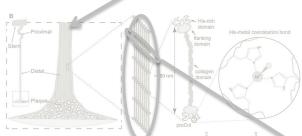
Particles colloids emulsions particles LC mesogen length C-C bond length R_g of polymer coil 1 Å 1 nm 100 nm $1 \mu m$ 10 μm 10 nm crystal lattice micelles vesicles

block-copolymer domain size

gels

Course outline

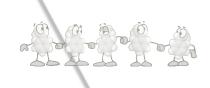


Ordered materials

Thermotropic liquid crystals

E. Degtyar, et al., *Angew. Chem. Int. Ed.*, 2014, **53**, 12026-12044

Lyotropic liquid crystals


Cell Membrane

Disordered materials

Polymers



Gels

Colloids

Nanoparticles

Emulsions

Outline

- Introduction
- Particle motion
- Stabilization
 - electrostatic stabilization
 - steric stabilization
- Characterization
- Applications of particle dispersions
- Assembly of particles
- Colloidal crystals made of microgels
- Applications of colloidal crystals
- Agglomeration
- Applications of agglomerated particles

Outline

- Introduction
- Particle motion
- Stabilization
 - electrostatic stabilization
 - steric stabilization
- Characterization
- Applications of particle dispersions
- Assembly of particles
- Colloidal crystals made of microgels
- Applications of colloidal crystals
- Agglomeration
- Applications of agglomerated particles

Colloids

Colloid: Short synonym for colloidal system.

Colloidal: Either molecules or polymolecular particles that are dispersed in a medium and have at least one dimension between approximately 1 nm and 1 μ m, or discontinuities in a system that are of this order.

The energy of inter-particle interactions is around k_BT .

	continuous phase					
dispersed phase		gas	liquid	solid		
	gas					
	liquid	_				
disp	solid					

Colloids

Colloid: Short synonym for colloidal system.

Colloidal: Either molecules or polymolecular particles that are dispersed in a medium and have at least one dimension between approximately 1 nm and 1 μ m, or discontinuities in a system that are of this order.

The energy of inter-particle interactions is around k_BT .

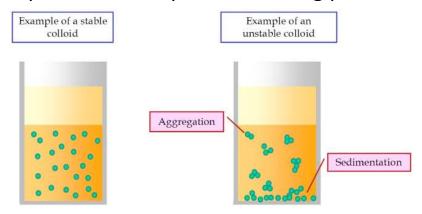
	continuous phase			
		gas	liquid	solid
phase			soap sud	pillow foam
þ	gas		cappuccino froth	styrofoam packaging
eq		fog	mayonnaise	
ers	liquid	hair spray	milk	ice cream
dispersed			paints	
7	solid	smoke	blood	

Colloids in our daily life

Dispersion: certain sun creams

Polymer latex dispersion: paint

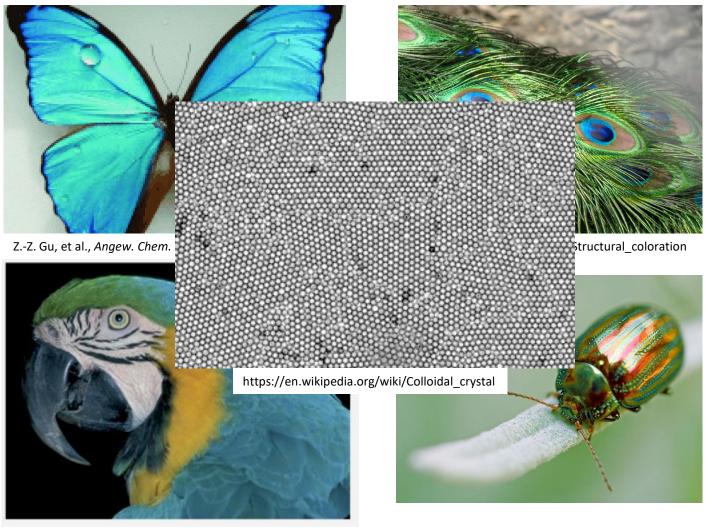
Emulsion: mayonnaise



Emulsion: salad dressing

Dispersions

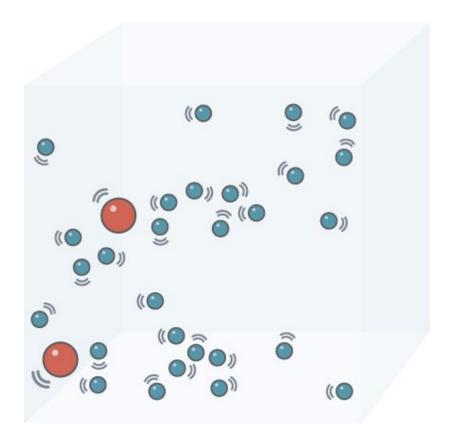
Dispersions are liquids containing particles.



Examples of dispersions

Colloids in nature

http://photobiology.info/Ball.html


http://www.scienceinschool.org/content/structural-colour-peacocks-romans-and-robert-hooke

Outline

- Introduction
- Particle motion
- Stabilization
 - electrostatic stabilization
 - steric stabilization
- Characterization
- Applications of particle dispersions
- Assembly of particles
- Colloidal crystals made of microgels
- Applications of colloidal crystals
- Agglomeration
- Applications of agglomerated particles

Motion of particles

How fast do particles sediment?

http://www.bbc.co.uk/education/guides/zgr2pv4/revision/5

Particle motion

Forces that drive the motion of particles

Forces that drive the **destabilization** of dispersions:

Force that contributes to the **stabilization** of dispersions:

drag force

gravitational force if $\rho_{\rm p} > \rho_{\rm l}$ buoyance force if $\rho_{\rm p} < \rho_{\rm l}$

$$F_b = \Delta \rho \frac{4}{3} \pi R^3 g$$

$$F_d = 6\pi \eta R v$$

$$v_{sed} = \frac{2R^2\Delta\rho g}{9\eta}$$

I_{sed}: sedimentation length [m]
 m: mass of particle [kg]
 g: gravitational constant [N/kg]
 v_{sed}: sedimentation velocity [m/s]

Sedimentation speed of particles

$$v_{sed} = \frac{2R^2\Delta\rho g}{9\eta} \qquad v_{brownian} = \sqrt{\frac{2k_BT}{m}}$$

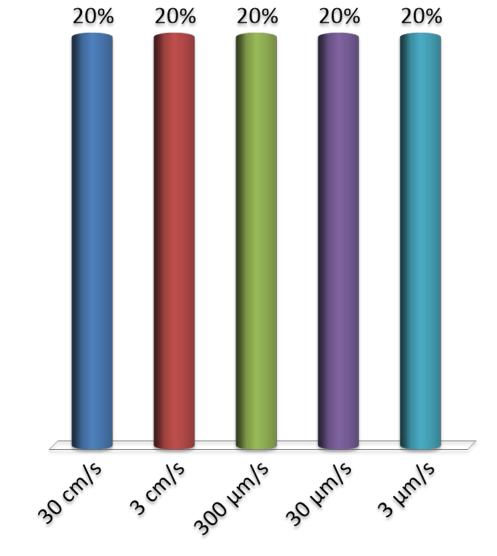
assuming $\Delta \rho = 1.6 \text{ g/cm}^3$:

<i>r</i> (nm)	v_{sed} (m/s)	V _{sed}	v _{brown} (m/s)
1	3.5×10 ⁻¹²	13 nm/h	35
10	3.5×10 ⁻¹⁰	1.3 μm/h	1
100	3.5×10 ⁻⁸	125 μm/h	0.04
1000	3.5×10 ⁻⁶	12.5 mm/h	0.001

The sedimentation of these colloids can be neglected compared to their thermal motion.

Do particles sediment?

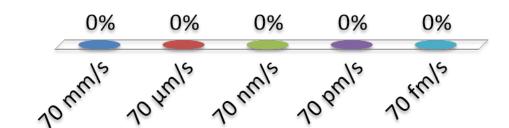
Particles are considered to be Brownian if $I_{sed} > r_{particle}$. In this case, sedimentation can be neglected.


The sedimentation length is calculated by equating the potential energy of a particle with its thermal energy.

$$I_{sed} = \frac{k_B T}{m^* g}$$

$$m^* = \frac{4}{3}\pi r^3 \Delta \rho$$

What is the sedimentation velocity for a grain of sand, 200 μ m in diameter, ρ_{grain} = 2200 kg/m³, that is dispersed in water (ρ_{water} = 1000 kg/m³) ?


- A. 30 cm/s
- B. 3 cm/s
- C. $300 \, \mu m/s$
- D. $30 \mu m/s$
- E. $3 \mu m/s$

$$\eta_{H2O} = 1 \text{ mPas}
g = 9.8 \text{ N/kg}$$

What is the sedimentation velocity for a virus, 50 nm in diameter, ρ_{virus} = 1050 kg/m³, that is dispersed in water (ρ_{water} = 1000 kg/m³) ?

