however, which determines the relative intensities of the diffraction peaks. We turn now
to this problem.

6.4.3 The Influence of the Basis

The earliest structures to be investigated by x-ray diffraction by the Braggs, including rock salt and diamond,
could be solved using symmetry arguments and the Bragg law, without having to resort to knowing in detail the
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Structure factor

Elastic scattering of X-rays is due to the 
interaction with electrons in an atom. 

To know what the scattering power is of a 
crystal: 

ð scattering from an electron, 

ð scattering from an atom 

ð scattering from the unit cell,



• Elastic scattering of an electromagnetic wave by electrons of the outer shell of an 
atom ð Thompson scattering 

• same wavelength as the incoming wave and there will be a defined phase 
relationship, i.e. the radiation is coherent. 

• Simple case: a planar wave traveling in the z direction, linear polarized in the direction 
x ð This wave will cause the electron oscillate in the x direction and create a dipolar 
field. The electromagnetic radiation emitted by the oscillating electron will then not 
be spherical. 

Interaction with electron

𝑒#

𝑐#𝑚$

#

1 + 𝑐𝑜𝑠#2𝜗

Intensity scattered wave



Interaction with an atom

Atomic scattering factor                  f= %&'()*+,$ -.%**$/$, 01 23$ %*2&
%&'()*+,$ -.%**$/$, 01 % -)34($ $($.*/23

The orbital electrons in an atom move very fast ( of the order of 10-18

sec for one orbital) and therefore an impinging wave sees only an 
average electron cloud which is characterized by an electron density 
of charge ρ(r’).

f(k) = 4π ∫5
6 𝑟# 𝜌 𝑟 789 𝒌;𝒌𝟎 .𝒓

𝒌;𝒌𝟎 .𝒓
where k-k0 = (s-s0)/λ 



Interaction with an atom

4π∫r2ρ(r)dr = Z   i.e. # electrons in  atom.

ð f = Z   when θ=0 ( forward direction) ,

ð F< Z for all other angles of scattering. The form factor depends via (s-s0) on sinϑ/λ .

f(k) = 4π ∫5
6 𝑟# 𝜌 𝑟 789 𝒌;𝒌𝟎 .𝒓

𝒌;𝒌𝟎 .𝒓
where k-k0 = (s-s0)/λ 



Interaction with an atom

Atomic scattering factors for several ions with 
the same number of electrons. One can observe 
that the O-- has a more diffuse electronic cloud 
than Si 4+ and shows a faster decay.

Atomic scattering factors calculated for atoms 
and ions with different numbers of electrons.  
Hydrogen ( only one electron) scatters very 
little as compared with other elements.



• For neutrons, the atomic nucleus acts a 
pin-point scatterer unlike the electron 
cloud, which is of finite size compared 
to the wavelengths used. The 
implication of this is that the scattering 
length b is independent of the 
scattering angle, 2θ, in contrast to the 
X-ray case.

• The neutron b values are a property of 
the nucleus and do not vary in the 
systematic way that the 
equivalent f values do in the X-ray case

X-rays vs neutrons



Let’s consider a simple cubic unit cell with a motif with one (red) atom at a lattice point 
and one (blue) atom in one of the faces at a position x from the top face. The atoms are 
different chemical species. The red planes are those that fulfill the Bragg equation. The 
purple plane is parallel to the Bragg planes but does not fulfill the Bragg equation. 

Interaction with a unit cell



Interaction with a unit cell

The path difference between the rays ( R1 and R2) 
impinging on the (h00) planes ( Bragg fulfilled)

MCN= 2AC sinϑ = 2 𝑑$%% sinϑ = λ 

The path difference between R1 and R3 

RBS= 2ABsinϑ  = AB λ/dh00

AC is the distance between the lattice planes (h00)

AC=𝑑$%% = a/h and   &'
&(
= )

&
'

RBS= )&
'

λ  or a path difference    RBS= h )
*

λ

For an atom sitting halfway ( x/a=1/2) there will be maximal reduction in intensity



Structure factor:

where fj is the atomic form factor of the jth atom, (xj , yj , zj ) is its position in the unit cell 
expressed in fractions of the unit-cell lattice vectors, and the summation is over the j 
atoms within the unit cell. The scattered intensity Ihkl is the absolute square of Fhkl.

Interaction with a unit cell
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2mπ

0

hkl-planes
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sw1

sw2

a2

a1
a3

ϕ

f2

incident
beam
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real
f3
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Figure 6.12 (a) The intensity of a Bragg peak depends on the positions and atomic scattering factors (or ‘form factors’)
of the atoms making up the basis. In this schematic, there are three atoms. The scattered waves sw1, sw2, and sw3
are, of course, spherical, but here we draw them as plane waves in the direction of 2𝜃 for reasons of clarity. (b) The
structure factor Fhkl, of the wave scattered at the Bragg angle is the vector sum of the contributions of each atom (i.e.
f1, f2, and f3), taking into account their phases relative to the incident beam.

scattering strength of each individual atom in the unit cell. Unravelling the structure of more complex crystals
would not be so trivial, and it was the son, W. L. Bragg, who developed the necessary methods to tackle these
more complex systems, first shown for the mineral diopside CaMg(SiO3)2 with Warren in 1928 [5]. A beautiful
review of this seminal work and the early history of x-ray analysis is given by one of Bragg’s most luminary
students, Max Perutz [6].

Consider Figure 6.12. An incoming x-ray beam is weakly scattered by the electron clouds around the three
atoms a1, a2, and a3 of a unit cell. We want to find out how these scattered waves, sw1, sw2, and sw3, add up
in the scattering direction 2𝜃 which satisfies Bragg’s law. The amplitude of each scattered wave is proportional
to the vector sum of the scattering strengths of all the electrons attached to the scattering atom, that is, to its
atomic scattering factor f (Q), while the phases between the scattered waves depend on the relative positions of
the atoms in the unit cell. This is schematically illustrated in Figure 6.12(b) in an Argand diagram. The total
scattering amplitude, or so-called ‘structure factor’ Fhkl is the vector sum of the individual atomic scattering
factors f𝟏 + f𝟐 + f𝟑, whereby the phases are determined by their relative orientations: precisely, the phase of each
scattered wave is given by the associated atom’s position in the direction perpendicular to the scattering planes,
varying linearly from 0 at one plane to 2m𝜋 at the next. This is described mathematically as

Fhkl =
∑

j

fj exp[−i2𝜋(hxj + kyj + kzj)], (6.17)

where fj is the atomic form factor of the jth atom, (xj, yj, zj) is its position in the unit cell expressed in fractions of
the unit-cell lattice vectors, and the summation is over the j atoms within the unit cell. The scattered intensity Ihkl
is the absolute square of Fhkl.

There may arise a situation whereby the magnitude Fhkl is zero, i.e. the scattering vectors from the individual
atoms within the unit cell cancel one another out, in which case no Bragg peak is observed. This is referred to
as a ‘systematic absence’. It is a straightforward exercise to demonstrate that some crystal types have systematic
absences for certain values of (hkl), due to their internal symmetry. So, for example, all reflections are allowed for
a simple cubic structure; for a body-centred cubic (bcc) cell, reflections for which h + k + l is odd are missing;
for face-centred cubic (fcc), reflections in which there are both even and odd values of h, k, and l (i.e. of mixed
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Interaction with a unit cell

FCC lattice, atoms on lattice points

Positions of equivalent atoms: (0,0,0), (½, ½, 0), (½, 0, ½), (0, ½, ½)

hkl all even or odd:  F=4f e.g. 111, 200, 220, 333, 420

hkl mixed:  F=0       e.g. . 100, 211; 210, 032, 033
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• Example: nanocrystalline Ni

Interaction with a unit cell



Interaction with a unit cell



• Two kinds of atoms on 𝛼 and 𝛽-sites. 

