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Last week: Wave mechanics

Particles, fields, interactions

Electromagnetic waves and energy scales
Particle-wave duality and de Broglie’s relation
Wavefunction as a descriptor of an electron
Schrodinger equation (time dependent)

Plane wave solves it for the free electron,
provided the dispersion relation E=7w="—= By
is satisfied
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Time-dependent Schrodinger’s equation
(Newton’s 2" [aw for quantum objects)

6'1’(1" t)

——Vz‘z"(r )+ VE OY(# t) = ik

\
) (relativistic)

1 _ ~" 1925-onwards: E. Schrodinger (wave equation), W.
g_ Heisenberg (matrix formulation), P.A.M. Dirac
\

y
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Stationary Schrodinger’s Equation (1)

6111(1" t)
ot

——VZ'P(T )+ V@R (F t) =
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Stationary Schrodinger’s Equation (1)

[~ L v2 4+ V@®)] 9@ = Ep@
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From one equation to two simpler ones

——VZ‘P(T O+ VEDY R t) = h"’"’(’" )

Separation ‘ of variables

- L v2 + V@®)] o) = Eo ()

d
ih— f(0)= Ef()
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Stationary Schrodinger’s Equation (l11)

o, | B}
~ LV 4V (F) |p(7) = E@(F)

2m
It’s not proven — it’s postulated, and it is confirmed experimentally

It’s an “eigenvalue” equation: it has a solution only for certain values
(discrete, or continuum intervals) of E

For those eigenvalues, the solution (“eigenstate”, or “eigenfunction”) is the
complete descriptor of the electron in its equilibrium ground state, in a
potenitial V(r).

As with all differential equations, boundary conditions must be specified

Square modulus of the wavefunction = probability of finding an electron
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Time dependence

d
i fO=Ef() | =
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Free particle: W(x,t)=¢p(x)f(t)

hZ

2m

Vo(x)=Ep(x) | wm)

Ld
ih— fO=Ef(@) | w=
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A simple differential equation

Figure B.6. The Argand Plane. A point
in this diagram represents a complex
number either in the form x + iy or re’.
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Infinite Square Well (1)
(particle in a 1-dim box)

W dp(x)
2m  dx?

= E¢Q(x)
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Infinite Square Well (Il)
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Absorbance

Infinite Square Well (Il
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The power of carrots

THE VISIBLE SPECTRUM - Wavelength in Nanometers
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Particle in a 2-dim box

(o 0
2m\ dx’ +8y

- |0(x,y)=E@(x,y)

MSE 423 Fundamentals of Solid-state Materials - Nicola Marzari (EPFL, Fall 2024)

15

Particle in a 2-dim box

(o 9
- =E

o(x,y)= Csin(m—xjsin( mﬂ:y)
a b

2 2 2
=L m
8m\ a” b
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Particle in a 3-dim box:

Farbe defect in halides

(e-bound to a negative ion vacancy)

0

+—+

dy> 9
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From Carl Zeiss to MIT

PHYSICAL REVIEW VOLUME

120,

NUMBER 6 DECEMBER 15, 1960

Color Centers in Cesium Halide Single Crystals*

P. AVAKIAN} AND A. SMAKULA
Laboratory for Insulation Research, Massachusetts Institute of Technology, Cambridge, Massachusetis

(Received August 12, 1960)

Color centers have been investigated in the CsCl-type alkali
halides. Cesium chloride, bromide, and iodide single crystals were
grown from the melt and CsCl crystals also from solution. Col-
oration was produced by 130-kv x rays, 3.0-Mev electrons, and by
electrolysis. In CsI coloration resulted from electrolysis only. The
absorption of uncolored and colored crystals has been measured
from 0.175 to 3.5 p at 25°, —78°, and —190°C. After coloration
all three crystals show one strong band in the visible (near
infrared for CsI) and several weaker bands at shorter and longer
wavelengths, which shift with temperature change. The spectral
positions in my for a number of the bands at —190°C are:

A A2 A3 N X X A N Ao A0

CsCl 227 270 370 430 579 715 780 855 980
CsBr 241 ~270 ~315 390 480 646 (780) 840 (~930) 1055
Csl 270 330 425 535 750 1050 1185

The strongest band (\s) behaves similarly to the F band in the
NaCl-type alkali halides. The half-width of the band (0.20 to
0.23 ev at —190°C) and its increase with temperature, the shifting
of the band maximum toward longer wavelengths upon warming
to room temperature (by ~0.08 ev), and the conversion by
bleaching with light into other bands support the assignment of
this band as the F band. The spectral position of the band maxi-
mum approximately follows the Mollwo relation (Amax=const d=,
where d=interionic distance and #=2.5).

