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As used by music lovers, the term “solid state physics” refers only to the subject of
inhomogeneous semiconductors, and it would be more accurate if it were this latter
phrase that festooned the brows of countless tuners and amplifiers. The prevailing
usage reflects the fact that modern solid state physics has had its most dramatic
and extensive technological consequences through the electronic properties of semi-
conducting devices. These devices use semiconducting crystals in which the concen-
trations of donor and acceptor impurities have been made nonuniform in a carefully
controlled manner. We shall not attempt to survey here the great variety of semi-
conducting devices, but will only describe the broad physical principles that underlie
their operation. These principles come into play in determining how the densities and
currents of electrons and holes are distributed in an inhomogeneous semiconductor,
both in the absence and in the presence of an applied electrostatic potential.

The inhomogeneous semiconductors of interest are, ideally, single crystals in which
the local concentration of donor and acceptor impurities varies with position. One
way to make such crystals is to vary the concentration of impurities in the “melt”
as the growing crystal is slowly extracted, thus producing a variation in impurity
concentration along one spatial direction. Delicate methods of fabrication are needed
because it is generally important, for efficient operation, that there be no great increase
in electronic scattering associated with the variation in impurity concentration.

We shall illustrate the physics of inhomogeneous semiconductors by considering
the simplest example, the p-n junction. This is a semiconducting crystal in which the
impurity concentration varies only along a given direction (taken to be the x-axis)
and only in a small region (taken to be around x = 0). For negative x the crystal has
a preponderance of acceptor impurities (i.e., it is p-type) while for positive x it has a
preponderance of donor impurities (i.e., it is n-type) (Figure 29.1). The manner in
which the densities of donors and acceptors N,(x) and N,(x) vary with position is

Figure 29.1
The impurity densities along
a p-n junction in the case of
an “abrupt junction,” for
which donor impurities dom-
inate at positive x, and
acceptor impurities at nega-
G : tive x. The donors are repre-
n-type S sented by (+) to indicate

Impurity density

Ny their charge when ionized,

p-type + + &
N, o - + i : and the acceptors by (—)
- - T " o i For a junction to be abrupt,
T + + + + the region about x = 0 where

S T ¥ the impurity concentrations
o change must be narrow com-

pared with the “depletion

layer” in which the carrier

densities are nonuniform.

(Typical plots of the carrier

densities arc superimposed

on this figure in Figure 29.3)

The Semiclassical Model 591

called the “doping profile.” The term “junction” is used to refer both to the device
as a whole and, more specifically, to the transition region about x = 0 in which the
doping profile is nonuniform. :

As we shall see below, the nonuniformity in impurity concentrations induces a
nonuniformity in the densities n(x) and p,(x) of conduction band electrons and
valence band holes, which in turn gives rise to a potential ¢(x). The region in which
these carrier densities are nonuniform is known as the “depletion layer™ (or “space-
charge region”). The depletion layer can extend for a range of about 102 to 10* A
around the (generally more narrow) transition region in which the doping profile
varies, as we shall see below. Within the depletion layer, except near its boundaries,
the total density of carriers is very much less than it is in the homogeneous regions
farther away from the transition region. The existence of a depletion layer is one of
the crucial properties of the p-n junction. One of our main concerns will be to explain
why such a layer is induced by the variation in impurity concentrations, and how its
structure changes with the application of an external potential V.

For simplicity we shall consider here only “abrupt junctions,” in which the tran-
sition region is so sharp that variation in impurity concentrations' can be represented
by a single discontinuous change at x = 0:

N, x>0
Nd(x)z{ 5 x<0},
0 x>0
x) = ? . 29.1
N(x) {Nw o 0} (29.1)

Abrupt junctions are not only conceptually the simplest, but also the type of greatest
practical interest. How sharp the actual transition region must be made for (29.1) to
give a reasonable model of a physical junction will emerge in the analysis below. We
shall find that a junction may be regarded as abrupt if the transition region in the
actual doping profile is small in extent compared with the depletion layer. In most
cases this permits the transition region to extend for 100 A or more. A junction that
cannot be treated as abrupt is called a “graded junction.”