• Atomic fractions: xA and xB.

• y𝛼 and y𝛽 fractions of 𝛼 and 𝛽-sites

• Define following parameters:
- r𝛼: fraction of 𝛼-sites occupied by the right atom
- w𝛼: fraction of 𝛼-sites occupied by the wrong atom
- r𝛽 : fraction of 𝛽-sites occupied by the right atom
- w𝛽 : fraction of 𝛽-sites occupied by the wrong atom
The long-range order parameters can be defined as: S = (r𝛼 – xA)/y𝛽 = (r𝛽 – xB)/y𝛼

Chemical ordering

B.E. Warren X-ray diffraction, Dover publications, New York (1990)



Chemical ordering: CuAu

B.E. Warren X-ray diffraction, Dover publications, New York (1990)



Diffraction methods

Method Wavelength Sample angle Detector angle Measured

Laue Variable Fixed Fixed Intensity vs. angle

Rotating crystal Fixed Variable Fixed Intensity vs. angle

Powder Fixed Variable/fixed Variable Intensity vs. angle

Energy dispersive Variable Fixed Fixed Intensity vs. energy

Neutron time-of-flight Variable Fixed Fixed Intensity vs. time

Bragg coherent 
diffraction imaging

Fixed Variable Fixed Intensity vs. angle



Sample types



• Pink beam: many wavelengths
• Bragg equation fulfilled for multiple combinations of d and ϑ

Single crystal diffraction - Laue

224 An Introduction to Synchrotron Radiation

When the characteristic size of the individual grains is reduced to only a few unit cells, such as in nanocrys-
tals, the widths of the diffraction peaks broaden accordingly, producing diffuse ring patterns. This lower limit in
crystallinity often best represents the grim reality of ‘real’ systems, and as such is a burgeoning area of research
in twenty-first century crystallography.

6.8 Single Crystal Diffraction

6.8.1 Laue Diffraction

Although the majority of x-ray diffraction methods use (quasi-)monochromatic x-rays and a sample which one
has to orient in space in order to satisfy the diffraction condition, it is also possible to record diffraction patterns of
stationary single crystals using a broad spectrum of x-rays, in a technique known as the Laue method. Indeed, the
Laue method is historically the oldest and was used in the original discovery of x-ray diffraction and is named after
its founder, Max von Laue (see Figure 1.10). After the development of monochromatic sources using characteristic
radiation from x-ray tubes, Laue diffraction fell somewhat into abeyance, except to orient single crystals and to
determine their crystal quality. However, with the advent of synchrotron radiation, and enormous improvements in
computing power and detector technology, Laue diffraction enjoyed a renaissance as a technique which provided a
fast and efficient means to record diffraction data, and has been used to great effect in dynamical studies of transient
crystalline states, not least in macromolecular crystallography [16]. With the emergence of XFELs, however, Laue
diffraction is again on the wane.

Consider a static single crystal illuminated by a broad and continuous spectrum of x-rays between two energies
Emin and Emax (Figure 6.30). Each set of crystal planes (hkl) is at a well-defined angle 𝜃hkl relative to the incident
beam. From Bragg’s law, Equation (6.11), it is evident that, given a sufficiently broad spectrum of x-rays, there
will be a specific wavelength 𝜆hkl that satisfies the Bragg condition, such that

𝜆hkl = 2dhkl sin 𝜃hkl. (6.27)

Hence, each diffraction peak has a different ‘colour’. Importantly for time-resolved studies, all possible Bragg
reflections can in principle be simultaneously recorded.

In modern synchrotron-based Laue-diffraction studies, the mode of operation is almost always that of transmis-
sion (in contrast to the ‘back-reflection’ mode, for which 2𝜃 > 90∘). The region of reciprocal space that can be

‘pink’ beam single
crystal area detector

overlapping
signal

In
te

ns
ity

Threshold energy

Figure 6.30 A polychromatic ‘pink’ beam is focussed on to a stationary single crystal sample. Because there is a
continuum of wavelengths in the beam, there will always exist certain wavelengths which satisfy the Bragg condition
for any given set of crystal planes and orientation. Higher-order reflections can overlap, whereby the photon energies
are integer multiples of that of the first-order diffraction spot. These overlapping signals can be separated by scanning
the lower threshold energy in modern pixel detectors (see Section 5.7.8).
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Single crystal diffraction - Laue

Laue diffraction provides a lot of structural 
information in a very short time. However, it is not 
as well-suited as monochromatic scattering for  
determining the full atomic structure of a crystal, 
due on the one hand to the often complex and 
unknown intensity distribution of the ‘pink’ 
incident x-ray beam . 

In addition, families of lattice planes that are 
parallel to one another, for example the (111), 
(222), (333) ... planes, have Laue diffraction 
maxima overlapping at the same position, 
resulting in a loss of information. This is called the 
‘energy overlapping problem’. 



Application: stress in thin films
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-Position spots related to both orientation AND shape of the crystal unit cell

- Any rotation or distortion of the shape of the unit cell will result in offset peak positions

- Positions Laue spots Þ crystal orientation + deviatoric strain (stress) tensor

-In praxis: the positions of the reflections qhkl with respect to the laboratory reference 
frame are calculated by:

where Ghkl is the reciprocal-lattice vector for the hkl reflection, B depends on elastic 
strain and U is the rotation matrix between laboratory and crystal frame.

Second, owing to the penetration of the X-ray beam within
the specimen, one cannot distinguish from the mLaue pattern
whether the diffracting crystal is located at the sample surface
or somewhere deeper inside the specimen along the incoming
beam, unless the time-consuming differential aperture X-ray
microscopy technique is applied (Larson et al., 2002, 2004;
Ohashi et al., 2009; Marijon, 2017). Sorting out grains lying at
the specimen surface is of importance when one wants to
make the link between local stresses measured by mLaue and
other microstructural or mechanical characterizations with
laboratory techniques adapted to surface analyses, such as
optical or electronic microscopies (Plancher et al., 2017).

In this work, we aim to push the limits of mLaue one step
forward in terms of robustness with respect to complex small-
scale microstructures. We propose an ‘EBSD-assisted mLaue’
method to index the mLaue patterns and to measure elastic
strain in materials exhibiting a complex sub-micrometre
microstructure with a number of individual crystals within the
gauge volume. In this approach, the indexing challenge
concerning complex mLaue images made of several super-
imposed diffraction patterns is solved by providing the mLaue
processing software with the orientation of the diffracting
crystals of the gauge volume as a priori knowledge. This allows
one to start the indexing procedure with an efficient guess for
orientation and strain refinement. So far no such study has
been carried out on a method that combines the high spatial
resolution of EBSD and high angular (and therefore high
strain) resolution of mLaue.

To illustrate the proposed method, we make use of mLaue
data obtained on a fused-cast zirconia-based specimen. This
material is a perfect case of a twinned microstructure with
multiscale crystal sizes, down to nanometre scale, inherited
from successive structural phase transformations (SPTs) that
occur during cooling (Humbert et al., 2010). On top of that, the

low-symmetry crystal structure (monoclinic) generates mLaue
patterns crowded by numerous spots.

After some general description of the conventional mLaue
approach (x2), we describe in x3 the method that we propose
to label as EBSD-assisted Laue microdiffraction. Then, in x4,
an illustrative application is presented. Finally, we discuss the
performance of the method in terms of strain measurement for
materials exhibiting sub-micrometre microstructures.

2. Conventional Laue microdiffraction

A standard mLaue setup in reflection geometry consists of the
following main parts: X-ray mirrors to focus the beam, a tilted
sample stage and an area detector, as shown in Fig. 2(a). The
stage is moved over an ROI and mLaue patterns are acquired
at each position. The conventional analysis of each mLaue
pattern goes through three successive steps: (i) peak search,
(ii) indexing the pattern to determine the single orientation of
the probed volume and (iii) determining the strain tensor. In
the following the main steps are recalled.