- A. 70 mm/s
- B. $70 \mu m/s$
- C. 70 nm/s
- D. 70 pm/s
- E. 70 fm/s

Brownian particles

Brownian particles are colloids that undergo Brownian motion. The motion path of particles can be described with the random walk model.

How far do particles move per time?

$$\lambda = \sqrt{2Dt}$$

How can we determine *D*?

energy loss from viscous drag = thermal energy

$$6\Pi \eta r_h D = k_B T$$

$$D = \frac{k_{\rm B}T}{6\Pi\eta r_{\rm h}}$$

 η : viscosity [Pas]

 r_h : hydrodynamic radius of particle [m]

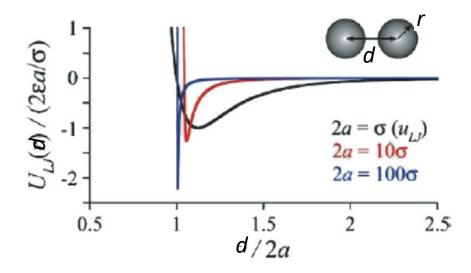
D: diffusion coefficient [m²/s]

 λ : diffusion distance [m]

t: measurement time [s]

Outline

- Introduction
- Particle motion
- Stabilization
 - electrostatic stabilization
 - steric stabilization
- Characterization
- Applications of particle dispersions
- Assembly of particles
- Colloidal crystals made of microgels
- Applications of colloidal crystals
- Agglomeration
- Applications of agglomerated particles

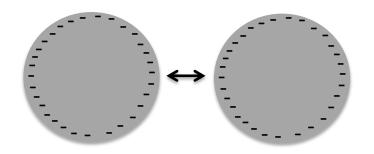

Forces in colloidal dispersions

Van-der-Waals forces:
$$U_{vaw} = -\frac{A}{12d} \frac{r_1 r_2}{(r_1 + r_2)}$$

note, for molecules: $U_{vow} \propto \frac{1}{d^6}$

A: Hamaker constant [J] r: particle radius [m] d: inter-particle distance [m] σ : characteristic distance at which $U(\sigma)=0$ [m]

Forces between colloids are much longer ranged than those between molecules.



Rajagopalan, T.; et al., Reports on Progress in Physics 2013, 76 (6), 066501

Outline

- Introduction
- Particle motion
- Stabilization
 - electrostatic stabilization
 - steric stabilization
- Characterization
- Applications of particle dispersions
- Assembly of particles
- Colloidal crystals made of microgels
- Applications of colloidal crystals
- Agglomeration
- Applications of agglomerated particles

Electrostatic stabilization

 κ^{-1} : Debye screening length [m]

c: ion concentration [molecules/m³]

z: valency of ions [-]

 ε : dielectric permeability [-]

e: charge of an electron [C]

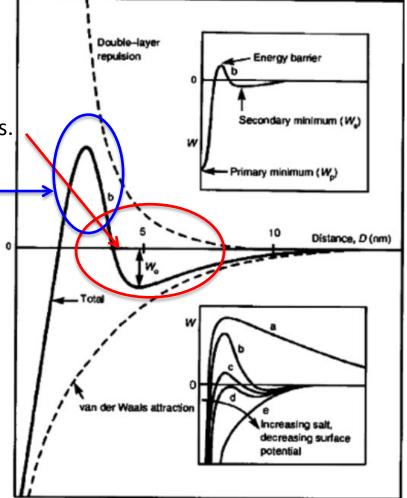
$$U_{el} = U_{el,0}e^{-\kappa x}$$

$$\frac{1}{\kappa} = \sqrt{\frac{\varepsilon_0 \varepsilon_r k_B T}{e^2 \sum_i c_i z_i^2}}$$

Debye length:

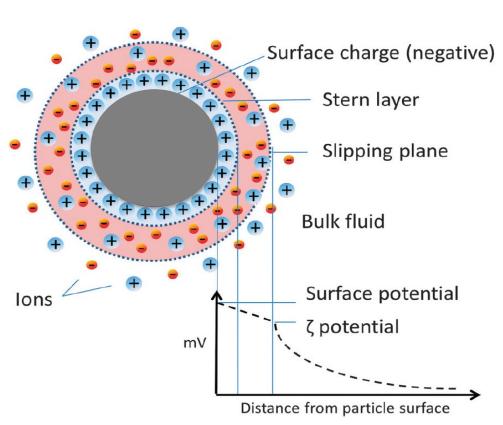
The Debye length is the length scale over which charged colloids repel/attract each other.

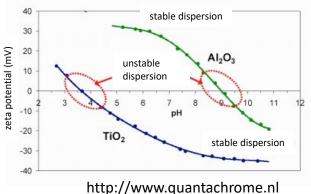
DLVO interactions


The DLVO theory describes the interactions between two charged surfaces that are contained in a liquid.

 $U_{DLVO} = U_{VdW} + U_{el} \label{eq:UDLVO}$

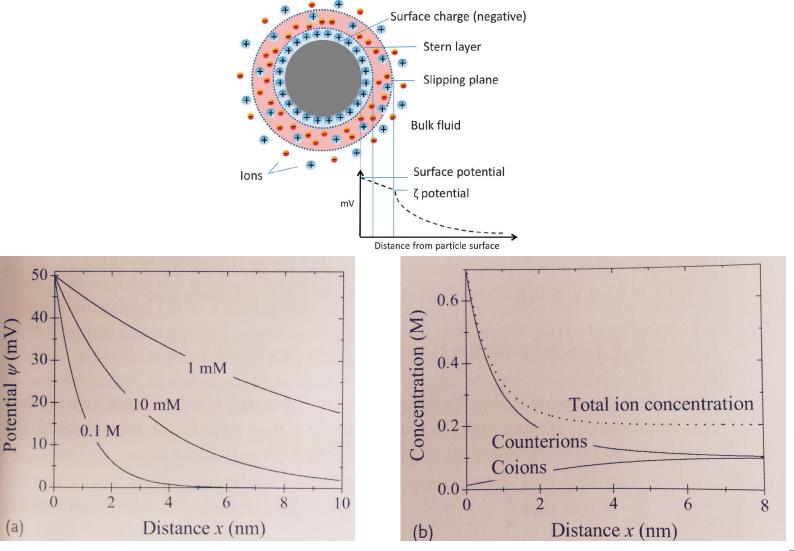
Flocculation occurs.


Kinetically trapped, metastable state which prevents aggregation.

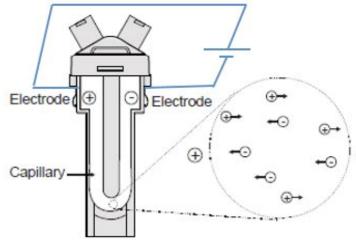

The electrostatic stabilization works well in aqueous solutions with a low ionic strength and at a pH far away from the point of zero charge (PZC) of the colloids because of the electrostatic repulsion forces.

Charge of particles

The zeta potential is the electric potential of the interfacial double layer at the slipping plane.



Nominal composition	IEP (pH)a-c	
$\mathrm{Sb_2O_5}$	0.3	
$\mathrm{Mo_2O_5}$	0.5	
WO_2	1	
SiO_2	2	
1.00 Na ₂ O · 0.58 CaO · 3.70 SiO ₂	2-3	
K ₂ O·Al ₂ O ₃ ·6 SiO ₂	3-5	
ZrO_2	4-6	
$Ca_5(PO_4)_3(OH)$	7	
$Ca_5(PO_4)_3(F, OH)$	6	
TiO_2	4.7	
TiO_2	6.2	
Al ₂ O ₃ ·SiO ₂ ·2 H ₂ O	4.8	
3 Al ₂ O ₃ ·2 SiO ₂	6-8	
Cr_2O_3	7	
Fe_2O_3	8-9	
ZnO	9	
Al_2O_3	7-9	
CaCO ₃	9-10	
PbO	10.3	
MoO_2	12	
MgO	12	


Ring, T. A. Fundamentals of Ceramic Powder Processing and Synthesis; Academic Press: San Diego, California, 1996

Influence of ions on the zeta potential

Zeta potential measurements

http://www.materials-talks.com/blog/2015/09/24/zeta-deviation-larger-than-the-mean-how-can-that-be/

Force that drives the particle flow:

$$F = qE$$

Force that counteracts the particle flow:

$$F = 6\pi \eta vr$$
 (drag force)

In equilibrium, the two forces are balanced:

$$\frac{v}{E} = u = \frac{q}{6\pi\eta r}$$

Zeta potential:

(can be derived from the Debye-Hückel theory)

$$\zeta = \frac{q}{4\pi\varepsilon r} - \frac{q}{4\pi\varepsilon \left(r + \frac{1}{\kappa}\right)}$$

in the limit $\kappa r \ll 1$

$$\zeta = \frac{3\eta u}{2\varepsilon}$$

q: charge [C]

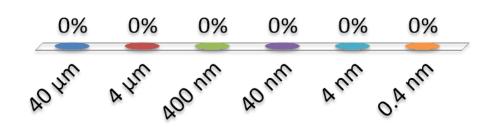
E: electric field [V/m]

 η : viscosity [Pas]

v: velocity [m/s]

r: particle radius [m]

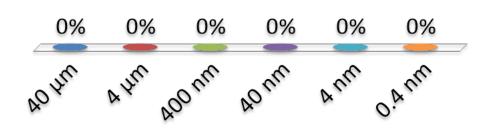
u: mobility [m²/V/s]


ζ: Zeta potential [V]

ε: dielectric permittivity [-]

Charged particles with a radius of 100 nm are dispersed in an aqueous solution containing NaCl. What is the Debye screening length if the solution contains 0.1 mM NaCl?