THE SEMICLASSICAL MODEL

To calculate the response of an inhomogeneous semiconductor to an applied electro-
static potential, or even to compute the distribution of electric charge in the absence
of an applied potential, one almost always uses the semiclassical model of Chapter 12.
When a potential ¢(x) is superimposed on the periodic potential of the crystal, the
semiclassical model treats the electrons in the nth band as classical particles (i.e., as
wave packets) governed by the Hamiltonian

. (P
H,=6,+)— eh(x). (29.2)

h
' It s not essential that there be only donor impuritics in the n-type region and only acceptor im-
puritics in the p-type region. 1t suflices for cach impurity type to be the dominant one in its own region.
In what follows N, may be viewed as the excess density of donors over acceptors and N, as the excess

density of acceptors over donors.
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Such a treatment is valid provided that the potential ¢(x) varies sufficiently slowly.
How slow this variation must be is, in general, a very difficult question to answer.
At the very least, one requires that the change in electrostatic energy ¢A¢d over a
distance of the order of the lattice constant be small compared with the band gap
E,, but the condition may well be even more stringent than this.2 In the case of the
p-n junction the potential ¢ has almost all of its spatial variation within the depletion
layer. There, as we shall see, the energy e¢ changes by about E,, over a distance that
is typically a few hundred angstroms or more (so that the field in the depletion layer
can be as large as 10° volts per meter). Although this satisfies the minimum necessary
condition for the validity of the semiclassical model (the change in e¢> over a lattice
constant is no more than a fraction of a percent of E,), the variation is strong enough
that one cannot exclude the possibility that the semiclassical description may break
down in the depletion layer. Thus one should bear in mind the possibility that the
field in the depletion layer may be strong enough to induce tunneling of electrons
from valence band to conduction band levels, leading to a conductivity considerably
in excess of the semiclassical prediction.

Having issued this warning, however, we shall follow the general practice of
assuming the validity of the semiclassical description, so that we may explore its
consequences. Before describing the semiclassical theory of the currents that flow in
a p-n junction in the presence of an applied potential, we first examine the case of the
p-n junction in thermal equilibrium, in the absence of applied potentials and current
flow.

THE p-n JUNCTION IN EQUILIBRIUM

We wish to determine the carrier densities and the electrostatic potential ¢(x) induced
by the nonuniform doping. We assume that nondegenerate conditions hold through-
out the material, so that the carrier densities at each position x have the “Maxwellian”
forms analogous to the densities (28.12) we found in the uniform case. In the non-
uniform case, to derive the carrier densities at position x along the junction in the
presence of a potential ¢(x), the semiclassical procedure is simply to repeat the
analysis for the uniform case, but using the semiclassical one-electron energy (29.2),
in which each level is shifted by — e¢(x). Using the forms (28.3) of the &(k) appropriate
to levels near the conduction band minimum or valence band maximum, we see that
the effect of this is simply to shift the constants &, and &, by — e¢(x). Thus Eq. (28.12)
for the equilibrium carrier densities is generalized to

[B— o) — 4]
kgT ’

[lu - Su " ed)(x)]
kyT '

ne(x) = N(T) €Xp{

pv(x) = PU(T) exp {-_— (29‘3)
The potential ¢(x) must be determined sell-consistently, as that potential arising
(via Poisson’s equation) when the carrier densities have the forms (29.3). We examine

A crude argument appropriate to metals is given in Appendix 1. Analogous arguments (of com-

parable crudity) can be developed for semiconductors,

The p-n Junction in Equilibrium 593

this problem in the special case (again, the case of major practical interest) in which
far from the transition region on either side extrinsic conditions prevail, in which
the impurities are fully “ionized” (see pages 583—-584). Thus far away on the n-side
the density of conduction band electrons is very nearly equal to the density N, of
donors, while far away on the p-side the density of valence band holes is very nearly
equal to the density N, of acceptors:

N4 = n(e0) = N{(T) exp{_ — el?(;?) - #]},
Mo = plzoor = PAD e {_ S :;‘p(_ OO)]}' (29.4)

Since the entire crystal is in thermal equilibrium, the chemical potential does not
vary with position. In particular, the same value of y appears in either of Eq§. (29.4);
this immediately requires that the total potential drop across the junction be given by*

NN,
ed(0) — ep(—0) = 8. — &, + kyTIn [1\]"—1)} (29.5)
or .
N,N,
eAp = E, + kTln [NCPJ. (29.6)

An alternative way of representing the information in (29.3) and (29.6) is sometimes
helpful. If we define a position-dependent “electrochemical potential” u,(x) by

He(X) = 1 + ep(x), (29.7)

then we may write the carrier densities (29.3) as

) = s - Bl

Pu() = Py(T) exp {— L= 6“]}. @9.8)
kT

These have precisely the form of the relations (28.12) for a homogeneous semi-
conductor, except that the constant chemical potential y is replaced by the electro-
chemical potential u,(x). Thus p,(o0) is the chemical potential of a homogeneous
n-type crystal whose properties are identical to those of the inhomogeneous crystal
far on the n-side of the transition region, while p(— co) is the chemical potential of
a homogeneous p-type crystal identical to the inhomogeneous crystal far on the
p-side. The relation (29.6) can equally well be written as*

e Agp = p(00) — p(—o0). (29.9)

3 The derivation of (29.5) requires the validity of (29.3) only far from the depletion layer, where qb is
indeed slowly varying. It therefore holds even when the semiclassical model fails in the transition region.