2.1. Peak search and indexing

First, a background removal (detailed in the LaueTools
software documentation available at https://sourceforge.net/
projects/lauetools/) followed by a peak search procedure are
performed with different possible algorithms to determine the
pixel locations of intensity maxima in the image. This is
followed by a fit by a two-dimensional Gaussian to refine peak
positions. Second, peaks are indexed by calculating the angles
between all reciprocal-lattice vectors taken two by two within
a selected subset of peaks and matching these angles to the
theoretical ones for the considered crystal structure. In this
way a single consistent crystal orientation matrix that indexes
the highest number of Laue spots is determined. This method
inherently reduces the initial two-dimensional data set into a
one-dimensional one, since two angles are needed to express
the direction of each diffraction vector (or equivalently two
coordinates to express the peak position data on the detector
area) but then only the angle between pairs of vectors (one
parameter) is retained for the analysis, as shown in Fig. 1. By
definition, the crystal orientation matrix is a rotation matrix
that transforms the orthogonal sample reference frame to an
orthogonal reference frame attached to the crystal lattice.
Finally, an additional rotation is required to relate the crystal
reference frame to a pre-defined reference frame attached to
the instrument: here the mLaue laboratory reference frame.
Fig. 2(a) shows the used sample and mLaue reference frames.

In the conventional LaueTools software, the positions of
the reflections with respect to this reference frame are calcu-
lated by the following description of the reciprocal-lattice
vector qhkl :

qhkl ¼ U B Ghkl; ð1Þ

where Ghkl is the reciprocal-lattice vector for the hkl reflec-
tion, Ghkl ¼ ha$ þ kb$ þ lc$ (h; k; l are the Miller indices of
the diffracting plane), expressed in an orthogonalized crystal

research papers
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Figure 2
Experimental setup configurations of (a) mLaue at BM32, ESRF
(Grenoble, France), and (b) EBSD in SEM. The sample position and
reference frames for crystal orientation definition are indicated on each
setup. The reference frames labelled with indices E and L refer to EBSD
and mLaue setups, respectively.



• Crystal orientation and deviatoric strain 
tensor can be refined simultaneously 
when sufficient spots are present. The 
hydrostatic component can be 
determined by an energy scan of at 
least one spot.

• Example: Al 0.5 wt % Cu thin film with 
thickness of 0.5µm deposited at 400C 
on a SiN membrane on a Si frame. 
During cooling stresses arise in 
individual grains. X-ray beam spot size: 
0.8µm.  

Application: stress in thin films

Spolenak et al, Phys. Rev. Lett 90, 096102 (2003)



• Microstructural variations within the illuminated volume can lead to change in shape 
of spots

Application: microcompression of single crystals

Statistically stored 

dislocations
Curvature Small-angle boundary



Application: microcompression of single crystals



Application: microcompression of single crystals
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• In the large majority of single-crystal diffraction 
experiments, monochromatic radiation is used and the 
so-called ‘rotation’ or ‘oscillation’ method is applied.

• By rotating the crystal around an axis perpendicular to 
the incident beam (𝜙), diffraction maxima pass through 
the surface of the Ewald sphere and are registered on a 
2D x-ray detector 

• When viewed from above the plane containing the 𝜙-
axis, one sees that for a given crystal orientation relative 
to the axis, some data cannot be accessed (known as 
‘cusp’ data and shaded blue here). However, by 
reorienting the crystal axis (typically by 90∘), this data can 
also be recorded. 

Single crystal diffraction – rotation method



• Goal: to study the three-dimensional structure of biological macromolecules. 
• Unfortunately, it is only possible to measure the amplitude of the diffraction pattern 

spots by experimental means; the phase information is missing 
• Without phase information it is difficult to reconstruct the electron density in the unit 

cell. There exist various method to circumvent this: 
(https://www.ruppweb.org/Xray/101index.html) 

Application: protein crystallography

Data collection: wave length = 0.097nm, Canadian 
Light Source - 1 second per frame, total of ~360 
frames, step size 0.5 degrees Courtesy: F. Van Petegem, UBC, Canada

https://www.ruppweb.org/Xray/101index.html


Conditions for diffraction in a powder sample. A detector will only see a diffracted signal if the 
dhkl spacing, the orientation of the crystallite, and the angle of the detector 2𝜃 to the incident x-
ray beam lead to the diffraction condition being satisfied. This is fulfilled by the yellow-
highlighted crystallite. 

Powder diffraction



A schematic of a powder diffraction 
experiment. Those crystallites with 
crystal planes (hkl) at an angle 𝜃 given 
by the Bragg law to the incoming beam 
will diffract. The cylindrical symmetry of 
the experimental setup about the 
incident beam axis means cones of 
diffracted signal are produced. A 
diffraction pattern is obtained by 
scanning radially out from the beam 
axis with a detector in a plane that 
contains that axis. 

Powder diffraction



The effect of spinning or shaking a powder sample during data acquisition 

Powder diffraction



• The collapse of three-dimensional reciprocal space onto one-dimensional data sets 
leads to a severe reduction of information, caused by an accidental and systematic 
peak overlap. This is known as the grave powder problem 

• In 1969, Hugo Rietveld published the seminal article on what has become known as 
the Rietveld refinement method (cited over 18’000 times).

• The underlying idea relies on modeling a calculated powder diffraction pattern, 
described by a set of parameters. 

• All of these parameters can be simultaneously refined by the least-squares method, 
until the calculated pattern matches the experimentally collected data.

• Since then, many ‘whole powder pattern fitting’ methods have been developed. 

Rietveld refinement



The intensity I(2q) at the angle 2q can be written as:

Fi is the structure factor for the ith reflection
ci the peak shape function
Ci geometric factor including multiplicity and Lorentz factor

Refinement parameters may include: lattice constants, atomic positions, thermal 
parameters, site occupancy, peak asymmetry, Lorentz and polarization, axial divergence, 
background coefficients, strain and size broadening, … 

Rietveld refinement
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• Polarization correction: accounts for polarization state of incident beam (in most 
powder x-ray diffractometers, unpolarized)

P = 1 – cos2(2𝜃)

• Lorentz correction: takes into account change in scattering volume size & scan rate as a 
function of angle for a particular diffraction geometry

L = 1/(sin2 𝜃 cos 𝜃)

• Lorentz–polarization factor
LP = (1 – cos2(2𝜃)) / (sin2 𝜃 cos 𝜃) 

Lorentz factor



Y.E. Filinchuk et al J. of Alloys and Compounds 413 (2006) 106

Rietveld refinement

HoNi3
Ho2Ni7
Ho2O3



Rietveld refinement

There exist many data analysis routines that include Rietveld 
refinement, such as

Fullprof: http://www.ill.eu/sites/fullprof

GSAS: http://www.ncnr.nist.gov/xtal/software/gsas.html

MAUD: http://maud.radiographema.com

The International Centre for Diffraction Data: http://www.icdd.com

http://www.ill.eu/sites/fullprof
http://www.ncnr.nist.gov/xtal/software/gsas.html
http://maud.radiographema.com
http://www.icdd.com


• Peak profiles are determined by many factors. The most important ones include:
- Resolution function
- Coherent scattering length
- Microstrain
- Inhomogeneous elastic strain
- Anti-phase boundaries
- Faulting
- Dislocations
- Grain surface relaxation

- Solid solution inhomogeneity
- Temperature factors

• Peak profile is a convolution of the profiles from all of these contributions

Peak profiles



Grain size analysis

¥ ¥
Lattice planes (d)

Coherent scattering length Lcoh

q
ldq
coscohL
K

=

Size broadening due to incomplete ‘canceling’

of small deviations from the Bragg angle



• Scherrer formula:

