Solutions to sample exam questions Soft Matter (MSE425)

Question 1: Intermolecular forces (2 points)

- a) Hexane: only **VdW forces**, or **no H-bonds**. (1/2 point) Water: Can form **H-bonds**: stronger intermolecular force (1/2 point)
- b) T_m hexanol: -53 °C to -41°C, T_m pentanol: -78°C Pentanol has 5 °C atoms, hexanol 6 °C atoms. Hence **pentanol** is **shorter (or less C atoms)**, (1/2 point) and thus has **weaker VdW** interactions than hexanol. (1/2 point)

Question 2: Phase diagram (5 points)

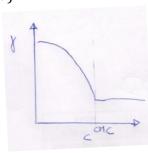
a)
$$\frac{\Delta G}{RT} = \frac{(1-\phi)}{N_1} ln(1-\phi) + \frac{\phi}{N_2} ln\phi + \chi\phi(1-\phi)$$

$$\phi_c = \frac{1}{1 + \sqrt{\frac{N_2}{N_2}}}$$

$$\phi_c = 0.24 \text{ (1 point)}$$

b)
$$\chi_c = \frac{1}{2N_2} \left(1 + \sqrt{\frac{N_2}{N_1}} \right)^1$$
 (1 point), $\chi_c = 0.00866$ or 0.0087 (1 point)

c) $\chi = 0.67 \, (1 \, \text{point})$


 $\chi = 0.67 > \chi_c$ -> **yes**, the two polymers will phase separate (1 point)

Question 3: Liquid crystals (5 points)

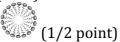
- a) Mesogen A has a **shorter aliphatic chain** (1/2 point) -> **weaker VdW interactions** (1/2 point)-> lower transition temperature
- b) $\delta = \frac{2\pi}{\lambda} \Delta nd$ -> Mesogen A: d = 389 nm (1 point), Mesogen B: d = 308 nm (1 point)
- c) Nematic (1 point): Two brush schlieren texture (1 point)

Question 4: Gibbs adsorption isotherm (5 points)

a)

Axis correct: ½ point

Initial decrease in gamma: 1 point Constant gamma at c>CMC: 1 pint CMC indicated correctly: ½ point


c) A molecule with a **longer aliphatic chain or bulkier monomer with** larger r (1 point). $CMC \approx e^{-\alpha} \approx e^{-\frac{1\pi rl}{k_BT}}$ (1 point).

Question 5: Micelles (5 points)

- a) $CMC \approx e^{-\frac{\Delta E}{k_B T}}$ (1/2 point) Excess free energy = 2.04 k_BT or 2 k_BT. (1/2 point). b) $\alpha = \frac{v}{a_0 l_c}$
- $v = 0.2157 \text{ nm}^3 \text{ (1 point)}, l = 0.913 \text{ nm}, \alpha = 0.39 \text{ (1/2 point)} -> \text{slightly}$ elliptical (or cylindrical) micelle (1 point)
- c) maximum packing density = $1/0.6 \text{ nm}^2 = 1.667 \text{ nm}^2$. (1 point)
- d) SDS: longer aliphatic chain (1/2 point)-> smaller CMC (lower solubility in water) $CMC \approx e^{-\alpha} \approx e^{-\frac{1\pi rl}{k_B T}}$ (1/2 point)

Question 6: Vesicles (5 points)

a) Micelle: Amphiphilic molecules that are arranged into a sphere. Micelles are **monolayers** of self-assembled molecules that form a sphere (1/2 point).

Vesicle: Bilayer of amphiphilic molecules (1/2 point). Much larger than micelles.

(1/2 point)

b) Micelles are formed if the ratio of the hydrophilic headgroup area: crosssection of the hydrophobic part, α , is < 1/3 whereas vesicles from if α is approximately unity. Hence, molecules that form micelles typically have a higher solubility and thus a higher CMC (1/2 point). The mean lifetime of a molecule is inversely proportional to the CMC (1/2 point) -> the mean lifetime of molecules in vesicles is longer as their CMC is lower.

2

c) For vesicles to form: $\alpha = 1$ (1/2 point)

$$R_g$$
 PDMS= R_g PMOxa. (1/2 point)
 $N = \frac{6R_g^2}{l^2} = 24$ (1/2 point)
 $M_w = 24 * 83 Da = 1992 Da$ (1/2 point)

Question 7: Polymers (5 points)

- a) I) N = (128241-2)/28 = 4580. a = 2*sin(109-5/2)*0.154 nm = 0.25 nm (1/2)point)
- II) $L_{cont} = Na (1/4 point) = 1145 nm (1/2 point)$ III) $\langle r^2 \rangle_0 = Na^2 \left(\frac{1+cos\theta}{1-cos\theta}\right) (1/4 point) r = 24 nm (1/4 point)$ $IV) \sqrt{\langle R_g^2 \rangle} = \sqrt{\frac{\langle r^2 \rangle_0}{6}} (1/4 \text{ point}) R_g = 10 \text{ nm } (1/4 \text{ point})$ $b) c_m = \frac{6^{1.5}}{l^3} N^{1-3\nu} -> N^{1-3\nu} = \frac{c_m l^3}{6^{1.5}} -> N = 10 (1 \text{ point}) -> M_w = 830 \text{ Da } (1 \text{ point})$
- c) Thermoplast (1/2 point)-> can be heated, shaped, cooled down (1/4 point) and it keeps its shape as it is **physically crosslinked** (1/4 point). However, this is a reversible process and it can be molten again.