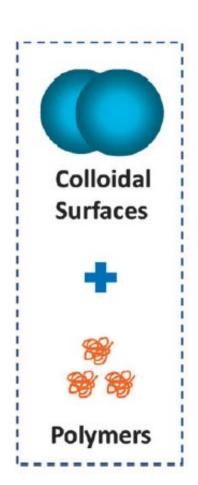
- A. 40 μm
- B. 4 μm
- C. 400 nm
- D. 40 nm
- E. 4 nm
- F. 0.4 nm

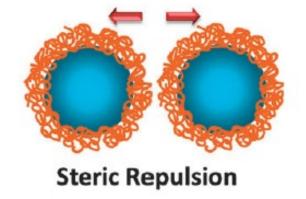

$$\varepsilon_{0} = 8.85 \times 10^{-12} \text{ F/m}$$
 $\varepsilon_{r} = 80$
 $k_{B} = 1.38 \times 10^{-23} \text{ J/K}$
 $T = 298 \text{ K}$
 $e = 1.6 \times 10^{-19} \text{ C}$
 $N_{A} = 6.02 \times 10^{23}$
 $\frac{1}{\kappa} = \sqrt{\frac{\varepsilon_{0} \varepsilon_{r} k_{B} T}{e^{2} \sum_{i} c_{i} z_{i}^{2}}}$

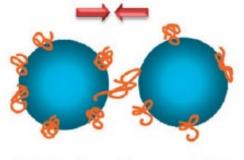
Charged particles with a radius of 100 nm are dispersed in an aqueous solution containing NaCl. What is the Debye screening length if the aqueous solution contains 1 M NaCl?

- A. 40 μm
- B. 4 μm
- C. 400 nm
- D. 40 nm
- E. 4 nm
- F. 0.4 nm

$$\varepsilon_{0} = 8.85 \times 10^{-12} \text{ F/m}$$
 $\varepsilon_{r} = 80$
 $k_{B} = 1.38 \times 10^{-23} \text{ J/K}$
 $T = 298 \text{ K}$
 $e = 1.6 \times 10^{-19} \text{ C}$
 $N_{A} = 6.02 \times 10^{23}$
 $\frac{1}{\kappa} = \sqrt{\frac{\varepsilon_{0} \varepsilon_{r} k_{B} T}{e^{2} \sum_{i} c_{i} z_{i}^{2}}}$




Outline


- Introduction
- Particle motion
- Stabilization
 - electrostatic stabilization
 - steric stabilization
- Characterization
- Applications of particle dispersions
- Assembly of particles
- Colloidal crystals made of microgels
- Applications of colloidal crystals
- Agglomeration
- Applications of agglomerated particles

Steric stabilization

Steric stabilization is the process by which adsorbed nonionic dispersants produce strong repulsion between particles in a dispersion.

Bridging Flocculation

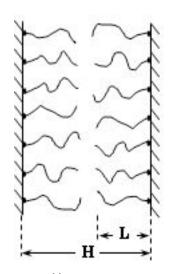
Requirements for polymers to induce steric stability to particles:

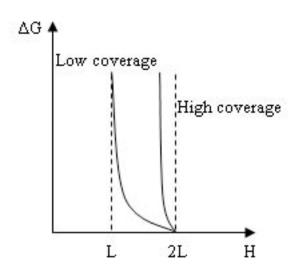
- They firmly adsorb to the colloid surface.
- They form a dense polymer brush of a certain minimum thickness at the particle surface.
- Each polymer adsorbs on the surface of a single particle only.

Thickness of the polymer brush

Sterically stabilized colloids are stable:

- in organic and inorganic media.
- under high ionic concentrations.


N: number of repeat units [-]


I: length of a repeat unit [m]

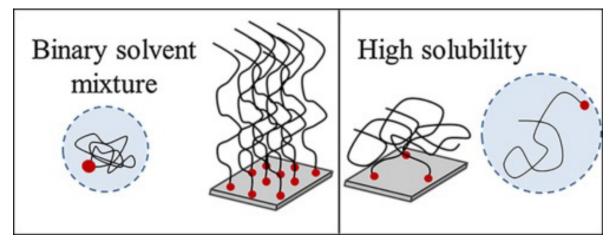
Γ: grafting density [molecules/m²]

 p_d : disjoining pressure [Pa]

T: temperature [K]

http://depts.washington.edu

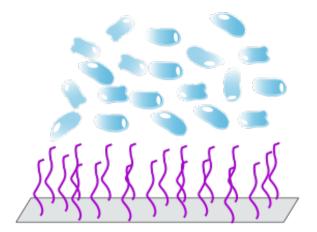
What is L?

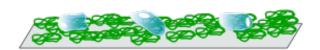

$$L_0 \approx N ^{\frac{5}{3}} \Gamma^{\frac{1}{3}}$$

Maximizing packing density

How do you get to such a high grafting density?

Kocak, G.; Tuncer, C.; Butun, V. Polymer Chemistry 2017, 8 (1), 144-176

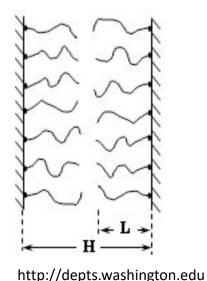


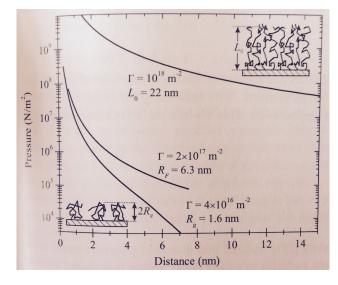

Arcot, L.; et al. Applied Surface Science 2015, 341, 134-141.

Cloud point grafting

Adsorption from poor solvent

Swelling in good solvent





Cloud point grafting:

- → Polymers are adsorbed from a poor solvent where they are collapsed.
- → They adsorb at a high density because the steric repulsion is minimized.
- →The substrate with the polymers adsorbed is transferred into a good solvents where the polymers swell.
- →Because of the high packing density, the polymers cannot form coils but they must be rather extended thereby increasing the brush thickness.

Disjoining pressure

N: number of repeat units [-]
I: length of a repeat unit [m]
Γ: grafting density [molecules/m²]
p_d: disjoining pressure [Pa]
T: temperature [K]

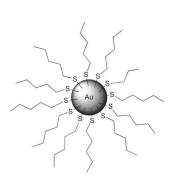
 L_0 : contour length [m]

for low grafting densities, $\Gamma < 1/(4R_a^2)$

$$p_d pprox rac{k_B T \Gamma}{x} \left(rac{2\pi^2 R_g^2}{x^2} - 1
ight)$$
 for $x \leq 3\sqrt{2}R_g$ $p_d pprox rac{k_B T \Gamma x}{R_g^2} e^{-\left(rac{x}{2R_g}\right)^2}$ for $x > 3\sqrt{2}R_g$

for high grafting densities, $\Gamma > 1/(4R_g^2)$:

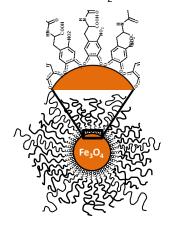
$$p_d \approx k_B T \Gamma^{\frac{3}{2}} \left[\left(\frac{2L_0}{x} \right)^{\frac{9}{4}} - \left(\frac{x}{2L_0} \right)^{\frac{3}{4}} \right]$$


How can polymers be bound to colloids?

Polymers can be bound to particle surfaces through anchoring groups that have a high affinity to the particle surface.