• - the most common values for K are:
- 0.94 for FWHM of spherical crystals with cubic symmetry
- 0.89 for integral breadth of spherical crystals with cubic symmetry
- 1, because 0.94 and 0.89 both round up to 1

• K actually varies from 0.62 to 2.08

• For an excellent discussion on K, refer to J.I. Langford and A.J.C. Wilson, J. Appl. Cryst. 11
(1978) p102

Grain size analysis

( )
q

lq
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Grain size analysis – example: CeO2

M. Leoni and P. Scardi, J. Appl. Cryst. (2004). 37, 629



Dislocation density

Elastic strain variations

ß

distribution of lattice distances

ß

peak broadening
Dislocations: anisotropic strain distribution

ß

Dislocation contrast factor C



Dislocation density

• Modified Willamson-Hall method
- T. Ungar et al. Appl. Phys. Lett. 69, 3173 (1996)

• Fourier analysis

- X-ray Diffraction, B.E. Warren, Dover Publications, 1990

• Full pattern fitting (e.g. PM2K)
- M. Leoni et al. J. Appl. Crystall. 40, 719 (2007)

Parameters: dislocation density, cut-off radius and character 



Dislocation density

• Example: deformation of a low carbon C10E steel.

V. Davydov. PhD thesis (2010)

5% deformation



The story of copper



• Bauschinger effect (1881),Civiling.N.F.,27, 289.

The story of copper



Ungar et al. (1982) Acta. Metall. 30, 1861

The story of copper

Dislocation density measurements based on approach Wilkens (physica status sol 2, 359 (1970).
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During plastic deformation of metals and alloys, dislocations arrange in ordered patterns. How
and when these self-organization processes take place have remained elusive, because in situ
observations have not been feasible. We present an x-ray diffraction method that provided data on
the dynamics of individual, deeply embedded dislocation structures. During tensile deformation
of pure copper, dislocation-free regions were identified. They showed an unexpected intermittent
dynamics, for example, appearing and disappearing with proceeding deformation and even
displaying transient splitting behavior. Insight into these processes is relevant for an understanding
of the strength and work-hardening of deformed materials.

M
etals and alloys are typically poly-
crystalline aggregates where each
grain is characterized by the orien-

tation of its atomic lattice. When deformed
plastically, line defects (dislocations) are
introduced into the lattice of each grain (1).
These defects organize into dislocation bound-
aries separating (nearly) dislocation-free re-
gions with almost perfect lattices, which we
term subgrains. As an illustration, a transmission

electronmicroscope (TEM) image is shown (Fig.
1). With increasing deformation, the flow stress
increases, and the dislocation structure shrinks in
length scale; the subgrains become progressively
smaller, and the orientation difference between
neighboring subgrains becomes larger (2).

Understanding the arrangement of dislo-
cations is essential for science and industry,
because their patterns determine many physical
and mechanical properties, such as electrical

resistivity of semiconductors or strength anisot-
ropy and fatigue failure of (cubic) metals.
Furthermore, dislocation patterns are of generic
interest, because they are observed in a broad
class of materials and over many different length
scales, ranging from mm-sized structures in
semiconductors (3) to structures with a size of
10 nm in severely deformed metals (4). Never-
theless, very central questions have not been
settled. These include the following: How and
when do ordered dislocation structures form?
How is the shrinkage in length scale, and hence
the subdivision of the deformation structure,
accomplished?

Traditionally, deformed structures are char-
acterized in two ways: by electron microscopy
(EM) (5–8) and by line profile analysis of x-ray
diffraction patterns (9–12). EM provides detailed
maps of sections (Fig. 1), but the dynamics ob-
served on such sections is not representative of
the bulk because of artifacts such as dislocation
migration toward the free surfaces and stress
relaxation. Line profile analysis can, in principle,
probe the bulk dynamics in polycrystals, but the
results are averages over many subgrains and
many grains, all with different orientations and
neighboring relations.

We present results on the dynamics of in-
dividual, deeply embedded subgrains. The ma-
terial was 99.99% pure Cu with an average

Fig. 1. TEM image of 99.99% pure Cu, deformed
to a strain of 2% in tension. The dislocations (black
line segments) organize into walls and dislocation-
free regions.
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Fig. 2. (A) Sketch of the experimental setup. The real and reciprocal space coordinates (x, y, and z)
and (qx, qy, and qz), respectively, are defined, together with the scattering angle of 2q. The
directions qy (the radial direction) and (qx and qz) are parallel and perpendicular, respectively, to
the ideal reciprocal lattice vector for the reflection investigated (represented by G). They are related
to the elastic strain and orientation distributions of the grain, respectively. X-ray diffraction
patterns are acquired by using the two area detectors A and B, by rotating the sample around the
x axis in small intervals. (B) Full diffraction pattern obtained with detector A at a strain of 3%.
(C) Corresponding high-resolution image of the 400 reflection acquired by detector B. By stacking
such high-resolution images, a 3D reciprocal space map of the reflection is obtained.
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Plastically deformed Cu

H. Mughrabi, Acta Metall. 31 (1983) 1367  

Origin of strong peak asymmetry?



Faulting?

The story of copper

B.E. Warren X-ray diffraction (1969) 



The story of copper

H. Mughrabi, Acta Metall. 31 (1983) 1367  

Composite model
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gions with almost perfect lattices, which we
term subgrains. As an illustration, a transmission

electronmicroscope (TEM) image is shown (Fig.
1). With increasing deformation, the flow stress
increases, and the dislocation structure shrinks in
length scale; the subgrains become progressively
smaller, and the orientation difference between
neighboring subgrains becomes larger (2).

Understanding the arrangement of dislo-
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because their patterns determine many physical
and mechanical properties, such as electrical
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theless, very central questions have not been
settled. These include the following: How and
when do ordered dislocation structures form?
How is the shrinkage in length scale, and hence
the subdivision of the deformation structure,
accomplished?

Traditionally, deformed structures are char-
acterized in two ways: by electron microscopy
(EM) (5–8) and by line profile analysis of x-ray
diffraction patterns (9–12). EM provides detailed
maps of sections (Fig. 1), but the dynamics ob-
served on such sections is not representative of
the bulk because of artifacts such as dislocation
migration toward the free surfaces and stress
relaxation. Line profile analysis can, in principle,
probe the bulk dynamics in polycrystals, but the
results are averages over many subgrains and
many grains, all with different orientations and
neighboring relations.

We present results on the dynamics of in-
dividual, deeply embedded subgrains. The ma-
terial was 99.99% pure Cu with an average

Fig. 1. TEM image of 99.99% pure Cu, deformed
to a strain of 2% in tension. The dislocations (black
line segments) organize into walls and dislocation-
free regions.
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Fig. 2. (A) Sketch of the experimental setup. The real and reciprocal space coordinates (x, y, and z)
and (qx, qy, and qz), respectively, are defined, together with the scattering angle of 2q. The
directions qy (the radial direction) and (qx and qz) are parallel and perpendicular, respectively, to
the ideal reciprocal lattice vector for the reflection investigated (represented by G). They are related
to the elastic strain and orientation distributions of the grain, respectively. X-ray diffraction
patterns are acquired by using the two area detectors A and B, by rotating the sample around the
x axis in small intervals. (B) Full diffraction pattern obtained with detector A at a strain of 3%.
(C) Corresponding high-resolution image of the 400 reflection acquired by detector B. By stacking
such high-resolution images, a 3D reciprocal space map of the reflection is obtained.
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• One of the big advantages of x-ray powder diffraction: provides statistical relevant 
information (compared to, for instance, electron microscopy)

• One of the big disadvantages of x-ray powder diffraction: provides only averaged 
information, sometimes obscuring the source of changes in peak shape.

• Solution: move away from conventional powder diffraction and use local x-ray probes

Advantage or disadvantage?



