
Prof Fink's Notes (Fall 2006): The Hamiltonian approach to classical
mechanics and the analysis of lattice vibrations 



Introduction: 
While this course is primarily focused on electronic structure and it’s relation to EPM 
properties it is useful to briefly review the Hamiltonian or energetics approach to 
classical mechanics. We will begin with an analysis of lattice vibrations which provide a 
mechanism for energy storage and contribute to the heat capacity. Related to this model 
is the “Law of Dulong and Petit” which predicts that at high temperatures each ion in a 
solid contributes 3kB (~25J/mol K). Lattice vibrations also play a key role in limiting the 
electrical conductivity in metals, mediating heat conduction and also enable optical 
transitions in indirect band semiconductors. Lattice vibrations also determine the speed of 
sound in materials. 

  
 

The structure of classical mechanics: states, hamiltonians and time evolution 
Our analysis of a classical collection of particles in a region of space where a potential 
energy can be defined as a function of the spatial coordinates also known as a potential 
field follow a number of steps 
 
I. System 

Here the physical system is defined. The individual masses are identified as well as the 
potential energy. Also included in this section is the definition of a coordinate system that 
captures the degrees of freedom of the system. 
 



II. The state 

The state of a classical system at a particular time t0 typically determined by the position 

and momentum variables ( )0x t  and ( )0p t .  

III. The Hamiltonian 

All physical quantities of the system (energy, angular momentum) can be expressed as 

functions of these variables. For example: the total energy of the system is determined by 

its classical Hamiltonian which can be usually defined as, 
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IV. Time evolution of the state 

Once the state ( ) ( )( ),x t p t is known at a particular time 0t the state of the system at any 

other time t is determined completely by the equations of motion which are also known 

as Hamilton’s equations. 
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the complete set of ( ) ( )( ),x t p t  is called the trajectory of the system. To solve this 

system of coupled first order differential equations it is necessary to specify the initial 

conditions. 

 

Example I: mass in a gravitational field 

The system consists of a single mass m=1kg which is released at t=0 from a height of 1m 

above the floor the state of the system at t=0 is ( ) ( )( )0 1, 0 0x t p t= = = =  the total 

energy is given by the Hamiltonian, 
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The time evolution of the state is given by, 
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two coupled first order differential equations, solve them by directly integrating the 

second equation with respect to time…. 
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then we substitute the p(t) found into the first equation… 
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and finally the initial conditions are used (i.e. x(0) and p(0)) to obtain the trajectory. 

 



Example II: 1D Diatomic molecule  

I. The system 

 

 

 

 

 

 

 

II. The Hamiltonian 
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k is the spring constant and l is the equilibrium position of the spring (i.e. at that distance 

the spring is not exerting any force on the masses) 

III. The equations of motion 
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these coupled first order equations can be solved by generating uncoupled second order 
equations.
 

1 1,x p
2 2,x p

l 



su

sa ( )1s a+ ( )2s a+a 

Example III: Longitudinal vibrations of a one dimensional monoatomic lattice (can 
be applied to cubic crystals with a mono-atomic basis) 
 

I. The system 
Consists of ions located on a lattice defined by a lattice vector x=sa. The ions are 
assumed to be deviating from their respective lattice points by a distance u.which is taken 
to be smaller than a, which is, the lattice constant. 

 
 

 
 

 
 
 

 
 

II. The Hamiltonian 
 
 
We assume that the elastic energy is quadratic in the displacement 
Write Hamiltonian for the crystal where the problem is parameterized by the 
coordinate s and the displacement vector [ ]su  
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III. Deriving the equations of motion 
Through the application of Hamilton’s equations we derive the equations of motion: 
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Focus on the terms in the Hamiltonian that contain su and sp  
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Look for solutions that have a time dependence of the form, and substitute back in the 
above equation to obtain a difference equation: 
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This difference equation has solution of the form: 
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where a is the lattice constant and k is called the wavevector. 
 
The solution per atom s can also be written as: 
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Dispersion relations 
The last equation defines the dispersion relation which is a periodic function in k 
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The dispersion relation constitutes a graphical representation of the independent solutions. 
Given a vector of initial displacements ( )0u⎡ ⎤⎣ ⎦ and initial velocities  ( )0u⎡ ⎤⎣ ⎦ , k and ω 
define a solution. 



Physical characteristics of the solutions: 
 

1. The ratio of two adjacent displacements is: 
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that has a k’=k+n2π/a are equivalent.  
2. Unique solutions only for those values of k that are restricted to the first BZ: 
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4. Standing waves at the edge of the Brillouin zone for solutions where k satisfies: 

k
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= ± . Adjacent atoms move in opposite directions the wave is not propagating 

(group velocity is 0). 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

5. Long wavelength limit occurs when ka<<1.  Under these conditions the 
dispersion relations can be expanded in a Taylor series: 
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This is the same condition that is satisfied when you get the so called 
Bragg reflections in optics (or x-ray diffraction). Recall the condition for 
Bragg diffraction: 
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2k π
λ

=  

We just saw from the analysis above that we get standing waves at 
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which is identical the Bragg condition. 



Longitudinal vibrations of a one dimensional diatomic lattice (cubic crystals with 
diatomic basis) 
 
Degrees of freedom: 
 
When a crystal has two atoms or more per primitive basis, such as Rocksalt structure of 
NaCl (FCC with two atom basis), Diamond structure (FCC with two atom basis) of Si, 
Ge, diamond carbon or α-Sn each polarization mode develops two branches known as 
acoustic and optical branches.  If there are p atoms in the primitive cell, there are 3p 
branches to the dispersion relations: 3 acoustical branches and 3p-3 optical branches. 
We will focus for the purpose of this discussion on a simplified 1D model similar to the 
one discussed above: 
 

I. The system 
 

 
 

II.  The Hamiltonian 
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III.  Equations of motion 
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IV.  Solutions 
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V.  Dispersion relations 
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The homogenous linear equations have a solution only if the determinant of the 
coefficients is zero: 
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for each k there are two solutions which are called the two branches of the dispersion 
curves.  

 
 



Let us examine the following limiting cases of the dispersion relations: 
 
Case I: Long wavelength ka π<<  
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Case III: K>>G 
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The optical branch now has a frequency which is k independent and is approximately 
equal to that of the frequency of vibration of a diatomic molecule. This leads to an 
additional insight into the physical interpretation of the optical branch and the distinction 
between it and the acoustic branch. Essentially, this branch is a band of frequencies  
which results from the broadening associated with the coupling between the individual 
oscillators. The motion thus originates from the diatomic motion. In the acoustic mode 
the ions in a cell are moving in the same direction and thus the motion is essentially a 
collective motion. 
 
 
 
Spring Constants and Young’s Modulus (a simple derivation) 
The harmonic analysis described above assumed elastic energy that is proportional to the 
displacement squared which resulted in a force proportional to the displacement and 
opposite to it in direction (restoring force): 
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K is related to the bond stiffness. If one applies a force to a cross section of a solid, N 
bonds are stretched. The force needed to be applied per unit area is called the stress: 
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Which relates (in an oversimplified way) the spring constant (or bond stiffness) to the 
Elastic moduli E which is the macroscopically measured quantity. 
 



 
 
One of the best methods for measuring Young’s modulus of materials is through the 
velocity of sound. For the velocity of a longitudinal wave in the [100] direction of a cubic 
crystal we have: 
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where 11C  is one of the three  independent elastic stiffness coefficients for a cubic crystal.  
One typically attaches a piezoelectric crystal to one end and measures the time it takes 
the excitation to reach the other end. 