4 This follows directly from (29.7). Equation (29.9) is sometimes summarized in the rule that the lolgl
potential drop is such as to bring the “Fermi levels at the two ends of the junction™ into coincidence. This
point of view is evidently inspired by the representation of Figure 29.2b.
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Figure 29.2a shows the electrochemical potential plotted as a function of position
along the p-n junction. We have assumed (as will be demonstrated below) that ¢
varies monotonically from one end to the other. Figure 29.2b shows an alternative
representation of the same information in which the potential ¢ giving the position
dependence in (29.3) is regarded as shifting &, (or &,) rather than u. In either case,
the significance of the diagrams is that at any particular position x along the junction,
the carrier densities are those that would be found in a piece of homogeneous material
with the impurity concentrations prevailing at x, and with a chemical potential that
is positioned with respect to the band edges as shown in the vertical section of the
diagrams at x.

Figure 29.2

Two equivalent ways of repre-
senting the effect of the internal
potential ¢(x) on the electron and
hole densities of a p-n junction.
(a) The electrochemical potential
K(x) = p + ed(x) is plotted along
the p-n junction. The carrier den-
sities at any point x are those that
would be found in a wuniform
semiconductor characterized by
the fixed band and impurity
energies &, &,, &, and §,, at a
chemical potential equal to y,(x).
(b) Here &(x) = & — eg(x) is the
energy of an electron wave packet
localized about x formed from
levels very near the conduction
band minimum, and similarly for
&,(x). The energies of the local
impurity levels are &,(x) = &, —
ed(x)and §,(x) = &, — egp(x). The
(constant) chemical potential is
also shown. The carrier densities
at any point x are those that
would be found in a uniform
semiconductor characterized by
band and impurity energies equal
to &(x), &(x), &,(x), and &,(x) at
the fixed chemical potential u.

Equation (29.6) (or its equivalent form, (29.9)) serves as the boundary condition
in a differential equation determining the potential ¢(x). The differential equation
is simply Poisson’s cquation,’

¢ 4mp(x)

V2 = — L9V _
¢ dx? €

(29.10)

s

is possible because ¢ varies over the depletion layer. which is large on the interatomic scale.

Here € is the static diclectric constant of the semiconductor. The use of the macroscopic cquation
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relating the potential ¢(x) to the charge distribution p(x) giving rise to it. To express
p(x) in terms of ¢ and get a closed equation, we first note that if (as we have assumed)
the impurities are fully ionized far from the junction, then they will remain fully
ionized® at all x. Consequently the charge density due to the impurities and the
carriers is’
P(x) = e[Nux) = N(x) = n(x) + p,(x)]. (29.11)
When the carrier and impurity densities (29.3) and (29.1) are substituted into the
form (29.11) for the charge density, and the result is substituted into Poisson’s equation
(29.10), one finds a nonlinear differential equation for ¢(x) whose exact solution
usually requires numerical techniques.® However, a quite reasonable description of
¢(x) may be had by exploiting the fact that the total change in e¢ is of order E, » kpT.
The relevance of this fact emerges when we combine (29.3) and (29.4) to write

ny(x) = Nde_e[d’(”)—tb(x)]/kﬂ,
i) = om0 - .12

Suppose that the change in ¢ occurs within a region —d, < x < d,. Outside of this
region, ¢ has its asymptotic value, and therefore n, = N, on the # side, P, = N,on
the p side, and p = 0. Within the region, except quite near the boundaries, e¢ differs
by many kzT from its asymptotic value, so n, « Ny, p, « N,. Thus, except in the
vicinity of x = —d, and x = d,, the charge density (29.11) between —d, and d,, is
quite accurately given by p(x) = e[ Ny(x) — N,(x)], there being no appreciable carrier
charge to cancel the charges of the “ionized” impurities. The points x = —d, and
x = d, therefore mark the boundaries of the depletion layer.

Combining these observations, and using the form (29.1) for the impurity densities,
we find that except for x just greater than — d, or just less than d,, Poisson’s equation
is well approximated by

i
i

0, x > dl(,
—4neN,,’ d, > x >0,
¢"(x) =< 4;N (29.13)
—_a 0>x> —d,
€
0, —d, > x.