New insights into the old Cu problem
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10 nm in severely deformed metals (4). Never-
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when do ordered dislocation structures form?
How is the shrinkage in length scale, and hence
the subdivision of the deformation structure,
accomplished?

Traditionally, deformed structures are char-
acterized in two ways: by electron microscopy
(EM) (5–8) and by line profile analysis of x-ray
diffraction patterns (9–12). EM provides detailed
maps of sections (Fig. 1), but the dynamics ob-
served on such sections is not representative of
the bulk because of artifacts such as dislocation
migration toward the free surfaces and stress
relaxation. Line profile analysis can, in principle,
probe the bulk dynamics in polycrystals, but the
results are averages over many subgrains and
many grains, all with different orientations and
neighboring relations.
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Fig. 1. TEM image of 99.99% pure Cu, deformed
to a strain of 2% in tension. The dislocations (black
line segments) organize into walls and dislocation-
free regions.
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Fig. 2. (A) Sketch of the experimental setup. The real and reciprocal space coordinates (x, y, and z)
and (qx, qy, and qz), respectively, are defined, together with the scattering angle of 2q. The
directions qy (the radial direction) and (qx and qz) are parallel and perpendicular, respectively, to
the ideal reciprocal lattice vector for the reflection investigated (represented by G). They are related
to the elastic strain and orientation distributions of the grain, respectively. X-ray diffraction
patterns are acquired by using the two area detectors A and B, by rotating the sample around the
x axis in small intervals. (B) Full diffraction pattern obtained with detector A at a strain of 3%.
(C) Corresponding high-resolution image of the 400 reflection acquired by detector B. By stacking
such high-resolution images, a 3D reciprocal space map of the reflection is obtained.
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How is the shrinkage in length scale, and hence
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Traditionally, deformed structures are char-
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maps of sections (Fig. 1), but the dynamics ob-
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the bulk because of artifacts such as dislocation
migration toward the free surfaces and stress
relaxation. Line profile analysis can, in principle,
probe the bulk dynamics in polycrystals, but the
results are averages over many subgrains and
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Fig. 1. TEM image of 99.99% pure Cu, deformed
to a strain of 2% in tension. The dislocations (black
line segments) organize into walls and dislocation-
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when do ordered dislocation structures form?
How is the shrinkage in length scale, and hence
the subdivision of the deformation structure,
accomplished?

Traditionally, deformed structures are char-
acterized in two ways: by electron microscopy
(EM) (5–8) and by line profile analysis of x-ray
diffraction patterns (9–12). EM provides detailed
maps of sections (Fig. 1), but the dynamics ob-
served on such sections is not representative of
the bulk because of artifacts such as dislocation
migration toward the free surfaces and stress
relaxation. Line profile analysis can, in principle,
probe the bulk dynamics in polycrystals, but the
results are averages over many subgrains and
many grains, all with different orientations and
neighboring relations.

We present results on the dynamics of in-
dividual, deeply embedded subgrains. The ma-
terial was 99.99% pure Cu with an average

Fig. 1. TEM image of 99.99% pure Cu, deformed
to a strain of 2% in tension. The dislocations (black
line segments) organize into walls and dislocation-
free regions.

y

z

x

G

qy

qz

qx

Detector A

Detector B

Load

Load

Slits

X-ray beam

Sample

2θ
A

B C

Fig. 2. (A) Sketch of the experimental setup. The real and reciprocal space coordinates (x, y, and z)
and (qx, qy, and qz), respectively, are defined, together with the scattering angle of 2q. The
directions qy (the radial direction) and (qx and qz) are parallel and perpendicular, respectively, to
the ideal reciprocal lattice vector for the reflection investigated (represented by G). They are related
to the elastic strain and orientation distributions of the grain, respectively. X-ray diffraction
patterns are acquired by using the two area detectors A and B, by rotating the sample around the
x axis in small intervals. (B) Full diffraction pattern obtained with detector A at a strain of 3%.
(C) Corresponding high-resolution image of the 400 reflection acquired by detector B. By stacking
such high-resolution images, a 3D reciprocal space map of the reflection is obtained.
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New insights into the old Cu problem

Sub-grains are dislocation-poor (<1013 m-2)

‚Bulk‘ diffraction peaks are composed of diffuse background (dislocation walls) + sum of 
sharp peaks from the sub-grains, each with a different stress level, leading to broad 
diffraction peaks 

Jacobsen et al. Science 312 (2006) 889



Take home messages

Critically assess all possible causes for peak broadening

Each method will give you a number

Use multiple analysis techniques
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In situ diffraction

79

In-situ deformation In-situ annealing/cooling/quenching



In situ powder diffraction

• Usually sample and detector are fixed



Axial versus Transverse

81

Axial Transverse



The story of cementite

Seite 82



The story of cementite

• Matrix – precipitates
• Ferrite – cementite (very heterogeneous)

83



Issue with statistics

• When the sample cannot be rotated
ØIssue with large-grained materials
ØIssue with texture

• Solutions:
ØSmall oscillations during acquisition of one spectrum
ØTime-of-Flight neutron diffraction
Ø But, neutron diffraction doesn’t pick up phases with low volume fraction
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Combine X-Rays and Neutrons

!
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Evolution peak profiles

Ferrite

Cementite



Evolution peak profiles

Ferrite

Cementite

Cementite plastically deformed?



Homogeneous ferrite – cementite structure

Seite 88

!

!
Much less cementite peak broadening in homogeneous structure ...



Broadening in cementite?

• Separate carbide powder from the 
matrix: ca. 3wt.%

• Record diffraction pattern 
(Cementite & Vanadium Carbide)

• Compare before and after 
deformation



Broadening in cementite?

Not broadening because of size

Not broadening because of dislocations

So what is it?

Cementite powder



Cementite broadening comes from ...

Different stress levels in the precipitates (diffraction peaks consist of many narrower 
peaks, slightly shifted compared to each other)
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Cementite broadening comes from ...

Different stress levels in the precipitates (diffraction peaks consist of many narrower 
peaks, slightly shifted compared to each other)
     or ...
Pile-up of dislocations at the precipitate – matrix interface causing strong strain 
gradients inside the precipitates



Take home messages:

Heterogeneous microstructure can lead to significant peak broadening

Peak broadening not necessarily an indication for plasticity

93





• X-ray powder diffraction ideal for 
materials with sufficiently large grain size

• For nanocrystalline materials with grain 
sizes in the range of a few nm or for 
amorphous materials, the diffraction 
peaks become very broad and diffuse.

• Peak profile analysis does not work, as 
several assumptions do not hold up at 
very small grain sizes.

• In the pair distribution function a wide 
range of reciprocal space is probed. 

Pair distribution function



PDF:

With 𝜌0 the average number density of atoms, N the total number of atoms and rij the 
distance between atoms i and atom j. The PDF gives the scaled probability of finding 
two atoms in a material a distance r apart 

Pair distribution function

Chin. Phys. B Vol. 29, No. 2 (2020) 028802

large range of Q. But both atomic form factor and atomic dis-
placement parameter can lead to significant intensity decrease
at high Q, making the data quality very poor in this region.
Thanks to the advancement of modern x-ray synchrotron fa-
cility and spallation neutron sources, extremely high flux of
x-ray photons and neutrons can be obtained. Coupled with
high energy, or short wave-length l , high Q region can now
be accessed (since Q is inversely proportional to l ) and a high
quality Fourier transform can be implemented. Here, some
mathematical basics are explained and several functions are
introduced. Some function has strict physical definition, such
as g(r); some have computational convenience, such as G(r);
and some provides intuitive understanding, such as R(r). To
begin with, the pair distribution function g(r) is defined as fol-
lows:

g(r) =
1

4pr0r2N
Â

i

Â
j 6=i

d (r� ri j),

in which r0 is the average number density of atoms, N is the
total number of atoms, and ri j is the distance between atom i

and atom j. d (r� ri j) is the Dirac delta function which equals
a single unit only when r = ri j. In practice, the reduced atomic
pair distribution function G(r) is more frequently used,

G(r) = 4prr0[g(r)�1].