Au, Ag particles

many oxide particles:


thiols R/S~

phosphates R O P OH

catechols R₁ OH OH

silanes R SI CI R SI O CI

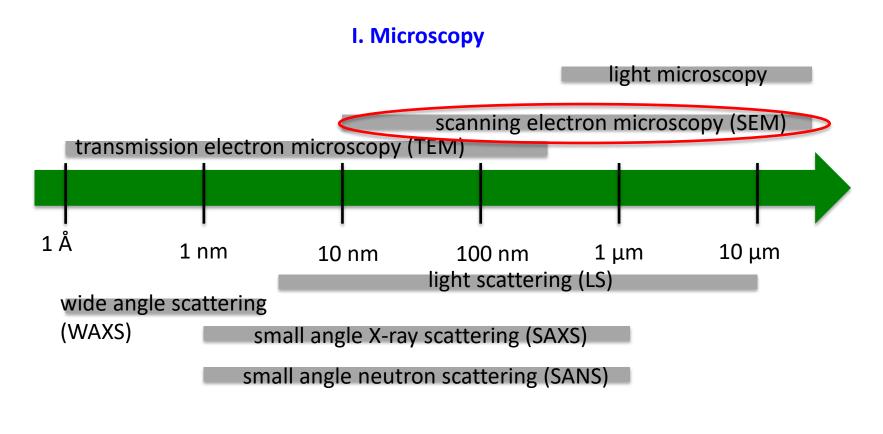
$$SiO_2$$
 O Si N_3

Roy, S.; Pericas, M. A. *Organic & Biomolecular Chemistry* **2009,** *7* (13)

Kobayashi, M., et al., *Science* and *Technology of Advanced Materials* **2006**, *7* (7)

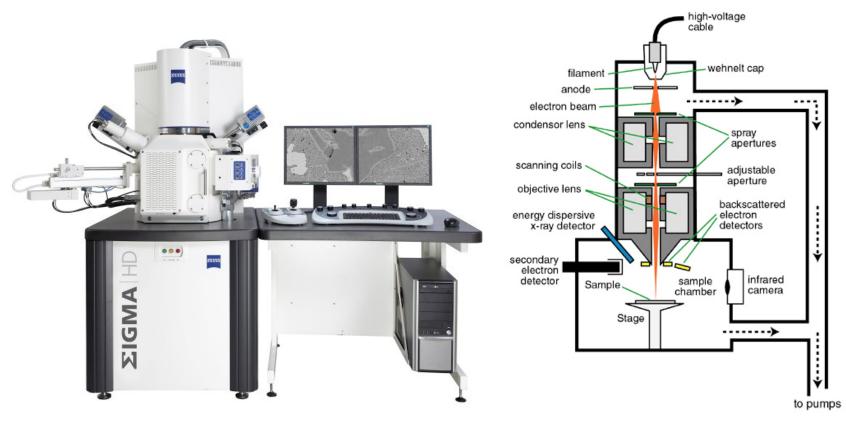
Amstad, E., et al. E. *Nano Letters* **2009**, *9* (12)

Semsarilar, M.; Perrier, S. Nat Chem **2010**, *2* (10)


Polymeric particles:

Dispersants can be covalently bound to the particle surface.

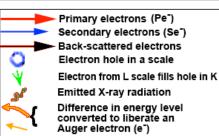
Outline


- Introduction
- Particle motion
- Stabilization
 - electrostatic stabilization
 - steric stabilization
- Characterization
- Applications of particle dispersions
- Assembly of particles
- Colloidal crystals made of microgels
- Applications of colloidal crystals
- Agglomeration
- Applications of agglomerated particles

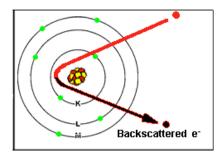
Characterization of colloids

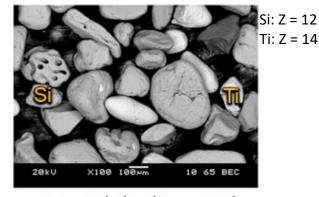
II. Scattering

Scanning electron microscopy (SEM)

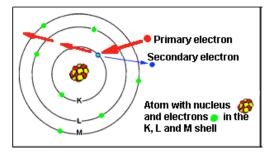


Good for


- measuring the particle size (down to \approx 10 nm)
- visualizing the surface topology
- characterizing the chemical composition with electron dispersive X-ray spectroscopy (EDS)


SEM: Detectors

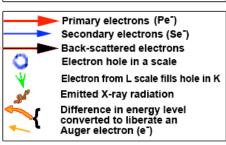
Electrons from the source (primary electrons) Back-scattered electrons Characteristic X-rays Secondary electrons Sample

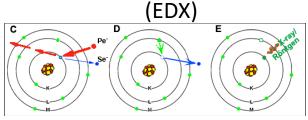

Backscattered Electrons (BE)

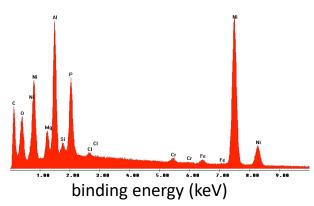


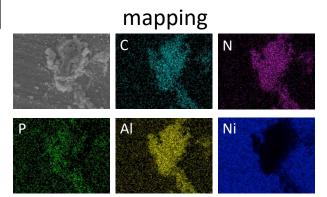
Atoms with high Z numbers backscatter more efficiently such that surfaces made from these molecules appear brighter. Electrons localized up to 200 nm below the surface can be detected.

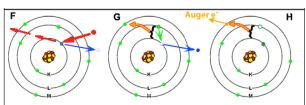
Secondary Electrons (SEs)

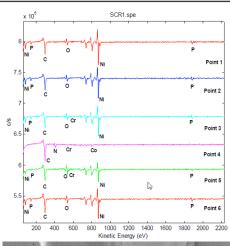

Low energy of SEs: Only the SEs located within a few nm from the surface can be ejected from the sample. Hence, only the surface is imaged.

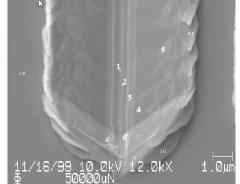

SEM: Detectors

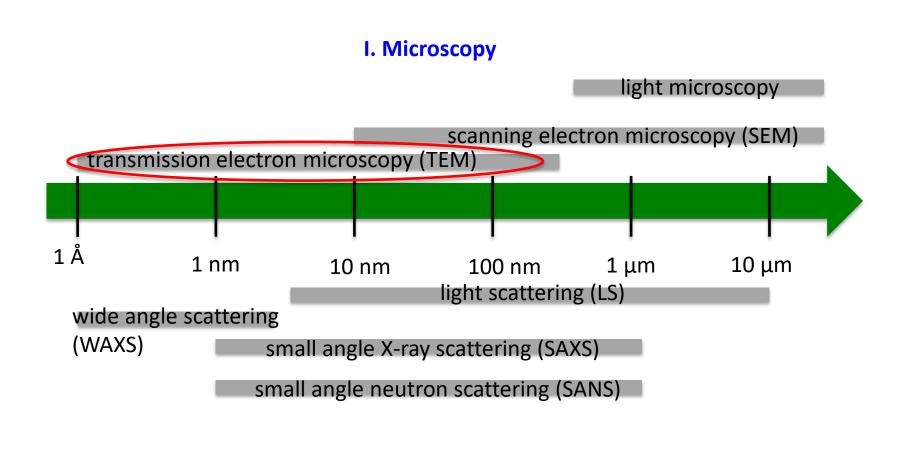

Energy Dispersive X-ray Analysis


Auger Electrons









Characterization of soft materials

II. Scattering

Transmission electron microscopy (TEM)

Filament

Electron

Airlock

electron source

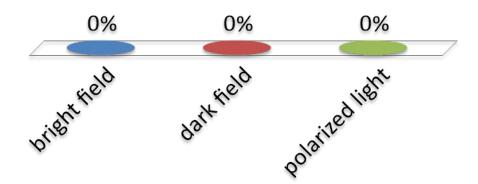
Magnetic lens

Projection lens

Vacuum pipe

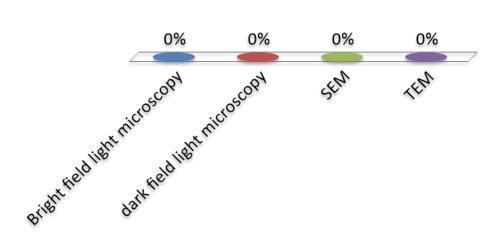
electromagnetic lens system

sample holder

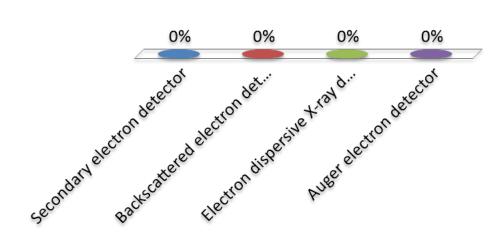

imaging system

Good for:

- measuring the size and morphology of nanoparticles
- determining the crystal structure
- visualizing the arrangement of blockcopolymers at surfaces


Electron microscopy course taught by Alexander Duncan Cécile Hebert In which mode would you operate the light microscope to visualize aggregates of gold nanoparticles contained in cells?

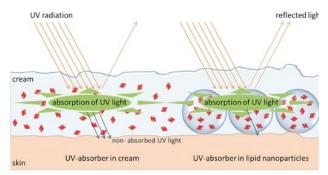
- A. bright field
- B. dark field
- C. polarized light


What technique would you use to determine if the core of a TiO₂ nanoparticle is crystalline?

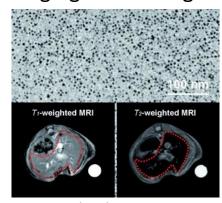
- A. Bright field light microscopy
- B. dark field light microscopy
- C. SEM
- D. TEM

What detector would you use to determine the bulk chemical composition of a microparticle with SEM?

