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In Chapter 9 we calculated clectronic levels in a metal by viewing it as a gas of nearly
[ree conduction electrons, only weakly perturbed by the periodic potential of the
ions. We can also take a very different point of view, regarding a solid (metal or
insulator) as a collection of weakly interacting neutral atoms. As an extreme example
of this, imagine assembling a group of sodium atoms into a body-centered cubic
array with a lattice constant of the order of centimeters rather than angstroms. Al

electrons would then be in atomic levels localized at lattice sites, bearing no resem.

blance to the linear combinations of a few plane waves described in Chapter 9,

If we were to shrink the artificially large lattice constant of our array of sodium
atoms, at some point before the actual lattice constant of metallic sodium was reached
we would have to modify our identification of the electronic levels of the array with
the atomic levels of isolated sodium atoms. This would become necessary for a
particular atomic level, when the interatomic spacing became comparable to the
spatial extent of its wave function, for an electron in that level would then feel the
presence of the neighboring atoms.

The actual state of affairs for the 1s, 25, 2p and 3s levels of atomic sodium is shown
in Figure 10.1. The atomic wave functions for these levels are drawn about two nuclei
separated by 3.7 A, the nearest-neighbor distance in metallic sodium. The overlap
of the Is wave functions centered on the two sites is utterly negligible, indicating
that these atomic levels are essentially unaltered in metallic sodium. The overlap of
the 2s- and 2p-levels is exceedingly small, and one might hope to find levels in the
metal very closely related to these. However, the overlap of the 3s-levels (which hold
the atomic valence electrons) is substantial, and there is no reason to expect the
actual electronic levels of the metal to resemble these atomic levels.

The tight-binding approximation deals with the case in which the overlap of atomic
wave [unctions is enough to require corrections to the picture of isolated atoms, but
not so much as to render the atomic description completely irrelevant. The approxi-
mation is most useful for describing the energy bands that arise from the partially
filled d-shells of transition metal atoms and for describing the electronic structure
of insulators.

Quite apart from its practical utility, the tight-binding approximation provides an
instructive way of viewing Bloch levels complementary to that of the nearly free
electron picture, permitting a reconciliation between the apparently contradictory
features of localized atomic levels on the one hand, and free electron-like plane-wave
levels on the other.

GENERAL FORMULATION

In developing the tight-binding approximation. we assume that in the vicinity of
each lattice point the full periodic crystal Hamiltonian, f. can be approximated by
the Hamiltonian, 1, of a single atom located at the lattice point. We also assume
that the bound levels of the atomic Hamiltonian are well localized: ic. if W, 1s @
bound level of H,, for an atom at the origin,

How, = EW,. (10.1)
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Figure 10.1 )
Calculated electron wave functions for the levels of atomic sodium. plotted about two HU?|CI
separated by the nearest-neighbor distance in metallic sodium. 3.7 A T.hc solid curves are rif(r)
for the 15, 25, and s levels. The dashed curve is r times the radial wave function for the 2p levels,
Note how the 3s curnves overlap extensively, the 2s and 2p curves overlap only a little. and the Iy
curves have essentially no overlap. The curves are luken [rom calculations by D. R. Hartree and
W, Hartree, Proc. Rn;‘. Soc. A193, 299 (1948). The scale on the r-axis 15 in angstroms.

then we require that i,(r} be very small when r exceeds a distance of the order of
the lattice constant. which we shall refer to as the “range” of ¥,.

In the extreme case in which the crystal Hamiltonian begins to differ from H_,
{for an atom whose lattice point we take as the origin) only at distances fromr = 0
that exceed the range of if,(r). the wave function vy (r) will be an exce}lcnt_approxl-
mation (o a stationary-state wave function for the full Hamiltonian, \fllh el_gcn\-'{iluc
E,. So also will the wave functions t,(r — R) for all R in the Bravais lattice, since
H has the periodicity of the lattice. _ _ .

To caleulate corrections to this extreme case, we write the crystal Hamiltonian
H as

H=H, + AU(n), (10.2)
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where AU(r) contains all corrections to the atomic potential required to produce the

full periodic potential of the crystal (see Figure 10.2). If y,(r) satisfies the atomje
Schrddinger equation (10.1), then it will also satisfy the crystal Schrodinger equatiop .
(10.2), provided that AU(r) vanishes wherever Y,(r) does not. If this were indeed the

case, then each atomic level y,(r) would yield N levels in the periodic potential, with
wave functions ¥,(r — R), for each of the N sites R in the lattice. To preserve the:
Bloch description we must find the N linear combinations of these degenerate waye
functions that satisfy the Bloch condition (see Eq. (8.6)):

Ve + R) = e ), 103y

Figure 10.2
The lower curve depicts the function AU(r) drawn along a line of atomic sites. When AU(r) is
added to a single atomic potential localized at the origin, the full periodic potential Ulr) is re-

covered. The upper curve represents r times an atomic wave function localized at the origin.
When r¢(r) is large, AU(r} is small, and vice versa.