This is because G(r) can be directly calculated from the mea-
sured total scattering function S(Q) through Fourier transfor-
mation

G(r) =
2
p

Z •

0
Q[S(Q)�1]sin(Qr)dQ,

where Q is the amplitude of the transferred momentum calcu-
lated by the difference between scattered wavevector and inci-
dent wavevector. S(Q) by definition is calculated by measured

coherent scattering intensity I
coh(Q)

S(Q) = 1+
I

coh(Q)�Âci

�� f
i(Q)

��2

|Âci f i(Q)|2
,

where ci is the atomic concentration of the i-th type of ele-
ments and f

i(Q) is its atomic x-ray scattering factor or neutron
scattering length. The coherent scattering intensity I

coh(Q)

can be directly collected from the experimentally measured
total intensity I(Q) when properly corrected for incoherent in-
tensity, background noises, detector efficiency, multiple scat-
tering, etc. By now, the relationship between measurable total
scattering intensity I(Q) and structural function g(r) has been
established. To better understand the meaning of g(r), it is
necessary to introduce the closely-related radial distribution
function (RDF), R(r), which offers a more intuitive picture:

R(r) = 4pr
2r0g(r).

As shown in Fig. 1(a), rR(r) indicates the number of atoms
that can be found inside the spherical shell with radius r and
thickness dr centering around another atom.[11] For detailed
introduction on different correlation functions for describing
the total scattering, interested readers could find a systemati-
cal review in which David A. Keen compared the commonly
used correlation functions.[38]

Figure 1(b) shows a typical PDF pattern (G(r)) for a ma-
terial. It is a real-space function and a wealth of structural in-
formation can be directly obtained from it. The peak position
indicates the distance of atomic pairs. The area of peaks is re-
lated to the abundance of relevant pairs weighted by their scat-
tering power. The width of peaks is related to disorder inside
the material which can be structural disorder or/and atomic
thermal vibration. The maximum distance at which peaks are
observable gives insight to the size of coherent domain.[39,40]

Fig. 1. (a) Atom distribution of CeO2 in real space, and a sphere centered at an atom with radius r and annulus thickness dr.[11] (b) High-energy
x-ray total scattering derived pair distribution function in real space, G(r), provides real-space structure information which is independent of
structure modeling.[39]

For a successful total-scattering measurement, scattering
data needs to cover a wide range of Q. Practically, this means
a short wavelength is required for the experiment since Q is
inversely proportional to l . It also means a very high flux
of radiation source is needed because both atomic form fac-

tor and structural disorder (including thermal vibration and
static uncertainties) can lead to significant dampening in the
high Q region. The former mostly influences x-ray experi-
ment and the latter influences both x-ray and neutron experi-
ments. Because of these considerations, PDF experiments are

028802-2



Pair distribution function



Application

Chin. Phys. B Vol. 29, No. 2 (2020) 028802

Another attractive conversion material is FeF3 and its var-
ious derivatives, which are low cost and environmentally be-
nign. In addition, it can take up to 4 Li ions per formula
and enable multiple electron transfer, promising a high energy
density.[47] However, this material suffers from the problem of
large voltage hysteresis and poor cyclability. To understand
the reaction mechanism, Wiaderek et al. carried out in situ

PDF experiment for FeOxF1�x (Fig. 4(a)).[48] PDF revealed
the presence of an amorphous rutile phase that was difficult
to be probed otherwise. The authors provided a quantitative
description of the evolution of both crystalline and amorphous
phases during charging/discharging (Fig. 4(b)). It is found that
the highly reversible intercalation-extrusion reaction precedes
the less reversible conversion reaction. Fan et al. proposed
to use Co and O dual-doping in FeF3 to decrease the voltage
hysteresis and increase the cyclability.[49] Such strategy turned
out to be very successful as indicated by the excellent electro-
chemical performance. PDF studies indicated that in the dual-

doped samples, the reversible intercalation-extrusion reaction
is greatly promoted and the irreversible conversion reaction is
significantly suppressed. In details, figure 4(c) shows that each
relevant phase has its own characteristic PDF peak and this
provides a convenient and reliable way to analyze the phase
composition. Figures 4(d) and 4(e) show the measured PDF
patterns for Fe0.9Co0.1OF and FeOF materials in both charged
and discharged states after 100 cycles. The main difference be-
tween them is that in Fe0.9Co0.1OF the intensity of the metal
phase peak (around 2.5 Å) is much smaller than that in FeOF at
the discharged state. Figure 4(f) shows the composition anal-
ysis of the two materials from fitting results. The proportion
of the rocksalt phase in the final discharge products greatly in-
creases after the introduction of dual doping. Therefore, the
authors concluded that dual doping enhances the reversible
extrusion reaction and suppresses the irreversible conversion
reaction.

(a)

(c) (d)

(e)

(f)

(b)

Fig. 4. (a) The in situ PDF data of iron oxyfluoride (FeII
(1�x)FeIII

x
OxF2�x, x = 0.6) during the first discharge–charge cycle. Characteristic peaks

of the rock salt intermediate are indicated by arrows. Relative peak intensities are indicated by colors. (b) Evolution of phase composition
in FeII

(1�x)FeIII
x

OxF2�x (x = 0.6) during cycling. (c) Characteristic atomic pairs in rutile, rocksalt, and body-centered-cubic metal and their
corresponding PDF peaks. (d) PDF patterns of Fe0.9Co0.1OF and FeOF at pristine state, charged state after the 1st cycle, and charged state after
the 100th cycle. (e) PDF patterns of Fe0.9Co0.1OF and FeOF at discharged state after the 1st cycle and discharged state after the 100th cycle. (f)
Percentages of metal and rocksalt phases in Fe0.9Co0.1OF and FeOF obtained by fitting PDF results.[48,49]

028802-5

(a) The in situ PDF data of iron oxyfluoride 
(FeII

(1−x)FeIII
xOxF2−x , x = 0.6) during the first 

discharge–charge cycle. Characteristic peaks

(b) Evolution of phase composition during cycling. 

(c) Characteristic atomic pairs in rutile, rocksalt, and 
body-centered-cubic metal and their corresponding 
PDF peaks.

(d) PDF patterns of Fe0.9Co0.1OF and FeOF at pristine 
state, charged state after the 1st cycle, and charged 
state after the 100th cycle. 

(e) PDF patterns of Fe0.9Co0.1OF and FeOF at discharged 
state after the 1st cycle and discharged state after 
the 100th cycle. 

(f) Percentages of metal and rocksalt phases in 
Fe0.9Co0.1OF and FeOF obtained by fitting PDF 
results

Wiaderek et al J. Am. Chem. Soc. 135, 4070 (2013) 

Fan et al Nat. Commun. 9, 2324 (2018)





• In EDXRD the diffraction angle 𝜃 is kept constant and the lattice spacing d is obtained 
experimentally by determining the energy E of the diffracted beams of the originally 
polychromatic beam:

• Usually used in combination with high X-ray energies to allow for large penetration 
depths.

• No need for a goniometer, can even be made portable.
• When using a wide energy range, depth-dependent measurements are possible.

Energy dispersive X-ray diffraction

This journal is©the Owner Societies 2020 Phys. Chem. Chem. Phys., 2020, 22, 20972--20989 | 20973

change identity or structure when the load is removed.12,13 A
specific benefit of EDXRD is the ability to measure batteries within
their native housings, including bulk engineering materials, with
no need to adjust the cell construct which can alter the resultant
electrochemistry.