Bleaching experiments suggest the assignment of the band Ajo
as the M band and the bands between the F and M bands as R
bands. The origin of the ultraviolet bands is still uncertain.
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PHYSICAL REVIEW LETTERS week ending

PRL 95, 113401 (2005) 9 SEPTEMBER 2005

Molecular Limits to the Quantum Confinement Model in Diamond Clusters

T.M. Willey,' C. Bostedt,>** T. van Buuren,' J. E. Dahl,* S. G. Liu,* R. M. K. Carlson,* L. J. Terminello," and T. Méller*?
"Lawrence Livermore National Laboratory, Livermore, California 94550, USA
2Hamburger Synchrotronstrahlungslabor Hasylab at DESY, Hamburg, Germany
3Technische Universitdt Berlin, PN 3-1, Hardenbergstrasse 36, 10623 Berlin, Germany
*MolecularDiamond Technologies, Chevron, P.O. Box 1627, Richmond, California 94802, USA
(Received 13 May 2005; published 7 September 2005)

The electronic structure of monodispersed, hydrogen-passivated diamond clusters (diamondoids) in the
gas phase has been studied with x-ray absorption spectroscopy. The data show that the bulk-related
unoccupied states do not exhibit any quantum confinement. Additionally, density of states below the bulk
absorption edge appears, consisting of features correlated to CH and CH, hydrogen surface termination,
resulting in an effective redshift of the lowest unoccupied states. The results contradict the commonly used
and very successful quantum confinement model for semiconductors, which predicts increasing band edge
blueshifts with decreasing particle size. Our findings indicate that in the ultimate size limit for nano-
crystals a more molecular description is necessary.
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Metal Surfaces ()
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Scanning Tunnelling Microscopy

piezodrive

feedback
loop probe tip

le— § —
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(G. Binnig, H. Rohrer, Ch. Gerber, E. Weibel, Phys. Rev. Lett. 49, 57 {1982)).
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OSSC~R

Quantum Mechanics Numerical Solution of the odi Equation for a O i i Quantum Well

A

: ‘Authors: Dou Du, Taylor James Baird and Giovanni Pizzi

A Go back to index

Source code: hitps:/github, r-orglauantum b

This notebook solves problom of woll, and
displ (plotted at the haight of

Goals

- Investigate ipulating the depth and widh of a wel.
+ Learn how to solve the Schradinger squation by matrix diagonaization

= Understand quantum tunneling in regions whera the eneray is lower than the potenial

Background theory

More on the background theory.

Tasks and exercises

1. Keep the depth at the default value (-0.2) and move the slider of the width from the smallest value (0.) to the largest value (2.0}
Do you see any change for the number of the states? How does the eigenvalue of the ground state (the lowest eigenstate) change
with the increasing of the width of the quantum wel and why?

» Solution

2. Keep the width at the default value (1.2) and move the siider of the depth from the smallest value (-1.0) to the largest value (0.0).
D0 you see any change for the number of the states? How does the eigenvalue of the ground state (the lowest eigenstate) change
with the increasing o the depth of the quantum well and why?
» Solution

3. Investigate the role played by quantum confinement n this 10 potential well system by varying the width of the well via the
"width® sider and observing the spacing of the energy levels of the system.

» Solution
4. Keeping the sliders for the width and the height of the well at theirdefauit values and selecting the *Probability density” option,
launch | binder | Materials Cloud investigate the probabilty of a confined particle to observed outside the potential well
» Solution
5. Please read the background theory section and try to core of the why is

of the Hamiltonian matri key to solve the Schrodinger equation?

» Solution

This notebook solves numerically one-dimensional

Interactive visualization

quantum well, and displays intera (e ——— responding eigenvalues).

Numerical Solution (y) Of The One Dimensional Schrodinger Equation

] S
H
o1s
S
width; 120 Depth: 020
Zoom . 500
Show: © Wavefunction Showall  (click on a state to select it
obability density
= Width: the width of the quantum well
= Depth: the depth of the quantum vell
= Zoomfactor: the zoom factor for the magnitude of the eigenfunctions
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Energy from Wavefunctions

Schrodinger equation: operator, eigenvalues

E can be obtained as an “expectation value”
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Dirac Notation

Dirac’s <bra|kets> (elements of vector space)

Scalar product (induces a metric - Hilbert space)
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Physical Observables from Wavefunctions

Eigenvalue equation:

Expectation values for the operator (energy)
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4 concepts

e Operators
e Eigenvalues
e Eigenfunctions

e Expectation values
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Operators: Linear, Hermitian

Examples: (d/dx) and i(d/dx)



Product of operators, and
commutators
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Hermitian Operators

1. The eigenvalues of a Hermitian operator are real

2.  Two eigenfunctions corresponding to different eigenvalues
are orthogonal

3. The set of eigenfunctions of a Hermitian operator is
complete

4. Commuting Hermitian operators have a set of common
eigenfunctions
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The set of eigenfunctions of a Hermitian
operator is complete

0.6

0.3
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The set of eigenfunctions of a Hermitian
operator is complete

t =-2.00
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Commuting Hermitian operators have a set of
common eigenfunctions
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