
Prof Fink's Notes:               
        The Free Electron Gas Fermi Statistics 
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Gas of N independent electrons in a volume V (assuming periodic boundary 
conditions) 
I] The system 
N electrons in a box of side L such that 3V L=  
II] Hamiltonian 
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III] Eigenvalues and eigenfunctions, 
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Important comment: recall that the functional form of the dispersion relation for the free 
particle is parabolic the discussion is relevant to other cases where the bands have a 
parabolic shape. 
 
III] Boundary condition: Born Von-Karman 
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The k vector in this case is the momentum and the energy eigenfunctions are 
correspondingly momentum eigenfunctions. 
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we can also interpret the vector as a wave vector 
2k π
λ

=
G

 

where λ is the de-Broglie wavelength. 
The application of the boundary condition leads to the following identities, 
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which in turn lead to quantization of the k vectors 
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Enumerating the states 
(2D kx-ky plot introduction to k space – just an efficient way to display information)  
The number of allowed points is just the volume of the k space divided by the volume 
occupied per point. 
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The region of k space of volume Ω will contain N allowed k points or spatial states: 
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can be interpreted as the density of spatial states in k space. 
 
Side: A many electron wavefunction of the free electron eigenstates using the Slater 
determinant:  

( )
( ) ( )

( )

1 11

1 2 3

1

....
1, , ,...

!
N

k k

N

k

u r u r
r r r r

N u r
ψ =

N
G G

G G G G
G

 

The process of identifying the combination of N, free electron eigenstates needed to 
produce the lowest possible energy configuration involves choosing the lowest energy k’s 
first and then choosing eigenfunctions associated with higher energies. The resulting 
volume occupied by the set of chosen k’s for a large number of electrons is 
approximately a sphere, 
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We are now going to introduce N electrons into the system at T=0 and are going to ask 
what states are these electrons going to occupy? If there are many electrons they will fill 
a circle in 2D or a sphere in 3D, the surface of this sphere represents the electrons which 
have the maximum energy, and also separates filled from unfilled states and is called the 
Fermi surface. 
 
Definitions 
Fermi sphere – the surface in k space that separates occupied from unoccupied levels.  
Fermi momentum -  F Fp k=

GG =

Fermi velocity - Fp
m

G
plays a role in metals similar to that of the thermal velocity in a 

classical gas. 
In 3D: 
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All of these quantities depend on a single parameter the density of the free electrons 
Typical values for the free electron densities in metals are: 

22
3

22
3

22
3

22
3

4.7 10

1.3 10

5.86 10

17 10

elecLi
cm

elecK
cm

elecAg
cm

elecFe
cm

⎡ ⎤= × ⎢ ⎥⎣ ⎦
⎡ ⎤= × ⎢ ⎥⎣ ⎦
⎡ ⎤= × ⎢ ⎥⎣ ⎦

⎡ ⎤= × ⎢ ⎥⎣ ⎦

 

The corresponding de-Broglie wavelength is on the order on angstroms 
The Fermi velocity is about 0.01c where c is the speed of light. 
The Fermi energy is  
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typically in the range of 1.5-15eV 
 
To calculate the ground state energy E, of N electrons, 
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where all of the states are explicitly counted. Because of the small spacing in the k space 
it is also possible to transform to a continuous variable and integrate. 
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The energy per electron in the ground state (using the expression for N/V from above), 
43 10
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Density of Levels 
A very useful number is the density of states (DOS) function it tells us how many states 
are located between energies dε ε ε→ + ? 
How is this number found? 
First it is important to realize that ( )kε ε=

G
represents a surface of constant energy. 

Once we have a surface how do we calculate the volume enclosed between dε ε ε→ + ? 
For the free electron case 
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The density of states function is defined as, 

( ) 2 2 2

2dN m mg
d

εε
ε π
= =

= =
 

The number of one-electron levels in the energy range of dε ε→ + ε per unit volume is: 
( )g dε ε  

In general the density of states in a particular band is given by: 
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It used for calculating thermodynamic quantities: 
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Statistics of Gases 
Classical gas implies distinguishable particles which obey Maxwell-Boltzman statistics 

( ) ( ) ( )1,2 1 2α βψ φ φ=  
Particles with half integral values of the total spin angular momentum – Fermions or 
electrons – obey Fermi-Dirac statistics 
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for the simple 2 particle case 
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Particles with integral values of total spin angular momentum – Bosons photons – obey 
Bose Einstein statistics 

( ) ( )1,2,3,.. ,.... ,... 1,2,3,.. ,.... ,...i j N j i Nψ ψ=  
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to illustrate why this happens lets consider a simple case of a 2 particle gas A and B 
which are identical in a system which has 3 possible energy eigenstates s=1, 2 and 3. 
The Maxwell-Boltzman case: 
 

 1 2 3 
1 AB   
2  AB  
3   AB 
4 A B  
5 A  B 
6  A B 
7 B A  
8 B  A 
9  B A 

 
The Bose Einstein case: 
 

 1 2 3 
1 AA   
2  AA  
3   AA 
4 A A  
5 A  A 
6  A A 
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The Fermi-Dirac case: 
 

 1 2 3 
1 A A  
2 A  A 
3  A A 

 
The number of different possible states for the whole gas: 
MB=9, BE=6, FD=3 
 
We can define the following parameter which characterizes the tendency of the particles 
to “bunch”: 

probability of two particles in the same state
probability of two particles in different states

ξ =  

1 ,  1,  0
2MB BE FDξ ξ ξ= = =  

Compared to the classical case the bosons tend to bunch while fermions (electrons) 
remain apart. 
 