This review presents an overview of battery work performed
using the EDXRD technique, as developed at beamline X17B1 at
the National Synchrotron Light Source (NSLS),14 and continued
at beamline 6BM-A at the Advanced Photon Source (APS), beam-
line I12 at the Diamond Light Source, and beamline 7T-MPW-
EDDI at the Berlin Electron Storage Ring Society for Synchrotron
Radiation (BESSY II).

The HEX beamline under construction at NSLS-II by Broo-
khaven National Lab and the State of New York will further
expand capability for this technique.15

The experimental examples chosen herein exemplify various
situations under which diffraction from within the bulk of an
intact battery presents clear advantages and delivers information
not achievable using alternative methods, such as testing after
disassembly of the cell or the use of an ad hoc model system
designed to allow observation by low-energy photons from a
conventional X-ray source.

2. The EDXRD technique from a high
energy source
The x1–x2 scattering plane for battery EDXRD is shown in
Fig. 1.2 The incident white beam of X-ray radiation has an energy
range up to approximately 200 keV. The beam path to the detector
is determined by the collimation slit settings di and ds. The
diffraction angle 2y is fixed by placement of the detector, and
the intersection of the incident and diffracted beams defines a
parallelepiped-shaped diffraction gauge volume from which
data is collected. By moving the battery, the gauge volume is
repositioned within. In this example, a sequence of measure-
ments conducted while moving the battery in the x1 direction

would give spatially-resolved data with di resolution in the
direction of current flow. Current distributions in porous electrodes
are found in this direction in most situations, and thus this is
usually the most interesting dimension in which to resolve
diffraction data.

2.1 Photon energy and d-spacing

EDXRD data are collected as diffraction counts vs. photon energy in
keV. Photon energy can be converted to d-spacing via Bragg’s law:

d ¼ hc

2E sin y
(1)

where hc is 1.2398 eV mm, E is photon energy, and y is half the
constant diffraction angle as defined in Fig. 1. EDXRD data may be
presented in several ways, with detector counts as a function of
inverse d-spacing 1/d (cf. Fig. 4), a function of photon energy in keV
(cf. Fig. 5), or as a function of a common 2y standard used for lab-
scale angle dispersive X-ray diffraction (ADXRD). For comparison to
standard ADXRD results using CuKa radiation, the conversion to
2yequiv. is:

2yequiv ¼ 2arcsin
lCuKaE sin y

hc

! "
(2)

where lCuKa = 0.15418 nm. EDXRD data can be plotted as
photon energy in keV, inverse d-spacing, or as 2yequiv. for CuKa
radiation all result in similar plots, in which Bragg reflections
for large d-spacings appear on the left of the figure, proceeding
to smaller d-spacings on the right. Some EDXRD data are
also plotted with d as the independent variable, moving large
d-spacings to the right on the figure.

2.2 The EDXRD gauge volume

Due to the long diffracted beam path (41 m) the spread of
diffraction angles across the gauge volume is o2 " 10#5 rad,
and thus a diffraction pattern can be considered to sample
material at a single constant 2y. This has been confirmed by
mapping the gauge volume cross-section by scanning across

Fig. 1 Schematic showing white beam EDXRD from a gauge volume placed within a battery. The beam path to the detector, shown in blue, is
determined by the collimation slit settings di and ds. By moving the battery the gauge volume may be placed at many locations.
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Energy dispersive X-ray diffraction



Application – Battery research

Copper current collector

Aluminium current collector

Li migration during charging

Quantifying lithium concentration gradients in the graphite electrode of Li-ion cells using operando energy dispersive X-ray diffraction. 
Koffi P. C. Yao et al, Energy & Environmental Science 12 (2019) 656  

What is the LixC6 concentration across the thickness?



Application – Battery research
Experiment:
• X-ray photons with energies between 5 and 250 keV
• Ge detector placed at a fixed angle 𝜃 ≈ 3°
• X-ray beam was 18.3 µm x 1045 µm
• 1 min per acquisition for a total period of 3 h per charge/ discharge 

cycle 

Analysis
• The Li–Gr intercalation system exhibits several phases (commonly 

referred to as stages)
• The Li content x is found by:

with fj is the fractional Li content of the corresponding LixC6 phase j, Ihkl

is the relative integrated flux of scattered X-ray photons from phase j, 
mhkl is the multiplicity of the Bragg reflection with the Miller indices 
(hkl) originating from phase j in the peak region of interest, and Fhkl is 
the corresponding scattering factor



Application – Battery research

Species Strongest Bragg peak, 
(hkl) 

Multiplicity 
mhkl

Estimated 
Fhkl

Value of
fi

graphite (002) 2 16.8 0 

LiC30 (004) 2 49.72 1/5

LiC18 (004) 2 33.85 1/3 

LiC12 (002) 2 50.2 1/2 

LiC6 (001) 2 25.3 1 

Quantifying lithium concentration gradients in the graphite electrode of Li-ion cells using operando energy dispersive X-ray diffraction. 
Koffi P. C. Yao et al, Energy & Environmental Science 12 (2019) 656  





• Velocity of cold and thermal neutrons with wavelength 𝜆 is low enough to reliably 
measure the time t needed to fly distances L (of the order of metres):

𝑡 = !"!
#$ℏ

𝐿

• Start signal is provided by:
- Timing signal of the pulsed source
- Signal from a chopper

• Stop signal is provided by the neutron detector
• ToF allows to 
- determine the wave length of a detected neutron
- work with a pink neutron beam
- work at fixed diffraction angles

Neutron time-of-flight



Neutron time-of-flight



Neutron time-of-flight



Factors to consider:
• Penetration depth
• Flux
• Activation
• Sample environment
• Grain statistics
• Gauge volume
• …

X-ray versus neutrons



A square gauge volume has important advantages for residual stress measurements. 
Elastic strain is defined as the relative change of the lattice spacing dhkl from the stress-
free lattice spacing d0

hkl

Stress 𝜎ij and elastic strain 𝜀kl are second rank tensors and are related through elastic 
constants Cijkl:

Full determination of the strain tensor requires measurements of the elastic strain in at 
least six independent directions. If the principal strain directions within the specimen 
are known, measurements along these three directions are sufficient. 

X-ray versus neutrons

specimen, lattice spacings are altered and a shift in each Bragg peak position occurs and the 
elastic strains then are given by 
 

1
sin
sin

d
d

d
dd

hkl

hkl,0

hkl,0

hkl

hkl,0

hkl,0hkl
hkl �  

�
 

T
T'

H          (2) 

The angle T0,hkl is the angle at which Bragg peak is observed from the strain free reference. 
 
4.2. Pulsed sources 
 
For TOF instruments, at a fixed scattering angle 2T ҏҏthe time-of-flight is proportional to the 
lattice spacing dhkl, i. e. 

hklhkl dt �v Tsin                                        (3) 
 
The elastic strain can then be calculated in any of the observed reflections in a manner 
analogous to that described in equation (2) so that for a fixed angle 2T: 

hkl

hklhkl

hkl

hkl
hkl t

tt
d

d

,0

,0

,0

�
 

'
 H                                    (4) 

Where t0, hkl is the time of flight for the strain free reference. It should be noted that 
simultaneous recording of reflections of various lattice planes could facilitate analysing the 
data by multi-peak fitting or profile refinement method. 

The angular resolution necessary to determine a strain İ is derived from the Bragg equation 
and is given by ǻșhkl = - İhkl tan șhkl.  The necessary information comes from the shift of the 
peak and not from its absolute position value. 

 5. Neutron diffractometers 

A polycrystalline sample consists of small crystallites, of the order of few Pm, randomly 
oriented with respect to each other. When a monochromatic radiations fall on such a sample, 
the diffraction from a Brag plane results in the form of a cone, the Debye Scherrer cone, with 
semi-vortex angle 2T. The intensity profile is recorded as a circle on a two dimensional 
detector (Figure 2). 