The N linear combinations we require are
Yult) = 2 ¢* Y (r — R), (10.4)

where k ranges through the N values in the first Brillouin zone consistent with the
Born-von Karman periodic boundary condition.! The Bloch condition (10.3) is
verified for the wave functions (10.4) by noting that

' Except when explicitly studying surface effects, one should avoid the temptation 1o treat a finite

crystal by restricting the summation on R in {10.4) to the sites of a finite portion of the Bravais lattice.
It is far more convenient 1o sum aver an infinite Bravais lattice (the sum converging rapidly because of
the short range of the atomic wave function ¢,) and 1o represent the finite crystal with the usual Born-von
Karman boundary condition, which places the standard restriction (8.27) on k. when the Bloch condition
holds. With the sum taken over al| sites, for example, it is permissible to make the crucial replacement
of the summation variable R’ by R = R ~ R, in the second 1o last line of Eq. (10.5).

e
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Thus the wave functions (10.4) satisfy the Bloch condition with wave vec:)o;:l{s,
while continuing to display the atomic character of the leve_l& T_he Tnerhgy nir
rrived at in this way, however, have little structure, &,(k) bmqg simply the e gj:
?)[the atomic level, E,, regardless of the value o_!‘ k. To remedy this dcﬁc:encly \;etmu;t
recognize that a more realistic assumption is that q!r,,(r)_ become; 51'111;]‘ ; Suu :5 o
precisely zero, before AU(r) becomes appreczablt_e (see Figure ‘10. ).h 1st : ff i
that we seek a solution to the full crystal Schrédinger equation that reta
general form of (10.4):>

y(r) = ) " "o(r — R), (10.6)
R

but with the function ¢(r) not necessarily an exact ‘atomic slauonary-zs;gtc)ga(:;:
function, but one to be determined by Furlhf_:r calculation. If the Product ; b(; ;it;
though nonzero, is exceedingly small, we might expect the !'unctlophgf)(l:gl'oh c(;r) 2
close to the atomic wave function i,(r) or to wave functions w1l; w ]cndf&' L6
degenerate. Based on this expectation, one seeks a ¢(r) .that;:in e expa
relatively small number of localized atomic wave functions:

(r) = ), b (r). (10.7)

If we multiply the crystal Schrodinger equation

Hy(r) = (H, + AU®)Y(r) = &K)y(r) (10.8)
by the atomic wave function y,,*(r), integrate over all r. and use the fact that
J%*(r}Ha.w(r} dr = I(Ha.wm{r)}*w(rl dr = E, me*{r)w{r) dr,  (10.9)

we find that
(k) — En) j%*{r)w(n dr= jwm*tr) AU(r)Y(r) dr. (0.10)

i 1 [ netion ¢
2 It turns out {sec p. 187) that any Bloch function can be written in l}?e form (10.6), the fu 5
being known as a Wannier function, so no generality is lost in T.hISI assu._tmpllon. TeSS——
3 By including only localized (i.e., bound) atomic wave functions in (10.7) we make Frags
i 1 f atomic levels includes the ionized ones as well. This is the point at
approximation. A complete set of a E ; ‘ i b U
the method ceases to be apphcable to levels well described by ihc_a!mosl rec cle EPPLSRUTMIb.
4 Because of this method of approximating ¢, the tight-binding method is sometimes ki
method of the linear combination of atomic orhirals for LCAO).
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Placing (10.6) and (10.7) into (10.10) and using the orthonormality of the atomie
wave functions,

' .fwm*(r}sh{r) ar = ., (10.11)

we arrive at an eigenvalue equation that determines the. coefficients b,(k) and the
Bloch energies &(k):

n \R#£0

+ % ( J.%.*(r} AUr),(r) dr) b,

(6(k) — Epby = —(6(k) — E,) Y, (E Yy (r — R)e* R dr) b,

n \R#0

The first term on the right of Eq. (10.12) contains integrals of the form®

f dr Y, X, (r — R). (10.13)

