Prof Fink's Notes (Fall 2006): The Hamiltonian approach to classical
mechanics and the analysis of lattice vibrations



Introduction:

While this course is primarily focused on electronic structure and it’s relation to EPM
properties it is useful to briefly review the Hamiltonian or energetics approach to
classical mechanics. We will begin with an analysis of lattice vibrations which provide a
mechanism for energy storage and contribute to the heat capacity. Related to this model
is the “Law of Dulong and Petit” which predicts that at high temperatures each ion in a
solid contributes 3kg (~25J/mol K). Lattice vibrations also play a key role in limiting the
electrical conductivity in metals, mediating heat conduction and also enable optical
transitions in indirect band semiconductors. Lattice vibrations also determine the speed of
sound in materials.
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The structure of classical mechanics: states, hamiltonians and time evolution

Our analysis of a classical collection of particles in a region of space where a potential
energy can be defined as a function of the spatial coordinates also known as a potential
field follow a number of steps

I. System

Here the physical system is defined. The individual masses are identified as well as the
potential energy. Also included in this section is the definition of a coordinate system that
captures the degrees of freedom of the system.



II. The state

The state of a classical system at a particular time t, typically determined by the position
and momentum variables X(t,) and p(t,).

II1. The Hamiltonian

All physical quantities of the system (energy, angular momentum) can be expressed as

functions of these variables. For example: the total energy of the system is determined by

its classical Hamiltonian which can be usually defined as,
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IV. Time evolution of the state
Once the state (X(t), p (t)) is known at a particular time t, the state of the system at any

other time t is determined completely by the equations of motion which are also known

as Hamilton’s equations.

oH (x, p,t) _dx,
op,  dt

OH(x.p,t)  dp
OX T odt

the complete set of (X(t), p (t)) is called the trajectory of the system. To solve this

system of coupled first order differential equations it is necessary to specify the initial

conditions.

Example I: mass in a gravitational field

The system consists of a single mass m=1kg which is released at t=0 from a height of Im
above the floor the state of the system at t=0 is (X(t =0)=1p(t=0)= 0) the total
energy is given by the Hamiltonian,
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H (. p’t):;_m’ngX:1[k9]9-8Lmz}1[m]=9.8[J]:6.11x10” [eV]

The time evolution of the state is given by,



oH(x,p,t) p _dx
o m o dt
oH (x, p,t) o dp
X T dt

two coupled first order differential equations, solve them by directly integrating the

second equation with respect to time....

p(t)

J o
p(0)

— p(0)—-mgt = p(t)

then we substitute the p(t) found into the first equation...

—j mgdt =
0

t X(t)

| LIONN [ dx

o M x(0)

t _ X(t)
[Plmmaty
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and finally the initial conditions are used (i.e. x(0) and p(0)) to obtain the trajectory.



Example I1: 1D Diatomic molecule

I. The system <

v

X]’ pl X27 p2

I1. The Hamiltonian
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K
H (Xla Pis X5, p2)=2p—r1n+2p—r?n+?(xz —X - )2

k is the spring constant and I is the equilibrium position of the spring (i.e. at that distance
the spring is not exerting any force on the masses)

I11. The equations of motion

OH (X5 Pis X Past) _ p, _dx,

op, m dt

oH (Xl’ plsz, pz;t) :—%—)—K(Xz _X1 _I):_%
oX, dt dt

OH (X, P %y, Pyit) _ p, _dx,
op, m dt

8H(Xl, plaxza pz;t):_dpz _)K(Xz_xl_l):_%
0X, dt dt

Xl =%a Xz =%’ pl = K(XZ_XI_I)’ p2 =_K(X2_Xl_|)

these coupled first order equations can be solved by generating uncoupled second order
equations.



Example I11: Longitudinal vibrations of a one dimensional monoatomic lattice (can
be applied to cubic crystals with a mono-atomic basis)

. The system
Consists of ions located on a lattice defined by a lattice vector x=sa. The ions are
assumed to be deviating from their respective lattice points by a distance u.which is taken
to be smaller than a, which is, the lattice constant.

I1. The Hamiltonian

We assume that the elastic energy is quadratic in the displacement
Write Hamiltonian for the crystal where the problem is parameterized by the

coordinate s and the displacement vector [u, ]
2
1
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I11.Deriving the equations of motion
Through the application of Hamilton’s equations we derive the equations of motion:

oH  dp,
o, dt
oH  du,
op, dt
Focus on the terms in the Hamiltonian that contain u and p,
2
H, :2p—|§/|+% K (u,—u,, )’ +% K (Ug,—Uy) .t
And obtain
d’u
M dt; =K (ug, +U,_, —2u,)

Look for solutions that have a time dependence of the form, and substitute back in the

above equation to obtain a difference equation:
d 2us 2
u, oc rERCE

- -Me’u; =K (ug, +u,_, —2u,)

—iot
e

S+1



This difference equation has solution of the form:
u = uei(sil)ka
St
where a is the lattice constant and k is called the wavevector.

The solution per atom s can also be written as:
uk (S,t) — uelksa—la}t

M a)zeiska —K (ei(s+])ka " ei(s—l)ka _ 2eiska)
—--Me’ =K (eika ree 2)

%wz(k)z%(l—coska)

- a)(k) =, /ﬁ si
M
Dispersion relations

The last equation defines the dispersion relation which is a periodic function in k
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The dispersion relation constitutes a graphical representation of the independent solutions.
Given a vector of initial displacements [u (0)] and initial velocities [L’I (O)] ,kand ®

define a solution.



Physical characteristics of the solutions:

1.

The ratio of two adjacent displacements is:

ik(s+1l)a
U _ue

u ueiksa

S

which indicates that a solution involving k and a solution

that has a k’=k+n2n/a are equivalent.