Question 8: Gels (5 points)

a) 1. **Hydrolysis** (1/2 point+1 point for chemical reaction), 2. **Condensatio**n (1/2 point+1 point for chemical reaction), 3. Drying

Ref: Effect of hydrocarbon tail-groups of transition metal alkoxide based amphiphilic catalysts on transesterification, Gayan Nawaratna, Ronald Lacey and Sandun D. Fernando *

b) A sol transfers into a gel when a **percolating network forms (1 point)**. Characterization: With rheology (1/2 point). When a percolating network forms G' > G'', before G'' > G' or sol-gel transition at G' = G''(1/2 point)

Question 9: Polymers at interfaces (5 points)

- a) (2.5 points) (i) The **brush regime** is the regime where the **average** interchain distance become less than 2 x the solution radius of gyration of the polymer. Alternatively, one can also compare the footprint of a surface grafted polymer (1/grafting density) with the **projected 2D area** from the solution Rg (see the answer to question b).
- b) (2.5 points) (i) Sample I: 100 nm² per chain (0.5 points); Sample II: 1.4 nm² per chain (0.5 points). Rg of 5 nm corresponds to a projected 2D

footprint of $(\pi \ r2) = 79 \ nm^2$ (0.5 points). Conclusion: in sample I the chains are in the mushroom regime and in Sample II in the brush regime (1 points).

Question 10: Mechanochemistry (5 points)

- a) (i) the middle of the chain is where the forces are highest (0.75 points);(ii) incorporate a mechanophore at the desired position. (0.75 points)
- *b)* yes it does (0.5 points). At **pH 5** polylysine is **charged** and at **pH 12 uncharged** (1 points). Due to **electrostatic repulsions** (0.5 points) the **forces** acing at pH 5 are larger (0.5 points) and thus the cleavage yield at a given point of time will be **higher** (0.5 points) and/or it **takes less time** to reach 100% cleavage. (0.5 points)

Question 11: Emulsions (5 points)

- a) Emulsions can be stabilized with **surfactants** (1/4 point) or **nanoparticles** (1/4 point).
 - I. Surfactants: **lower interfacial tension** (1/2 point) and therefore the interfacial energy $\Delta E = \gamma A$. They have a **high mobility** and **quickly adsorb** at the liquid-liquid interface. (1/4 point if one of them is mentioned) However, their adsorption is reversible -> drops can **coalesce** if the system is not optimized (1/4 point).
 - II. Nanoparticles: Reduce the **interfacial area** (1/2 point) and therefore the interfacial energy. If adsorbed at the liquid-liquid interface, they are strongly bound. It typically takes more than 100 k_BT to remove them -> for practical purposes irreversibly bound -> **more stable dispersion (1/4 point)**. Slower adsorption (1/4 point).
- b) Sauce hollandaise: **oil in water emulsion (1/2 point)**: surfactant with **HLB value between 10 and 20 (1/2 point)**. Surfactant must be food grade: **nonionic surfactant (1/2 point)**. Hydrophobic chain: aliphatic, hydrophilic for example sugar e.g. Span 80.
- c) $\Delta E = \gamma \pi r^2 \rightarrow 1.6 \times 10^{-16} \text{ J (1/4 point)} \rightarrow 3820 \, k_B T (1/4 point)$. Particles are for practical purposes irreversibly adsorbed at the liquid-air interface -> the foam is very stable, foam does not coalesce. (1/2 point).

Question 12: Particles (5 points)

Au nanoparticles:

- a) Thiols (1 point)
- b) $N = \frac{l_0}{\frac{5}{13}\Gamma_3^3} = 37 \text{ or } 38 (1/2 \text{ point}) \rightarrow M_w = 1636 \text{ Da or } 1680 \text{ Da } (1/2 \text{ point})$
- c) PEG then acts as a **depletant** and particles agglomerate because of the **attractive depletion forces**. (1 point)
- d) DLS (1/2 point): measure the intensity of the scattered light at time 0 and time Δt (1/4 point). The correlation (1/4 point) of the intensity

pattern is calculated and plotted as a function of Δt . This correlation function is fitted to extract a **diffusion coefficient (1/4 point)**. Using the **Stokes Einstein equation (1/4 point)**, this allows calculation of the hydrodynamic radius (diameter). The scattering intensity scales with r^6 -> you almost only see the **larger aggregates** and you overestimate the size of the particles (1/2 point)