¢ If ¢ is monotonic (as we shall find below) this follows from the fact that the degree of ionization Qf
an impurity increases, the farther the chemical potential is from the impurity level. See Figure 29.2 and
Egs. (28.32) and (28.34).

7 The density of holes on the far n-side has the very small value p(oc) = n?/N, required by the law
of mass action. However, the density of electrons on the far n-side actually exceeds N, by this same small
amount so as to insure that n(0) — p,(0) = N,. In computing the total charge density, if we ignore this
small correction in n, (as we have done in writing (29.4) ), then we should also ignore the small compensating
density of holes on the far n-side. Similar remarks apply to the small concentration of electrons on the far
p-side. These “minority carrier densities™ have negligible effect on the total balance of charge. We shall see
below, however, that they play an important rolc in determining the flow of currents in the presence of an
applied potential.

% Some aspects of that equation are investigated in Problem 1.
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This immediately integrates to give

@(00), x > d,,
Po0) — (2"iN“> (x — d,)? dy, > x> 0,
H(x) = <2m N,,) ] (29.14)
$(—0) + (x+d)? 0>x> —d,
¢(— ), x < —d,.

The boundary conditions (continuity of ¢ and its first derivative) are explicitly obeyed
by the solution (29.14) at x = —d,, and x = d,. Requiring them to hold at x = 0
gives two additional equations that determine the lengths d, and d,. Continuity of
¢ at x = 0 implies that
' Ngd, = N, ' (29.15)

which is just the condition that the excess of positive charge on the n-side of the )
Junction be equal to the excess of negative charge on the p-side. Continuity of ¢ at
x = 0 requires that

<2ne> (Nyd,? + N.d,?) = $(c0) — $d(—0) = Ad. (29.16)

e
Together with (29.15) this determines the lengths d, and d,:

_ NN cap
d"‘p Sl {'(_Nd——i_—Nn) '—zze_} . (29:17)

To estimate the sizes of these lengths we may write Eq. (29.17) in the numerically
more convenient form
1/2

*+1
Wa/No) [ee Ad)]ev} A. (29.18)

1078V, + N,)

The quantity ee A¢ is typically of order 1 eV, and since typical impurity concentra-
tions are in the range from 10’ to 10'® per cubic centimeter, the lengths d, and d,,
which give the extent of the depletion layer, will generally be from 10* to 102 A. The
field within the depletion layer is of order A¢/(d, + d,), and for d’s of this size is
therefore in the range from 10° to 107 volts per meter, for an energy gap of 0.1 eV.

The resulting picture of the depletion layer is shown in Figure 29.3. The potential
¢ varies monotonically through the layer, as asserted above. Except at the boundaries
of the layer, the carrier concentrations are negligible compared with the impurity
concentrations, so the charge density is that of the ionized impurities. Outside of the
depletion layer the carrier concentrations balance the impurity concentrations, and
the charge density is zero.

The mechanism establishing such a region of sharply reduced carrier densities is
relatively simple. Suppose that one initially were able to impose carrier concentrations
that gave charge neutrality at every point in the crystal. Such a configuration could
not be maintained, for electrons would begin to diffuse from the n-side (where their
concentration was high) to the p-side (where their concentration was very low), and

oy ™= 105{
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Figure 29.3
(a) Carrier densities, (b) charge den- Carrier density
sity, and (c) potential ¢(x} plotted :
vs. position across an abrupt p-n

junction. In the analysis in the text = N,—— =
the approximation was made that | p,,(X)\ - =

the carrier densities and charge den- i
‘ |-+—Depleﬁ9n layer
~d, i

p - type L M- type

—

sity are constants except for discon-

tinuous changes at x = —d, and ‘ o
x = d,. More pr_egsely (see Problem ‘(a)_f  Cnedena
1), these quantities undergo rapid | e
change over regions just within the . "eNd + o+

depletion layer whose extent is a
fraction of order (kyT/E,)'? of the
total extent of the depletion layer. L
The extent of the depletion layer is o
typically from 102 to 10* A. Lo
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holes would diffuse in the opposite direction. As this diffusion continued, the result-
ing transfer of charge would build up an electric field opposing further diffusive
currents, until an equilibrium configuration was reached in which the effect of the
field on the currents precisely canceled the effect of diffusion. Because the carriers
are highly mobile, in this equilibrium configuration the carrier densities are very low
wherever the field has an appreciable value. This is precisely the state of affairs
depicted in Figure 29.3.