- A. Secondary electron detector
- B. Backscattered electron detector
- C. Electron dispersiveX-ray detector
- D. Auger electron detector

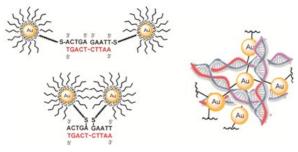


Outline


- Introduction
- Particle motion
- Stabilization
 - electrostatic stabilization
 - steric stabilization
- Characterization
- Applications of particle dispersions
- Assembly of particles
- Colloidal crystals made of microgels
- Applications of colloidal crystals
- Agglomeration
- Applications of agglomerated particles

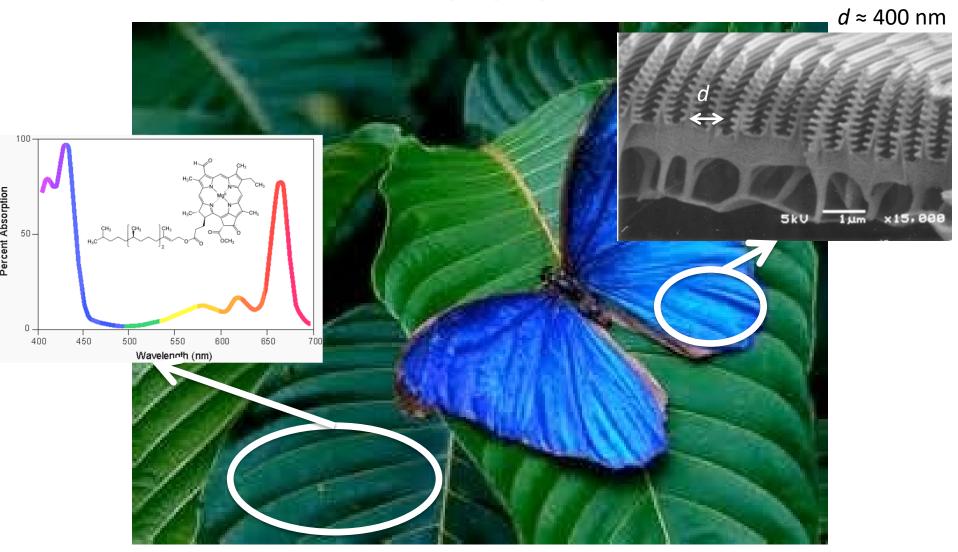
Applications of sterically stabilized particles

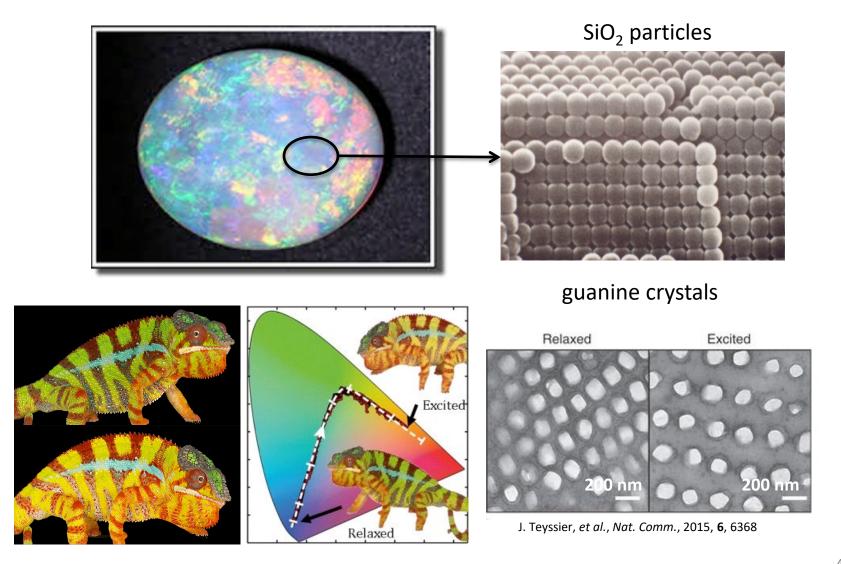
UV light absorber



Magnetic resonance imaging contrast agents

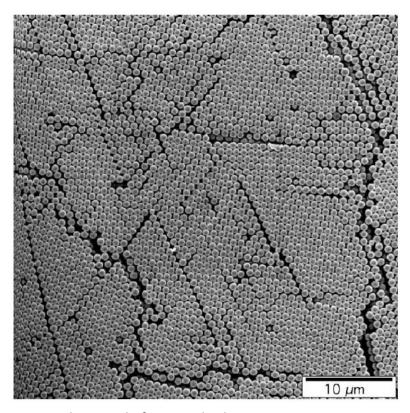
Li, Z. et al. *Adv. Funct. Mat.* **2012,** *22* (11)


Labels that specifically bind to certain substances/objects


Outline

- Introduction
- Particle motion
- Stabilization
 - electrostatic stabilization
 - steric stabilization
- Characterization
- Applications of particle dispersions
- Assembly of particles
- Colloidal crystals made of microgels
- Applications of colloidal crystals
- Agglomeration
- Applications of agglomerated particles

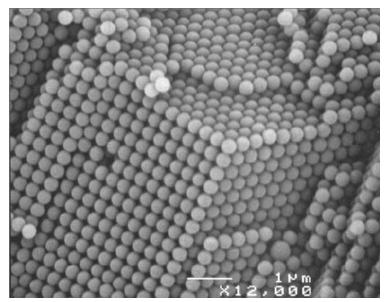
Colors



Structural colors

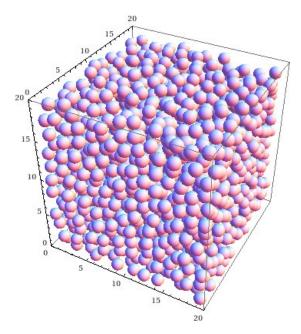
Colloidal crystals

Colloidal crystals are ordered arrays of colloid particles.

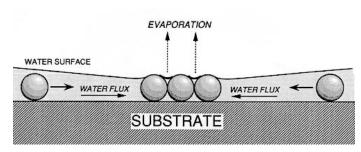

Lytle, J. C.; et al. Journal of Materials Chemistry 2004, 14, 1616.

Colloidal crystals form if the interaction energy gained by assembling particles into colloidal crystals exceeds the energy penalty that is caused by the decrease in entropy.

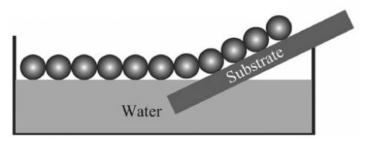
Maximum packing density


For hard spheres:

The maximum packing density that can be achieved if hard spheres are arranged into a close packed structure is **0.7404**.


A. Imhof, in Nanoscale Materials, Springer US, Boston, MA, 2003,

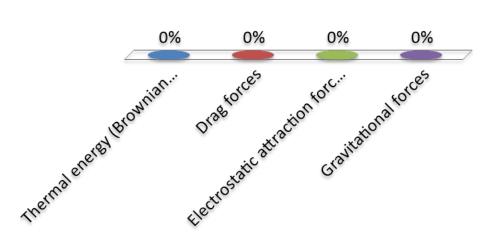
The maximum volume fraction that can be achieved if hard spheres are randomly arranged is around **0.63**.


Assembly of colloids on surfaces

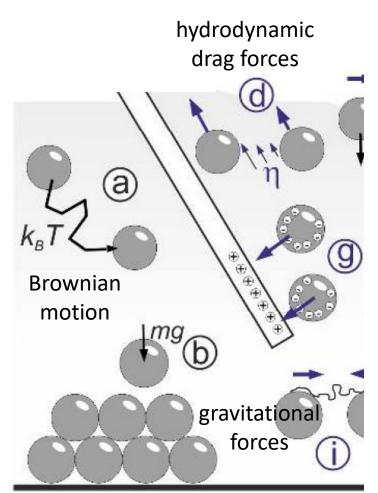
Direct assembly on solid surfaces

http://crystal.che.ncsu.edu/colloidal/2_3_2Dwetdyn.htm

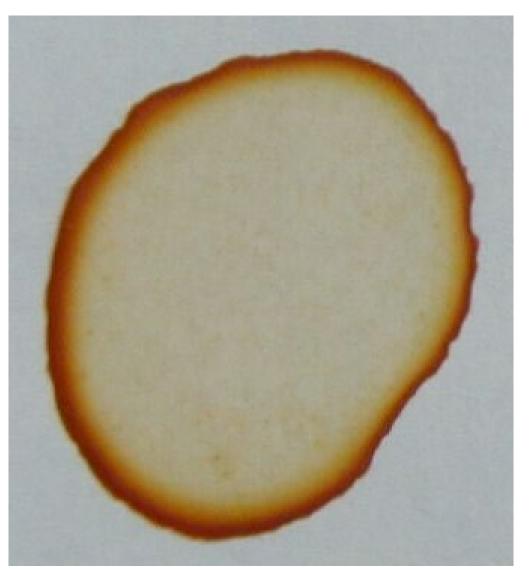
Liquid interface mediated assembly

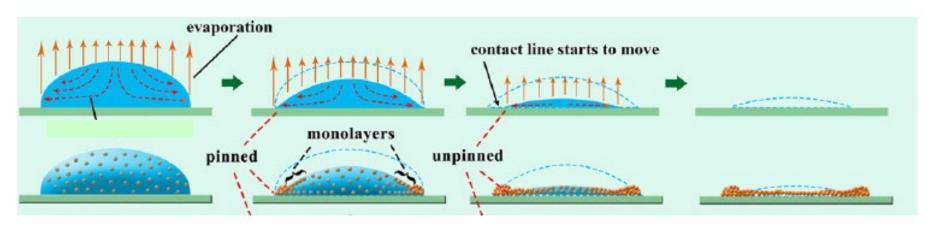

Lee, S.; et al., S. *Physical Chemistry Chemical Physics* **2009**, *11* (19), 3628-3633

Requirements:


- The substrate must be wetting.
- The particle-surface interactions must be small.