 
Gas of N identical particles in a volume V in equilibrium with a thermal reservoir at 
temperature T 
Definitions: 
s – single particle eigenstate 

sε - single particle energy eigenvalues 

sn - the number of particles in eigenstate s called the occupation number. 
S – an eigenstate (sometimes called a microstate) of the entire gas described once the 
eigenstate of each particle is given. 
ES – The energy eigenvalues for an eigenstate of the entire gas 
 
Assume we have in our system 3 states s, and two electrons what are the possible 
“microstates”? 
 

 s=1 s=2 s=3 
S=1 A A  
S=2 A  A 
S=3  A A 

 
What are the properties of this gas: 
(1) Total energy of the gas in an eigenstate S: 
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(2) It can be shown that the probability of finding the system in a particular eigenstate S 
of energy sE is given by: 
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where the denominator is a very useful function called the partition function 

 all 

S

B

E
k T

S

Z e
−

= ∑  

The partition function Z is related to the Helmholtz free energy of the system through 
lnF kT Z= −  

the summation is over all distinct states of the gas – S (i.e. all possible values of 
( )1 2, ,...., Nn n n ) this expression holds for all types of particles the difference lies in the 
number of different states S. 
The chemical potential is defined as the change in free energy upon adding a particle to 
the system: 
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N
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All thermodynamic properties of the gas can be calculated from the knowledge of Z. 
 
Fermi-Dirac  statistics 
range of allowable single-electron state occupation number 

0,1sn =  
since the particles are indistinguishable it is enough to use the occupation vector 
{ }1 2, ,...n n to completely define a state 
 
 
How is this different from the classical gas Maxwell-Boltzmann statistics? 
the allowable values of   0,1, 2,3.....,sn N=
furthermore since the particles are considered to be distinguishable it is not sufficient to 
provide the occupation vector { }1 2, ,...n n one needs to consider which particles are in each 
single particle state and separately count all of the different possibilities. 
 
The most profound difference between the different particle types is when considering 
the gas at T=0 or at the ground state. Assume that the lowest single particle energy 
eigenvalues is 1ε  the lowest possible energy state of the many electron system is very 
different for the electron and classical gas cases we just discussed…. 
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A very important quantity is the mean number of particles in a particular single electron 
state s, for electrons: 

sum of the probabilities of
obtaining gas states S where 
single-electron  state s, is  occupied 
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Using the partition function defined above one can show that 
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This relation (for fermions) is called the Fermi-Dirac distribution it plays a key role in 
determining electronic properties. 
 
An important observation regarding the FD distribution: 
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which is a result of Pauli’s exclusion principle 
 
 

 

 
 
 
A slightly different view on the Fermi Dirac Distribution 
The properties of an N particle system which is in thermal equilibrium at temperature T 
should be calculated by averaging over all N particle eigenstates where each state of 
energy ε  is weighted by 
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The denominator is called the partition function and is related to the Helmholtz free 
energy.  

//
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The probability of having a particular 1 electron level with energy – ε occupied by an 
electron is just, 
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One can derive this probability by considering that it is nothing else but the sum of 
independent probabilities of having a particular energy level occupied 
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level E
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It is also useful to note that the sum of all occupation numbers should equal the number 
of electrons in the system 
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i
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The chemical potential at temperature T is defined as the difference in free energies upon 
adding an additional particle to the system 

1N NF Fµ += −  
the chemical potential has a weak temperature dependence and is sometimes called the 
Fermi Energy 

 
Does this occupation probability function reproduce the ground state occupation? 
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which is exactly what is recovered at the limit of T approaching 0 from the occupation 
function 
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We can use this function to evaluate different average quantities of the gas for example, 
The total energy of the system at temperature T, 
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The energy density is given by, 
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The density of states function is defined as, 
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and the number of one-electron levels in the energy range of dε ε→ + ε per unit volume 
is: 
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The heat capacity of the free electron gas 
The heat capacity of an electron gas: 
The equipartition theorem basically states that for each degree of freedom in the 
Hamiltonian there is a contribution of 1/2k to the heat capacity. Therefore it is expected 
that the free electron gas will have a heat capacity of: 

3
2v Bc n k=  

yet in reality the contribution of the free electrons to the heat capacity was only 0.01 of 
that value? The basic paradox was how were the electrons mobile enough to participate in 
the conduction process yet did not contribute to the heat capacity? 
When we heat the sample from T=0K not every electron gains  as expected from 
classical considerations – in fact only the electrons near the Fermi energy can absorb that 
extra kinetic energy by promoting themselves to higher energy orbitals. The rest of the 
electrons are trapped in their orbitals. 

Bk T
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