ELEMENTARY PICTURE OF RECTIFICATION BY A p-n JUNCTION

We now consider the behavior of a p-n junction when an external voltage V is applied.
We shall take V to be positive if its application raises the potential of the p-side with
respect to the n-side. When ¥ = 0 we found above that there is a depletion layer
some 10 to 10* A in extent about the transition point where the doping changes
from p-type to n-type, in which the density of carriers is reduced greatly below its
value in the homogencous regions farther away. Because of its greatly reduced carrier
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density, the depletion layer will have a much higher electrical resistance than the
homogeneous regions, and the whole device can therefore be viewed as a series circuit
in which a relatively high resistance is sandwiched between two relatively low resis-
tances. When a potential V is applied across such a circuit, almost all of the potential
drop will occur across the region of high resistance. Thus even in the presence of an
applied potential ¥, we expect that the potential ¢(x) along the device will vary
appreciably only within the depletion layer. When ¥ = 0 we found that ¢(x) rose
from the p-side of the depletion layer to the n-side by the amount (which we now
denote by (A¢),) given by Eq. (29.6), so we conclude that when V' # 0 the change in
potential across the depletion layer is modified to

Ad = (Ad)y — V. (29.19)

Associated with this change in potential drop across the depletion layer, there is a
change in the size of the layer. The lengths d, and d, giving the extent of the layer on
the n- and p-sides of the junction are determined by Eqgs. (29.15) and (29.16), which
use only the value of the total potential drop across the layer, and the assumption
that the carrier densities are greatly reduced throughout almost all of the layer. We
shall find below that this assumption remains valid when V # 0, and therefore d,
and d,, continue to be given by Eq. (29.17) provided that we take the value of A¢ to be
(Ag), — V. Since d, and d, vary as (A¢)'/* according to Eq. (29.17), we conclude that
when V # O,

B 14 1/2
du,p(V) = dn,0) [1 ~ @ ¢)O] . (29.20)

This behavior of ¢ and the extent of the depletion layer are illustrated in Figure 29 4.
To deduce the dependence on V of the current that flows when a p-n junction is
“biased” by the application of an external voltage, we must consider separately the

currents of electrons and holes. Throughout the discussion that follows we shall use
the symbol J for number current densities and j for electrical current densities, so that

jo = —ele, ju= ey (29.21)

When V = 0, both J, and J, vanish. This does not, of course, mean that no individual
carriers flow across the junction, but only that as many electrons (or holes) flow in
one direction as in the other. When ¥V # 0, this balance is disrupted. Consider, for
example, the current of holes across the depletion layer. This has two components:

1. A hole current flows from the a- to the p-side of the junction, known as the hole
generation current. As the name indicates, this current arises from holes that are

generated just on the n-side of the depletion layer by the thermal excitation of

electrons out of valence band levels. Although the density of such holes on the
n-side (“minority carriers”) is minute compared with the density of electrons
(“majority carriers”), they play an important role in carrying current across the
junction. This is because any sugfh hole that wanders into the depletion layer is
immediately swept over to the p-side of the junction by the strong electric field
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Figure 29.4

The charge density p and potential ¢ in the depletion
layer (a) for the unbiased junction, (b) for the junction
with ¥ > O (forward bias), and (c) for the junction
with V' < O (reverse bias). The positions x = d, and
x = —d, that mark the boundaries of the depletion
layer when V = 0 are given by the dashed lines. The
depletion layer and change in ¢ are reduced by a
forward bias and increased by a reverse bias.

p(x)‘ . V=0
~ (unbiased)

that prevails within the layer. The resulting generation current is insensitive to
the size of the potential drop across the depletion layer, since any hole, having
entered the layer from the n-side, will be swept through to the p-side.®

2. A hole current flows from the p- to the n-side of the junction, known as the hole
recombination current.'® The electric field in the depletion layer acts to oppose
such a current, and only holes that arrive at the edge of the depletion layer with
a thermal energy sufficient to surmount the potential barrier will contribute to

5 : P . )
The density of holes giving rise to the hole generation current will also be insensitive to the size of

Y _providcd that eV is small compared with E,, for this density is entirely determined by the law of mass
action and the density of electrons. The latter density differs only slightly from the value N, outside of the
depletion layer when eV is small compared with E,, as will emerge from the more detailed analysis below.