Which inter-particle interactions are NOT involved in the direct assembly of particles into colloidal crystals?


- A. Thermal energy(Brownian motion)
- B. Drag forces
- C. Electrostatic attraction forces
- D. Gravitational forces


Inter-particle interactions

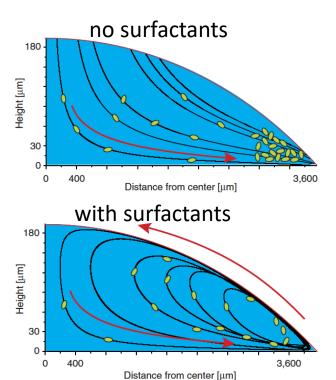
Direct assembly of particles on solid surfaces

What drives the particle assembly?

Tang, Y.; He, W.; Wang, S.; Tao, Z.; Cheng, L. Nanotechnology 2014, 25.

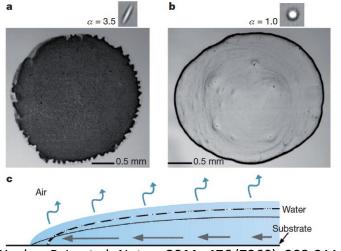
Marangoni effect: The Marangoni effect is a mass transport along an interface that is caused by gradients in the interfacial tension.

Coffee ring effect



The coffee ring is caused by the Marangoni effect.

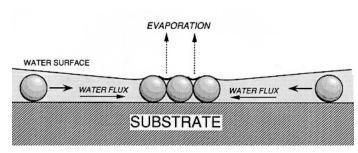
The coffee ring effect can be overcome using


- surfactants or
- anisotropic particles.

Effect of surfactants

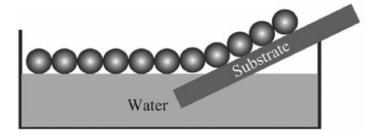
Sempels, W.; et al., Nature Communications 2013, 4.

Effect of anisotropic particles



Yunker, P. J.; et al. Nature 2011, 476 (7360), 308-311

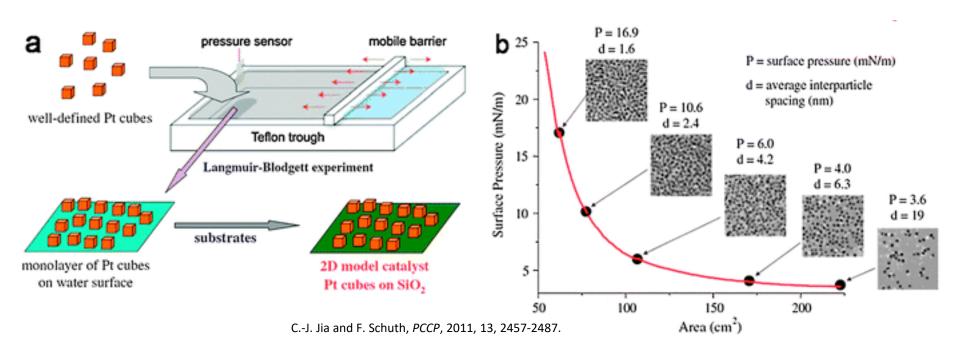
The stronger adsorption of anisotropic particles at the air-liquid interface prevents particles from leaving this interface. Instead, they form a stable monolayer at liquid-air interface.


Assembly of colloids on surfaces

Direct assembly on solid surfaces

http://crystal.che.ncsu.edu/colloidal/2_3_2Dwetdyn.html

Inquid interface mediated assembly



Lee, S.; et al., S. *Physical Chemistry Chemical Physics* **2009**, 11 (19), 3628-3633

Requirements:

- The substrate must be wetting.
- The particle-surface interactions must be small

Example: Langmuir-Blodgett films

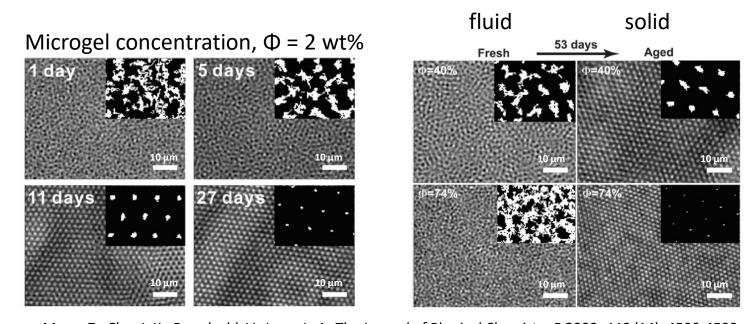
Advantages:

- High order of particles.
- Large freedom in the choice of the substrate.
- Patterning over large areas is possible.

Disadvantages:

- It is a slow process.
- It is an experimentally complex process.

Outline

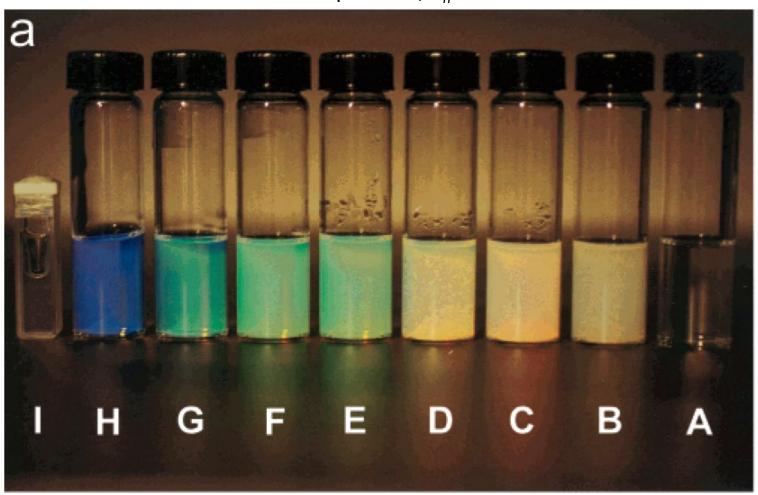

- Introduction
- Particle motion
- Stabilization
 - electrostatic stabilization
 - steric stabilization
- Characterization
- Applications of particle dispersions
- Assembly of particles
- Colloidal crystals made of microgels
- Applications of colloidal crystals
- Agglomeration
- Applications of agglomerated particles

Crystallization of microgels

Microgels can be assembled into colloidal crystals if they are weakly attractive.

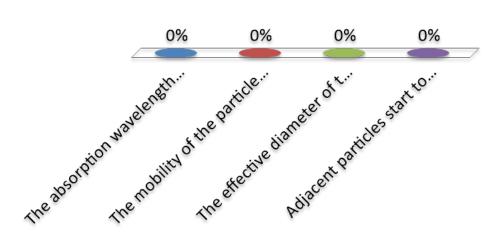
Dynamics of crystallization

 $d \approx 2 \mu \text{m}$

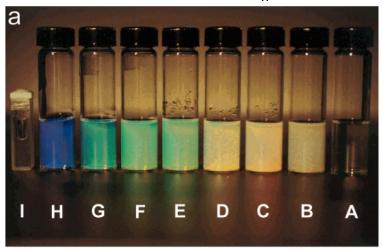


Meng, Z.; Cho, J. K.; Breedveld, V.; Lyon, L. A. The Journal of Physical Chemistry B 2009, 113 (14), 4590-4599

The formation of colloidal crystals can take a long time.


Colloidal crystals made of microgels

PNIPAM microparticles, $d_h \approx 216 \text{ nm}$


Why does the color of the dispersions change with the particle concentration?