Figure 2.  Diffraction from polycrystalline sample in a Debye Scherrer cone. 
 

An instrument used for strain measurement at a reactor source is shown schematically in 
Figure 2. The polychromatic neutron beam is first monochromated to a chosen wavelength by 
diffraction from a suitable monochromator. The divergence and size of the monochromatic 
beam is suitably adjusted using appropriate neutron optical devices and is then diffracted from 
the specimen. In a similar way, the diffracted beam is shaped using suitable optical devices, 
before being captured by the neutron detector. The gauge volume over which the strain 
measurement is made is given by the intersection of the incident and diffracted beams 
(Figure 3). An example of a diffraction peak emanating from such an instrument is shown in 
Figure 4. 

3

Sample

D-S cone

i

 
 

Figure 5.  Schematic of a typical pulsed source based diffractometer for strain measurement. 
 
Full determination of the strain tensor requires measurements of the elastic strain in at least 
six independent directions. If the principal strain directions within the specimen are known, 
measurements along these three directions are sufficient. For plane stress or plane strain 
conditions, a further reduction to two directions is possible. Measurement along one direction 
only is needed in the case of uni-axial loading. 
 
Stresses and strains in a specimen are usually direction and position dependent. This leads to 
the need to measure strains at a number of locations in more than one direction. This in turn 
requires accurate positioning of the specimen with respect to the collimated neutron beam and 
the detectors. This is usually accomplished with linear translation and rotation tables, on 
which the specimen is mounted. By sequentially moving the specimen through the gauge 
volume the spatial variation in stress can be mapped. 
 
Stress ıij and elastic strain İkl are second rank tensors and are related through elastic constants, 
Cijkl 
 

ıij = Cijkl İkl                                (5) 
 

However, equation (5) is often not practical for determining stresses from the diffraction 
technique. Diffraction measures hkl-specific lattice strains, which require hkl specific elastic 
constants for stress determination. In addition, shear strains cannot be measured directly by 
diffraction methods. In general, full determination of the strain tensor requires measurements 
of the elastic strain in at least six independent directions. Tilting and rotating the specimen as 
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• In order to obtain statistical relevant information, sufficient grains need to be in the 
gauge volume. In ToF, a pink beam is combined with a large neutron detector. 

X-ray versus neutrons

l=l1
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• In order to obtain statistical relevant information, sufficient grains need to be in the 
gauge volume. In ToF, a pink beam is combined with a large neutron detector. 

X-ray versus neutrons

l=f(l)
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• AA7449: Al-Zn-Mg-Cu
• Complex processing route with thermal treatments
• Residual stresses in large components because of different cooling rates during 

quenching

Application: residual stress measurements

Understanding quenching:

https://www.youtube.com/watch?v=gNrT-G2Zo9w
Prince Rupert‘s Drops: 
https://www.youtube.com/watch?v=6V2eCFsDkK0

https://www.youtube.com/watch?v=xe-f4gokRBs

https://www.youtube.com/watch?v=gNrT-G2Zo9w
https://www.youtube.com/watch?v=6V2eCFsDkK0
https://www.youtube.com/watch?v=xe-f4gokRBs


• ToF neutron diffraction ideal:
- Large penetration depth in aluminium
- Large grain sizes
- No need for high spatial resolution

• Residual stresses are measured along A-B

Application: residual stress measurements



• Line profile through the plate thickness

Application: residual stress measurement

In order to convert to stress we need the 
diffraction elastic constants. How to measure 
this?



• Cut dogbone samples out of thick block and perform tensile tests

Application: residual stress measurements



• Measure lattice strain as a function of applied stress.
• Slope in the elastic regime provides the diffraction elastic constants

Application: residual stress measurements

Reflection T4 T6x T7x

Al {111} 73.8 ± 1.7 67.8 ± 2.6 69.8 ± 1.3

Al {200} 67.0 ± 3.2 69.3 ± 2.4 70.5 ± 1.2

Al {220} 72.5 ± 4.2 74.4 ± 3.6 73.3 ± 1.4

Al {311} 69.7 ± 3.1 70.7 ± 3.4 71.9 ± 1.2

𝜂 (100) 84.9 ± 1.5

𝜂 (002) 96.5 ± 2.4

𝜂 (101) 82.7 ± 2.6



• Line profile through the plate thickness

Application: residual stress measurement



• Similar to Rietveld refinement
• Intensities are not calculated based on structure factor (bound to the structure) but 

are a fitting parameter
• Does not take into account texture
• Robust method for refinement of unit cell and less stringent than Rietveld
• Another alternative to Rietveld: Le Bai refinement
- Can be used when there is no initial structural model.
- Presume that all the integrated intensities are initially equal
- After one iteration, isolated peaks will have an observed intensity equal to the 

observed area under the Bragg peak. For overlapping reflections, the procedure has 
to be tackled iteratively

What is Pawley refinement?





Surface X-ray diffraction



• In the simplest derivation of diffraction patterns, two assumptions are made – firstly, 
that one is operating in the kinematical limit (that is, single-scattering), and secondly, 
that the crystal is infinitely large. This results in the diffraction peaks being infinitely 
narrow (known as ‘delta functions’). In reality, of course, all diffraction spectra are 
smeared out to a certain degree because there is partial absorption and extinction.

• Crystals are finite in extent and one therefore measures a finite sample volume. The 
diffraction pattern of a finite crystal can be generated by convolving the Fourier 
transform of an infinitely large crystal structure (i.e. its ‘ideal’ diffraction pattern) with 
the Fourier transform of the function describing the boundary of the real crystal 
(called the ‘shape function’). 

Surface X-ray diffraction



A single crystal terminated with an atomically flat 
surface has a step function as the boundary function. 
This has an FT showing a 1∕kz relationship that extends 
significantly in reciprocal space. The convolution of this 
with the ‘ideal’ diffraction pattern results in the latter 
being smeared out to produce a continuous signal in 
the direction perpendicular to the sample surface. 
These are crystal truncation rods (CTRs). 

Any shifts in the atomic positions of the upper layers 
from their bulk positions, due to surface 
reconstructions and/or relaxations, will have a marked 
effect on the form and magnitude of the scattered 
amplitudes in portions of the CTRs away from the Bragg 
maxima. Recording CTRs therefore provides an 
exceptionally sensitive method for unravelling the 
structure of crystalline surfaces and interfaces. 

Surface X-ray diffraction



• SXRD measurements are carried out using a grazing incident angle 𝛼, with respect to 
the sample surface. The choice of 𝛼 depends on the experiment, sample quality, and 
scattering strength.

• For incident angles close to the critical angle 𝛼c, the surface sensitivity increases 
rapidly. Exactly at 𝛼c, the reflected wave is perfectly in phase with the incident wave, 
and the evanescent wave amplitude is approximately twice that of the incident wave. 
The evanescent intensity therefore approaches four times that of the incident beam. 
The penetration depth is low, and so the bulk contribution is suppressed. Hence, at 𝛼c, 
the surface sensitivity is highest

• Disadvantage: large footprint on the sample and very sensitive to small changes (0.01 
degrees) of the incoming angle.

Surface X-ray diffraction



• The full curve is for an ideally terminated simple-cubic 
lattice of atoms; its functional form is just 1/(sin qz)2, 
whose divergence at Bragg points q = 2nπ is clearly 
visible.

• The dashed curve corresponds to an outward 
displacement of a single layer of atoms at the surface; 
the intensity curve near the Bragg peaks, where there 
is little surface sensitivity, is barely changed, but the 
intensity at the CTR minimum is strongly modified. 

• The dotted curve is for a rough surface, modeled by 
random omission of a fraction of the atoms in the top 
layer. The biggest effect is at the CTR minimum, this 
time with a symmetric drop of the intensity curve.

Application