10 So named because of the fate suffered by such holes upon arriving on the n-side of the junction,
where one of the abundant clectrons will eventually drop into the empty level that constitutes the hole.
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: . —eAp/kyT
the recombination current. The number of such holes is proportional to e ~“¢/*sT

and therefore!? i
J'r,cc e e—e[(A¢)o"‘ VifkgT . (29.22)

In contrast to the generation current, the recombination current is highly sensitive
to the applied voltage V. We can compare their magnitudes by noting that when
¥ = 0 there can be no net hole current across the junction:

i lv=0 = JF™ (29.23)
Taken together with Eq. (2.9.22), this requires that

Jie = J};geneeV/kBT. (29.24)

The total current of holes flowing from the p- to the n-side of the junction is given by
the recombination current minus the generation current:

Jy = Ji — JEn = JEn(eeV/kpT _ ), (29.25)

The same analysis applies to the components of the electron current, except that
the generation and recombination currents of electrons flow oppom.tely to the corre- -
sponding currents of holes. Since, however, the electrons are oppositely charged, the
electrical -generation and recombination currents of electrons are pargllel to the
electrical generation and recombination currents of holes. The total electrical current
density is thus: '

J= e(JE + JEn)(eeV kBT — 1), (29.26)

This has the highly asymmetric form characteristic of rectifiers, as shown in Figure
29.5.

Figure 29.5

Current vs. applied voltage V for a
p-n junction. The relation is valid
for eV small compared with the
energy gap, E,. The saturation
current (eJ§" + eJ&") varies with
temperature as e Z*87 as estab- ° M‘
lished below. 3

4w = g+ ey (ecV /BT — 1)

i

" Forward bias

Reverse bias

—_“——_ —e(.lh”" +Jegt")

"' In assuming that (29.22) glivcs the dominant dependence of the hole recombination current on V,
we are assuming that the density of holes just on the p-side of the depletion layer differs only slightly from
N,. We shall find that this is also the case provided that eV is small compared with the encrgy gap E,.
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GENERAL PHYSICAL ASPECTS OF THE NONEQUILIBRIUM CASE

The foregoing discussion provides no estimate of the size of the prefactor e(J§" 4 Jeen)
appearing in (29.26). In addition, in the nonequilibrium (V # 0) case the local carrier
densities will not in general be determined by the local potential ¢ through the simple
equilibrium Maxwellian relations (29.3). In the nonequilibrium case it requires further

~ analysis to construct a picture of the carrier densities in the neighborhood of the

transition region that is comparable in detail to the picture we gave for the equilibrium
case.

In this more detailed approach it is not especially helpful to resolve the electron
and hole currents across the junction into generation and recombination currents,
Instead, at each point x (both inside and outside the depletion layer) we shall write
equations relating the total electron and hole currents, J(x) and J,(x), the electron
and hole densities, n(x) and p,(x), and the potential ¢(x) (or, equivalently, the electric
field, E(x) = —d¢(x)/dx). We shall find five such equations, which will enable us, in
principle, to find these five quantities. This method is a direct generalization of the
approach we followed in our analysis of the equilibrium (V = 0) case. In equilibrium
the electron and hole currents vanish, there are only three unknowns, and the three
equations we used were Poisson’s equation, and the two equations (29.3) that relate
n{x) and p,(x) to ¢(x) in thermal equilibrium. Thus the nonequilibrium problem can
be viewed as that of finding the appropriate equations to replace the equilibrium
relation (29.3), when V # 0 and currents flow.

We first observe that in the presence of both an electric field and a carrier density
gradient, the carrier current density can be written as the sum of a term proportional
to the field (the drift current) and a term proportional to the density gradient (the
diffusion current):

'

1
Je = —lunncE = Dn ;,l::5
dp,
Jn= b = D, . (29.27)

The positive'* proportionality constants u, and U, appearing in Eq. (29.27) are
known as the electron and hole mobilities. We have introduced the mobilities, rather
than writing the drift current in terms of conductivities, to make explicit the manner
in which the drift current depends on the carrier densities. If only electrons at uniform
density are present, then oE = j = —eJ, = eu,nE. Using the Drude form ¢ =
ne*t/m for the conductivity (Eq. (1.6)) we find that

coll
sy = 2 (29.28)

my,

2 Thesigns in Eq. (29.27) have been chosen to make the mobilities positive; the hole drift current is

along the ficld, and the electron drift current is opposite to the field.
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and, similarly,
e.L.colI

= el 29.2
Hp . (29.29)

coll
P

coll
n

where m, and m,, are the appropriate-effective masses, and 7, and 3,”" are the carrier
collision times.'?