We interpret our assumption of well-localized atomic levels to mean that (10.13)
is small compared to unity. We assume that the integrals in the third term on the right
of Eq. (10.12) are small, since they also contain the product of two atomic wave func-
tions centered at different sites. Finally, we assume that the second term on the right
of (10.12) is small because we expect the atomic wave functions to become small at
distances large enough for the periodic potential to deviate appreciably from the
atomic one.®

Consequently, the right-hand side of (10.13) (and therefore (&(k) — E,)b,,) is always
small. This is possible if (k) — E,, is small whenever b, is not (and vice versa). Thus
&(k) must be close (o an atomic level, say E,, and all the b,, except those going with
that level and levels degenerate with (or close to) it in energy must be small;’

&k) ~ Eo, b, =~ Ounless E,, ~ E,, (10.14)

If the estimates in (10.14) were strict equalities, we would be back to the extreme
case in which the crystal levels were identical to the atomic ones. Now, however, we

5

Integrals whose integrands contain a product of wave functions centered on different lattice sites
are known as overlap integrals, The tight-binding approximation exploits the smallness of such overlap
integrals. They also play an important role in the theory of magnetism (Chapter 32).

© This last assumption is on somewhat shakier ground than the others, since the ionic potentials
need not fall off as rapidly as the atomic wave functions. However, it is also less critical in determining the
conclusions we shall reach, since the term in question does not depend on k. In a sense this term simply
plays the role of correcting the atomic potentials within each cell 1o include the fields ol the 10ns outside
the cell; it could be made as small as the other two terms by a judicious redefinition of the “atomic”
Hamiltonian and levels, :

T Note the similarity of this reasoning to that employed on pages 152 to 156, There, however, we
concluded that the wave function was a lincar combination of only a small number of plane waves,
whose free electron energies were very close together, Here, we conclude that the wave function can be

represented, through (10.7) and (10.6), by only a small number of atomic wave functions, whose atomic
energies are very close together,

+Z(Z w,,,*(rmv(r}wﬂ(r—RJe"*'“dr)bn. (10.12)

BT Ay o arseasns ALFi

etermine the levels in the crystal more accurately, exploiting (10.14) to esulmatle
ight-hand side of (10.12) by letting the sum over n run only thro_ugh 1hos§ evels
th}ar gnergies either degenerate with or very close to E,. If the atomic level 0 s non-
me rate,® ie., an s-level, then in this approximation (10.12) reduggs to a smg]le
dcgeI;l::m g,ivir;g’an explicit expression for the energy of the band arlsmg‘fr_om this
i  (generally referred to as an “s-band”). If we are interested in bands arising from
s—levfong)ic p-level, which is triply degenerate, then (10.12) would give a set of three
b 3og,enf:ous cql.;ations, whose eigenvalues would give the &(k) for}he_three p-band;,
hozinwhose solutions b(k) would give the appropriate linear combinations of atomic
ajeVels making up ¢ at the various K’s in the Brillouin zone. To get a d-band from
giomic d-levels, we should have to solvc_a 5 % 5secular problem_, etc.l * cortain
Should the resulting &(k) stray sufficiently far frorp the atomic va ues a;o ?e o
k. it would be necessary to repeat the procc.durc, adding to the expap51orll[ . )c(()'ce
[1:1056 additional atomic levels whose energies the &(k) are apprpachmg. bn tﬁrz ;mi
for example, one generally solves a 6 x 6 secular pro'b?cm that mc!ud_e‘; ho i;] "
s-levels in computing the band structure of the transition mleals, which have e
atomic state an outer s-shell and a partially filled d-shell. This procedure goes unde
f “s-d mixing” or “hybridization.” '
the(‘)jlf:::ftﬁe atomic wagve functions have so short a range th_at only nearesl—r}mgllm_li)ior
terms in the sums over R in (10.12) need be retained, which very much simp 1“(1:2
subsequent analysis. We briefly illustrate the band structure that emerges in

simplest case.’

cand

APPLICATION TO AN s-BAND ARISING FROM A SINGLE ATOMIC
s-LEVEL

If all the coefficients b in (10.12) are zero except that for a stingle atomic s-level, then
(10.12) gives directly the band structure of the corresponding s-band:
X . B+ IR (10.15)
8l = E T SR

where E, is the energy of the atomic s-level, and

g = jdr AU(r)|p(r)]?, (10.16)
«R) = jdr ¢p*r)plr — R), (10.17)

and
¥R} = — Jdr ¢*(r) AU(r)¢(r — R). (10.18)

vt the orbital
% For the moment we ignore spin-orbit coupling. We can therefore concentrate c,nurf;ly z:zons o the
include ¢ S ; ang the orbital wave fun ¥
parts of the levels. Spin can then be included by 5|lllp]}} m;lltl|l1ﬂ:,l:|1,}?t;]l o
appropriate spinors, and doubling the degeneracy of cach 0 \1<: g c b
9 The simplest case is that of an s-band. The next most complicated case, a p
Problem 2.