- A. The absorption wavelength is a function of the polymer concentration.
- B. The mobility of the particles changes and thus also their scattering behavior.
- C. The effective diameter of the microgels and thus the interference pattern changes.
- D. Adjacent particles start to entangle, resulting in a bulk hydrogel

Colloidal crystals made of microgels

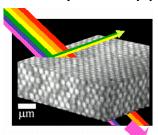
PNIPAM microparticles, $d_h \approx 216 \text{ nm}$

	c (wt%)	c (vol%)
Α	0.064	
В	1.47	50
С	3	59
D	3.4	
E	4.2	
F	4.6	61
G	5.95	
Н	7.92	
1	13.7	

A-C: The scattering area increases.

D, E: These samples are crystals. Their iridescent color is due to Bragg reflections.

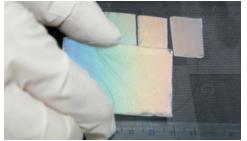
F-I: These samples are glasses. The interparticle distance is determined by the particle size and results in the coloring of the samples. As the concentration increases, the particle size decreases and hence, the color is blue-shifted.


Outline

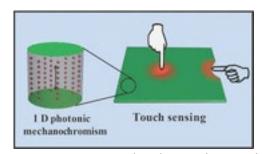
- Introduction
- Particle motion
- Stabilization
 - electrostatic stabilization
 - steric stabilization
- Characterization
- Applications of particle dispersions
- Assembly of particles
- Colloidal crystals made of microgels
- Applications of colloidal crystals
- Agglomeration
- Applications of agglomerated particles

Applications of colloidal crystals

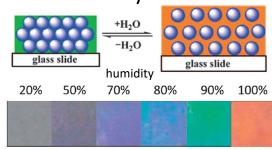
Why have certain colloidal crystals colors?


The size of colloids is between 1 nm and 1 µm. The wavelength of visible light is in this range. Hence, if only certain reflective wavelengths constructively interfere, the colloidal crystals appear to be colored.

http://people.umass.edu/~dinsmore/softcmp.html


Examples:

colorant


http://clxy.snnu.edu.cn/jhzeng/res/rnews.html

touch sensor

Wang, X.-Q., et al. *Advanced Optical Materials* **2014**, *2* (7)

humidity sensor

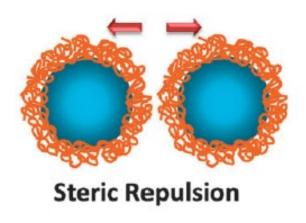
Tian, E., et al. *Journal of Materials Chemistry* **2008**, *18* (10), 1116-1122

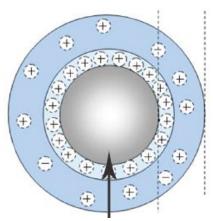
Outline

- Introduction
- Particle motion
- Stabilization
 - electrostatic stabilization
 - steric stabilization
- Characterization
- Applications of particle dispersions
- Assembly of particles
- Colloidal crystals made of microgels
- Applications of colloidal crystals
- Agglomeration
- Applications of agglomerated particles

Agglomerate vs. Aggregate

primary particle primary particles agglomeration by agglomerate physical interactions of primary particles adhesion (agglomerate) aggregate new formed particle (aggregate) sintered body (crystal structure)


Agglomerates are assemblies of primary particles whose total surface area does not differ appreciably from the sum of specific surface areas of each particle.

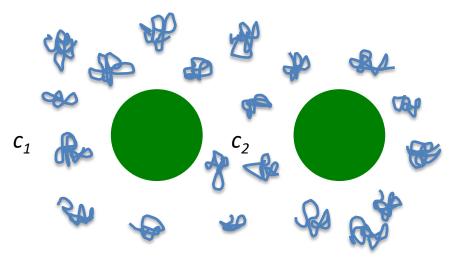

Aggregates are assemblies of primary particles whose total surface area differs appreciably from the sum of the specific surface areas of each particle.

Agglomeration of particles

Sterically stabilized particles

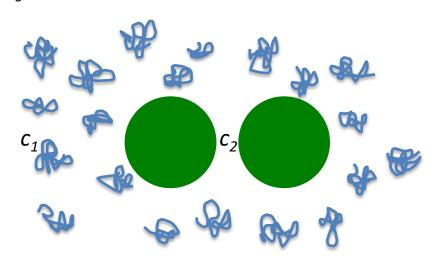
Electrostatically stabilized particles

Agglomeration can be caused through


- the addition of a poor solvent to collapse the polymers at the particle surface.
- physical or chemical removal of dispersants.
- the addition of non-adsorbing polymers that induce attractive depletion forces.
- the addition of salts. They screen charges at the particle surface thereby decreasing the Debye length.
- the addition of non-adsorbing polymers that induce attractive depletion forces.

Depletion forces

A **depletion force** is an attractive force that occurs between large colloidal particles, which are dispersed in a diluted solution containing depletants.


A **depletant** is a small solute that is preferentially excluded from the vicinity of particles.

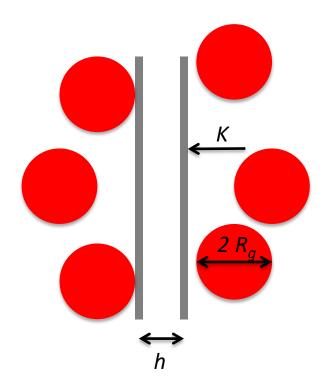
Depletion forces are present if the distance between adjacent colloids is on the order of R_a of the depletant.

There is no osmotic pressure and hence there are no depletion forces.

 $c_1 > c_2$

There is an osmotic pressure, resulting in depletion forces.

Depletion force between two plates


$$p_0 = n_b k_B T$$

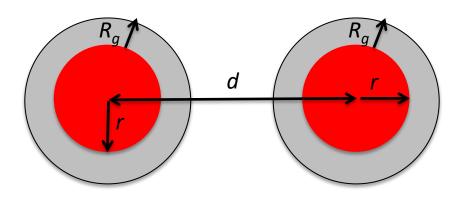
 p_o : osmotic pressure [Pa]

 n_b : bulk number density of particles [particles/m³]

W: interaction potential [J]

 R_q : Radius of gyration of the depletant [m]

$$p_0 = -n_b k_B T \qquad h < 2R_g$$


$$p_0 = 0 \qquad h \ge 2R_g$$

$$p = -\frac{dW}{dh}$$

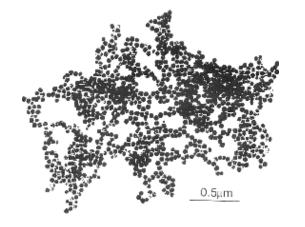
$$W(h) = -n_b k_B T (2R_g - h) \qquad h < 2R_g$$

$$W(h) = 0 \qquad h \ge 2R_g$$

Depletion forces between two spheres

for
$$h = d - 2r < R_g$$

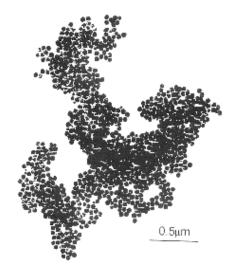
 $E_{dep} = -p_0 V_{dep}$


$$V_{dep} = \frac{4}{3}\pi (r + R_g)^3 \left(1 - \frac{3d}{4(r+d)} + \frac{d^3}{16(r+d)^3} \right)$$

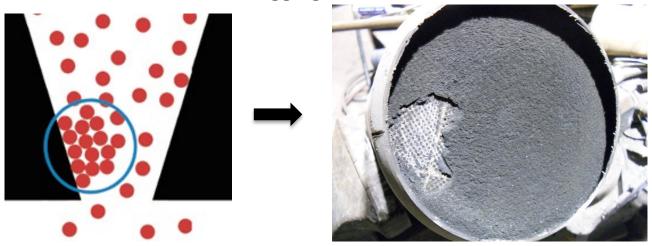
Agglomeration

Diffusion limited agglomeration

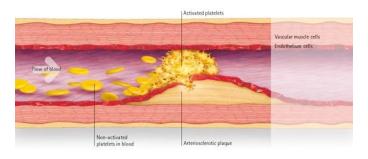
Encountering particles stick irreversibly to each other.


Diffusion limited agglomeration results in loose structures.

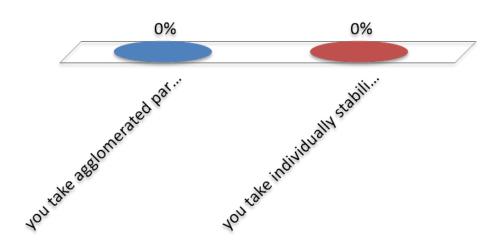
Reaction limited agglomeration


There is a finite probability for two encountering particles to stick to each other.

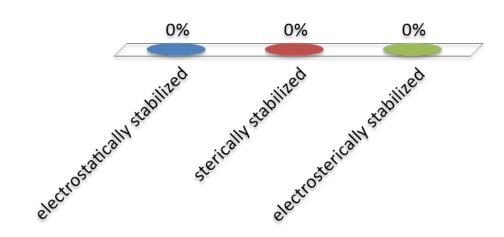
Reaction limited agglomeration results in dense structures.