The positive* proportionality constants D, and D, appearing in Eq. (29.27) are
known as the electron and hole diffusion constants. They are related to the mobilities

by the Einstein relations:'?

eD eD, .
= e — . 29.30
T M T T R

B

The Einstein relations follow directly from the fact that the electron and hole currents
must vanish in thermal equilibrium: Only if the mobilities and diffusion constants
are related by (29.30) will the currents given by (29.27) be zero when the carrier
densities have the equilibrium form (29.3)' (as is easily verified by direct substitution
of (29.3) into (29.27)).

The relation (29.27) giving the currents in terms of the density gradients and field,
together with the forms (29.28)-(29.30) for the mobilities and diffusion constants,
can also be derived directly from the kind of simple kinetic argument used in Chapter 1
(see Problem 2).

Note that in thermal equilibrium, Eq. (29.27) and the conditions J, = J, = 0
contain all information necessary to determine the carrier densities, for when the
currents vanish we may integrate Eq. (29.27) to rederive (with the aid of the Einstein
relations (29.30) ) the thermal equilibrium densities (29.3). When V' # 0 and currents
flow, we require a further equation, which can be viewed as the generalization to
the nonequilibrium case of the equilibrium conditions of vanishing currents. If the
numbers of carriers were conserved, the required generalization would simply be
the equations of continuity,

on, __0J,
ot ox’
ap aJ,
kil </ P4 29.31
ot ox’ @280

which express the fact that the change in the number of carriers in a region is entirely
determined by the rate at which carriers flow into and out of the region. However,
carrier numbers are not conserved. A conduction band electron and a valence band

13 In semiconductors there is another lifetime of fundamental importance (see below), the recom-

bination time. The superscript “coll” has been affixed to the collision mean free times to distinguish them -

from the recombination times.

14 They are positive because the diffusion current flows from high- to low-density regions. In zero
field, Eq. (29.27) is sometimes known as Fick’s law.

' The Einstein relations arc very gencral, arising in any treatment of charged particles that obey
Maxwell-Boltzmann statistics, such as the ions in an electrolytic solution.

10 The generalization of (29.30) to the degencrate casc is described in Problem 3.
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hole can be generated by the thermal excitation of an electron out of a valence band
level. Furthermore a conduction band electron and a valence band hole can recombine
(i.e., the electron can drop into the empty level that is the hole), resulting in the
disappearance of one carrier of each type. Terms must be added to the continuity.
equations describing these other ways in which the number of carriers in a region

can change:
on,  (dn, aJ,
ot \dt )., ox’

apu _ dpv a‘]h
= < = )g_r — (29.32)

To determine the forms of (dn /dt),., and (dp,/dt),., we note that generation and
recombination act to restore thermal equilibrium when the carrier densities deviate
from their equilibrium values. In regions where n, and p, exceed their equilibrium
values, recombination occurs faster than generation, leading to a decrease in the
carrier densities, while in regions where they fall short of their equilibrium values,
generation occurs faster than recombination, leading to an increase in the carrier
densities. In the simplest models these processes are described by electron and hole
lifetimes,'” 7, and 1,. The rate at which each carrier density changes due to recom-
bination and generation is set proportional to its deviation from the form determined
by the other carrier density and the law of mass action (28.24):

dn  _ (=)
dt e Ty

<€&> __ =) (29.33)

dt Ty

where n° = n?/p,, and p? = n?/n,.

To interpret these equations, note that the first, for example, expresses the change
in electron carrier density due to generation and recombination in an infinitesimal
time dt as

—

n(t + dt) = (1 - it—) n{t) + <€E> n?. (29.34)
T" Tﬂ

The first term on the right of Eq. (29.34) expresses the destruction, through recom-
bination, of a fraction dt/z, of the electron carriers; i.e., 1, is the average electronic
lifetime before recombination occurs. The second term on the right expresses the
creation through thermal generation of n%/t, electron carriers per unit volume, per
unit time. Note that, as required, Eqs. (29.33) give carrier densities that decrease
when they exceed their equilibrium values, increase when they are less than their
equilibrium values, and do not change when they are equal to their equilibrium
values.

The lifetimes 7, and 7, are generally much longer than overall electron or hole
collision times, 7" and 7", for the recombination (or generation) of an electron

7 Also known as “rccombination times.” Conscrvation of total electric charge requires that the

recombination rates be proportional to the densities of the other carrier type: (1/t,)/(1/7,) = Puf¥c.
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and a hole is an interband transition (electron goes from valence to conduction
band (generation) or conduction band to valence band (recombination)). Ordinary
collisions, which conserve the number of carriers, are intraband transitions. Reflecting
this, typical lifetimes range between 10~ 3 and 10~ 8 second, while the collision times
are similar to those found in metals—i.e., 107'2 or 10~ '3 second.

