Homework #3

Exercise 1

In this exercise, we delve into matrix mechanics, another formulation of quantum physics developed by Werner Heisenberg, Max Born, and Pascual Jordan in 1925. Heisenberg's pivotal contributions ¹ to this framework laid the foundation for understanding quantum phenomena through matrices, which is entirely analogous to Schrödinger's wave formulation.

A) Consider an operator \hat{A} in the two-dimensional Hilbert space, which in the matrix representation has the form:

$$A = E \left(\begin{array}{cc} 0 & i \\ -i & 0 \end{array} \right) \,,$$

where E is a real and positive constant.

Determine the eigenvalues and eigenvectors of \hat{A} .

Can \hat{A} be associated with an observable quantity? If yes, then suppose that a measure of \hat{A} gives as a result one of its eigenvalues: what is the wave function of the system just after the measurement?

B) Consider a "two-states" system which is charecterized by the Hamiltonian \hat{H} which in the matrix representation reads:

$$H = E_0 \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array} \right) \,,$$

where E_0 is a real and positive constant.

Do the operators \hat{A} and \hat{H} commute? If yes/no, what can you say about the eigenfunctions of \hat{A} and \hat{H} ?

 $^{^1\}mathrm{Heisenberg},$ W. Über quantentheoretische Umdeutung kinematischer und mechanischer Beziehungen.. Z. Physik 33, 879–893

Exercise 2

A Hermitian operator A has three normalized and non-degenerate eigenfunctions ψ_1 , ψ_2 , ψ_3 with corresponding eigenvalues ϵ_1 , ϵ_2 and ϵ_3 respectively. Assume that there is a 50 % chance that a measure A gives ϵ_1 and 25% chance for ϵ_2 and ϵ_3

- (a) Write down the explicit expression of a normalized wave function ϕ in terms of the eigenfunctions of A which satisfies the above conditions.
- (b) Prove that the $\phi' = e^{i\vartheta}\phi$ (ϑ is a real number) still satisfies the same conditions.
- (c) Prove that the expectation values of a generic operator B on ϕ and ϕ' are the same. Notice that this means that ϕ and ϕ' contain the same physical information, thus they represent the same physical state.