and, is discussed in
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]"l_lc coglﬁcicms (10.16) to (10.18) may be simplified by appealing to certain Sym-
metries. Slr_u:e ¢ is an s-level, ¢(r) is real and depends only on the magnitude
r. From this it follows that #(—R) = »(R). This and the Inversion symmetry of
the Bravais lattice, which requires that AU(—r) = AU(r), also imply Ih:’n H—R) =
7(R). We ignore the terms in % in the denominator of (10.15), since they give sma-l-l
corrections to the numerator. A final simplification comes from assumir-lg that onl
nearest-neighbor separations give appreciable overlap integrals, ' 2

Putting these observations together, we may simplify (10.15) to

&k) = E, — ff — % #R)cosk - R,

nn.

(10.19)

}vhcre the sum runs only over those R in the Bravais lattice that connect the origin to;
1ts nearest neighbors. ;

.To be explicit, I;t us apply (10.19) to a face-centered cubic crystal. The 12 ncaresi
neighbors of the origin (see Figure 10.3) are at

a.. a, a
R = d a. .
7 (L 210, S(£1,0, £1), 500, £1, £1)

(10.20)

Figure 10.3
']'I1e_ 1:3 nearest neighbors of the origin in a face-centered cubic
lattice with conventional cubic cell of side a.

Ifk = (k,, ky. k.), then the corresponding 12 values of k « R are

[
k-R = ;‘If\'p +k;), L= XL B

(10.21)

Now AU(r) = AU(x, y, z) has the full cubic symmetry of the lattice, and is therefore
unchanged by permutations of its arguments or changes in their signs. This, together
_with the fact that the s-level wave function ¢(r) depends only on the magnitude of
implies that 3(R) is the same constant 3 for all 12 of the vectors {10.20). Consequcmly,
the sum in (10.19) gives. with the aid of (10.21), ,

&k) = E; — B — 43(cos tk.a cos Ykya

+ cos 3k,a cos 3h.a + cos tk.a cos Lk.a).  (10.22)
where ‘ i

P = (dr P¥(x, v 2) AU, 3. 2) plx ~ da. y = La, 2).

o

(10.23)

I-,qual:on. (10.22) reveals the characteristic feature of tight-binding energy bands:
The hzmdw_ldlh—-—l.c.. the spread between the minimum and maximum energies in
the band —is proportional 1o the small overlap integral - Thus the tight-hinding
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pands are narrow bands, and the smaller the overlap, the narrower the band. In the
jimit of vanishing overlap the bandwidth also vanishes, and the band becomes N-fold
degenerate, corresponding to the extreme case in which the electron simply resides
on any one of the N isolated atoms. The dependence of bandwidth on overlap integral
is illustrated in Figure 10.4.
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Figure 10.4

(a) Schematic representation of nondegenerate electronic levels in
an atomic potential. (b) The energy levels for N such atoms in a
periodic array, plotted as a function of mean inverse interatomic
spacing. When the atoms are far apart (small overlap integrals)
the levels are nearly degenerate, but when the atoms are closer
together (larger overlap integrals), the levels broaden into bands.

In addition to displaying the effect of overlap on bandwidth, Eq. (10.22) illustrates
several general features of the band structure of a face-centered cubic crystal that are
not peculiar to the tight-binding case. Typical of these are the following:

1. In the limit of small ka, (10.22) reduces to:

&Kk) = E, — f — 12y + ykla® (10.24)

This is independent of the direction of k—i.e., the constant-energy surfaces in

the neighbourhood of k = 0 are spherical.'®
2. If & is plotted along any line perpendicular to one of the square faces of the first
Brillouin zone (Figure 10.5), it will cross the square face with vanishing slope

(Problem 1).

Figure 10.5

The first Brillouin zone for face-centered cubic crystals, The point I’
is at the center of the zone. The names K, L, W, and X are widely
used for the points of high symmetry on the zone boundary.

1% This can be deduced quite generally for any nondegenerate band in a crystal with cubic symmetry.