In the presence of a static external potential the p-n junction, though not in thermal

equilibrium, is in a steady state; i.e., the carrier densities will be constant in time: -

dn,/dt = dp,/dt = 0. Using this fact and the forms (29.33) for the rates at which
recombination and generation change the carrier densities, we find that the continuity
equation (29.32) requires

dJ n,—n
e c c _ 0’
dx + T,
d 0
N el N (29.35)
dx Tp ‘

These are the equations that replace the equilibrium conditions J, = J, = 0, when
V#0.

One very important application of Eqgs. (29.35) and (29.27) is in regions where
the electric field E is negligibly small and the majority carrier density is constant.

In that case the minority carrier drift current can be ignored compared with the =

minority carrier diffusion current, and Egs. (29.27) and (29.35) reduce to a single
equation for the minority carrier density with a constant recombination time:

2 0
d*n, _ng—ng

Tdxr o, ;
" E = 0) 29.3
b P _ o= Py ( @029
Pax? T g,

The solutions to these equations vary exponentially in x/L, where the lengths
L, = (D7), L, = (D,t,)'?, (29.37)

are known as the electron and hole diffusion lengths. Suppose, for example, (to take
a case that will be of some importance below) that we are in the region of uniform
potential on the n-side of the depletion layer, so that the equilibrium density p2 has
the constant value p(o0) = n;2/N,. If the density of holes is constrained to have the
value pyx¢) # p,(00) at a point x,, then the solution to Eq. (29.36) for x = x, is

Po(X) = Pof0) + [po(X0) — pu(c0)]e™ = 50MEp, (29.38)

Thus the diffusion length is a measure of the distance it takes for the density to relax
back to its equilibrium value.

One would expect that the distance L over which a deviation from equilibrium
density can be maintained would be roughly the distance a carrier can travel before
undergoing recombination. This is not immediately obvious from the forms (29.37)
for the diffusion lengths L, and L, but it is revealed when one rewrites (29.37) using
(a) the Einstein relations (29.30) between the diffusion constant and the mobility,
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(b) the Drude form (29.28), or (29.29), for the mobility, (c) the relation mv, 2 = 3k, T
between the mean square carrier velocity and the temperature under nondegenerate
conditions, and (d) the definition ¢ = v,,7" of the carrier mean free path between
collisions. Making these substitutions one finds:

T, 1/2
L, = 3—_5551"1 s

T 1/2
b= ()

- (29.39)
Assuming that the direction of a carrier is random after each collision, a series of
N collisions can be viewed as a random walk of step length . It is easily shown'®
that in such a walk the total displacement is N*/%(. Since the number of collisions a
carrier can undergo in a recombination time is the ratio of the recombination time
to the collision time, Eq. (29.39) does indeed show that the diffusion length measures
the distance a carrier can go before undergoing recombination.

Using the typical values given on page 604 for the collision time and the (very
much longer) recombination time, we find that (29.39) gives a diffusion length that
can be between 10? and 10° mean free paths.

We can estimate the size of the generation currents that appear in the I-V relation
(29.26), in terms of the diffusion lengths and carrier lifetimes. We first note that, by
definition of the lifetime, holes are created by thermal generation at a rate pJ/t, per
unit volume. Such a hole stands an appreciable chance of entering the depletion layer
(and then being swiftly swept across to the n-side) before undergoing recombination,
provided that it is created within a diffusion length L, of the boundary of the depletion
layer. Therefore the flow of thermally generated holes per unit area into the depletion
layer per second will be of order L,pJ/z,. Since p) = n;?/N,, we have

—

n?\ L
A R B (294
1 <N> 2, (29.40)
and, similarly, :
2
oo = () L (29.41)
¢ No) T,

The sum of the currents appearing in (29.40) and (29.41) is known as the satura-
tion current, since it is the maximum current that can flow through the junction
when Vis negative (“reversed bias”). Because the temperature dependence of n;? is
dominated by the factor e £¢*8T (Eq. (28.19)), the saturation current is strongly
temperature-dependent.

A MORE DETAILED THEORY OF THE NONEQUILIBRIUM p-n
JUNCTION

Using the concepts of drift and diffusion currents we can give a more detailed
description of the behavior of the p-n junction when V # 0. The equilibrium p-n

5 Sce for example, . Reif, Fundamentals of Statistical and Thermal Physics, McGraw-Hill, New
York, 1965, p. 16.