Agglomeration that induces clogging events

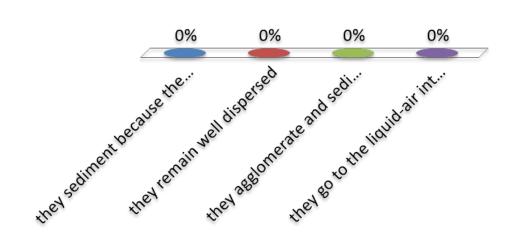
clogging of filters


http://adetuning.co.uk/dpf/clogging of blood vessels

Arterial thrombosis


You disperse $CaCO_3$ particles or agglomerates in an aqueous solution (pH = 6) using two different approaches and let them sediment. The structure has the higher density if

- A. you take agglomerated particles
- B. you take individually stabilized and dispersed particles


Rain washes fine clay particles ($CaCO_3$ particles approximately 0.15 µm in diameter) from the soil of a farmer into a river. Why do particles stay dispersed while they are in a stream of fast flowing fresh water? Because they are

- A. electrostatically stabilized
- B. sterically stabilized
- C. electrosterically stabilized

What happens to clay particles when the river empties into an ocean?

- A. they sediment because they are too large
- B. they remain well dispersed
- C. they agglomerate and sediment
- D. they go to the liquid-air interface

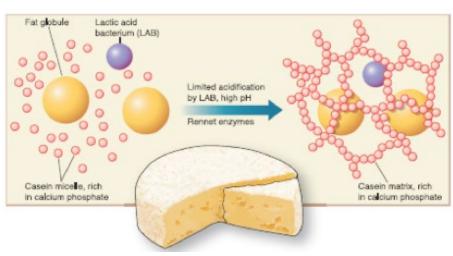
Delta formation

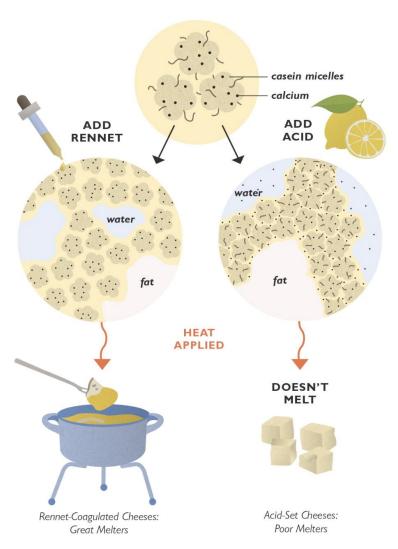
Colloids (clays) become unstable if they are suspended in water containing high salt concentrations and agglomerate.

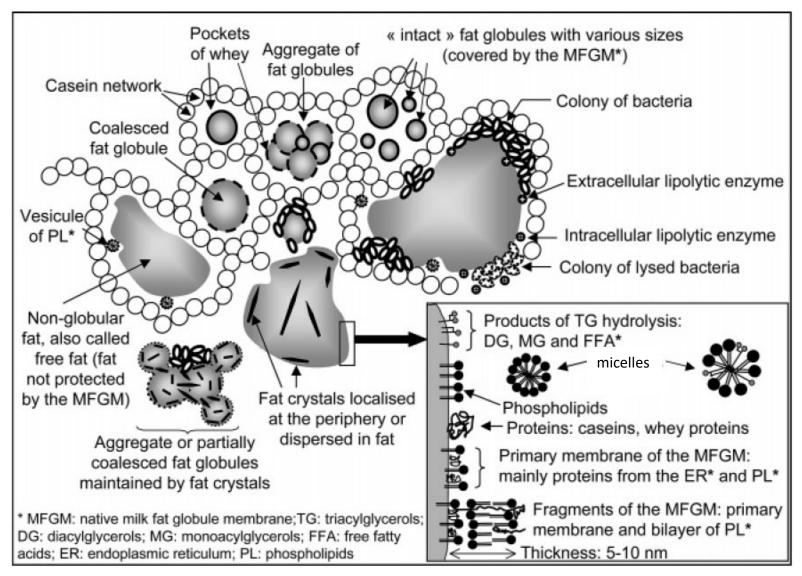
Outline

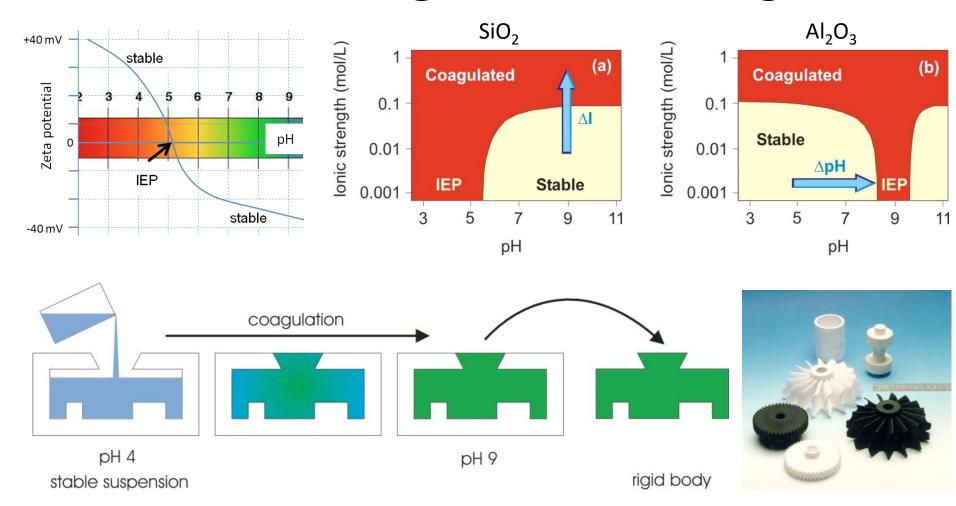
- Introduction
- Particle motion
- Stabilization
 - electrostatic stabilization
 - steric stabilization
- Characterization
- Applications of particle dispersions
- Assembly of particles
- Colloidal crystals made of microgels
- Applications of colloidal crystals
- Agglomeration
- Applications of agglomerated particles

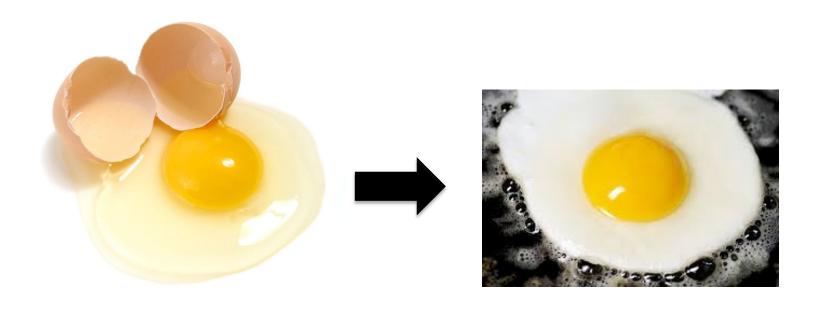
Agglomeration during cheese formation



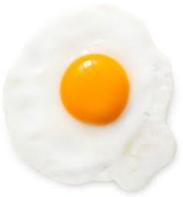

Sterically stabilized casein micelles begin to flocculate if the steric brush, made from casein, collapses due to changes in pH.


Cheese production


http://slowfoodwellesleysnail.blogspot.ch/2014/01/wasiks-cheese-lecture.html


Emmentaler cheese

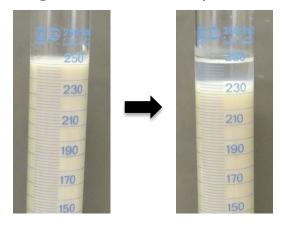
Direct coagulation casting


Colloidal gels

What happens during this transition?

Colloidal gels

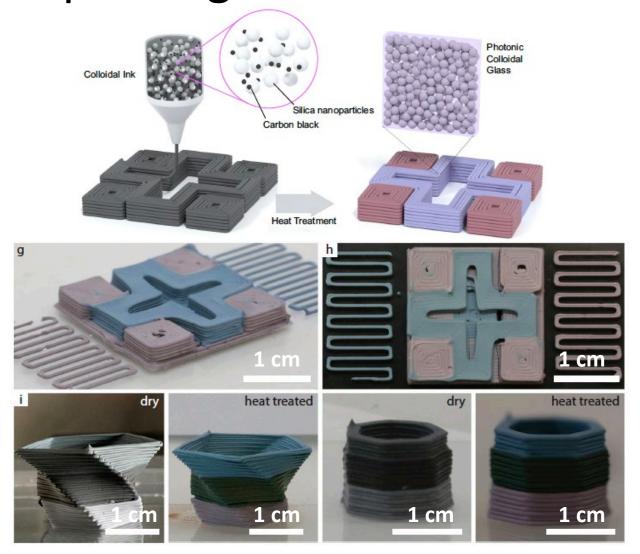
Colloidal gels



Syneresis

Syneresis is the collapse of a gel that is accompanied by the expulsion of liquid.

Syneresis is unwanted in yoghurts.



Syneresis is wanted during cheese production.

Application:

3D printing of structural colors