2. Unique solutions only for those values of k that are restricted to the first BZ:

3.

ek
a a

do |Ka’ ka
dk M

Phase velocity: ¢ = ? and group velocity: v, =

4. Standing waves at the edge of the Brillouin zone for solutions where k satisfies:

5.

k = +—. Adjacent atoms move in opposite directions the wave is not propagating
a

(group velocity is 0).

This is the same condition that is satisfied when you get the so called
Bragg reflections in optics (or x-ray diffraction). Recall the condition for
Bragg diffraction:

2dsind =nA

6?:%, d=a,n=1—> 1=2a

k is the wavevector and is related to the wavelength by:

2r
K=—
A
We just saw from the analysis above that we get standing waves at
V4
kStanding = ig

which is identical the Bragg condition.

Long wavelength limit occurs when ka<<1. Under these conditions the
dispersion relations can be expanded in a Taylor series:

@ (k)= 28 (1-coska)

coska=1- (ka)2 O((ka))

-

and the velocity of sound v, = —i) , / I\K/I is independent of frequency.



Longitudinal vibrations of a one dimensional diatomic lattice (cubic crystals with
diatomic basis)

Degrees of freedom:

When a crystal has two atoms or more per primitive basis, such as Rocksalt structure of
NaCl (FCC with two atom basis), Diamond structure (FCC with two atom basis) of Si,
Ge, diamond carbon or a-Sn each polarization mode develops two branches known as
acoustic and optical branches. If there are p atoms in the primitive cell, there are 3p
branches to the dispersion relations: 3 acoustical branches and 3p-3 optical branches.
We will focus for the purpose of this discussion on a simplified 1D model similar to the
one discussed above:
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Figure 22.9 .
The diatomic linear chain of identical atoms, connected by springs of aliernating strei gths

I1. The Hamiltonian

Zpls szs N Z( 1s 25 + GZ 25 ls+1

S

I11.  Equations of motion

d’u,
dtz = K( 2,5 _ul,s)+G(u2,s—1 _ul,s)
d’u, S
M d'[z, =K (ul,s —Uys ) +G (ul,s+1 —Uy )
IV.  Solutions
U — U elksae—lwt uzs — uzeiksae—iwt
V. Dispersion relations

(Mo® -(K+G))u, +(K+Ge ™ )u, =0
(K+Ge")u, +(Ma’ —(K+G))u, =0



The homogenous linear equations have a solution only if the determinant of the
coefficients is zero:

(Mo”—(K+G))  (K+Ge™) i
(K+Ge™) (Mo’ -(K+G))

with solutions:

» K+G
M

@ iﬁ\/K2+G2+2KGcoska

u _ K+Ge™

T T L oakal

u, | K+Ge
for each k there are two solutions which are called the two branches of the dispersion
curves.

Figure 22.10

Dispersion relation for the
diatomic linear chain. The
lower branch is the acoustic
branch and has the same
structure as the single branch
present in the monatomic
case (Figure 22.8). In addi-
tion, there is now an optical
branch (upper branch.)




Let us examine the following limiting cases of the dispersion relations:

Case I: Long wavelength ka << =

o = 2(KT+G), u =-u, (Optical branch)

? ;Wﬁ-(})kzaz’ U =u, (Acousticbranch)
—_ —_ — — = — — - — — —
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Figure 22.11
The long wavelength acoustic (a) and optical (b) modes in the diatomic linear
chain. The primitive cell contains the two ions joined by the K-spring, repre-
sented by a jagged line. In both cases the motion of every primitive cell is identical,

but in the acoustic mode the ions within a cell move together, while they move
180" out of phase in the optical mode.
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Figure 22.12

The acoustic {a) and optical (b) modes of the diatomic linear chain, when
k = +rfa, at the edges of the Brillouin zone. Now the motion changes by 180°
from cell to cell. However, as in Figure 22.11, the ions within each cell move in
phase in the acoustic mode, and 180° out of phase in the optical mode. Note that
il the K- and G-springs were identical the motion would be the same in both cases.

This is why the two branches become degenerate at the edges of the zone when
K=0G.



Case l1l: K>>G

. Ka
SlIl? ,Ul = uz

The optical branch now has a frequency which is k independent and is approximately
equal to that of the frequency of vibration of a diatomic molecule. This leads to an
additional insight into the physical interpretation of the optical branch and the distinction
between it and the acoustic branch. Essentially, this branch is a band of frequencies
which results from the broadening associated with the coupling between the individual
oscillators. The motion thus originates from the diatomic motion. In the acoustic mode
the ions in a cell are moving in the same direction and thus the motion is essentially a
collective motion.

Spring Constants and Young’s Modulus (a simple derivation)

The harmonic analysis described above assumed elastic energy that is proportional to the
displacement squared which resulted in a force proportional to the displacement and
opposite to it in direction (restoring force):

. K
potential energy = ?uz
F=-Ku
K is related to the bond stiffness. If one applies a force to a cross section of a solid, N
bonds are stretched. The force needed to be applied per unit area is called the stress:

o =NK(x—x,)
T
N is the number of bonds per unit area N = Lz
XO
oe K (x=%,)
XO XO
-

Which relates (in an oversimplified way) the spring constant (or bond stiffness) to the
Elastic moduli E which is the macroscopically measured quantity.
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One of the best methods for measuring Young’s modulus of materials is through the
velocity of sound. For the velocity of a longitudinal wave in the [100] direction of a cubic

crystal we have:
1/2 1/2
P P

where C,, is one of the three independent elastic stiffness coefficients for a cubic crystal.

One typically attaches a piezoelectric crystal to one end and measures the time it takes
the excitation to reach the other end.





