
Exercises for the course MSE-423 Fall 2024

Homework # 13

Exercise 1: As-doped germanium

Impurities that contribute to the carrier density of a semiconductor are called donors if they
supply additional electrons to the conduction band, and acceptors if they supply additional
holes (i.e. capture electrons from) the valence band. Here we consider the case of substitutional
impurity—an arsenic atom—that replace occasionally a germanium atom. Arsenic is a neighbour
of germanium in the periodic table, hence it carries an additional valence electron. To a first
approximation, we can model this system with a pure germanium crystal where the germanium
atom is not removed, but an additional fixed positive charge of e is placed at its site, along
with an additional electron. This is the general model for a semiconductor doped with donor
impurities1.

Figure 1: Schematic representation of a substitutional arsenic donor impurity in a germanium
crystal.

In a very simplified picture, the extra electron from a donor impurity can be modeled as a
charged particle moving in a coulomb potential e

ϵr due to the impurity ion, where ϵ in a covalent
crystal is the static dielectric constant of the medium. The factor 1/ϵ takes into account the
screening of the Coulomb interaction due to the electronic polarization of the medium. We can
estimate the energy level of the donor using the Bohr theory of the hydrogen atom. The theory
has to be modified to take into account the dielectric constant of the medium and the effective
mass of an electron in the crystal periodic potential. Replacing e2 with e2/ϵ and the mass of the
free electron m with the effective mass m∗

d in the expression for the energy level of an hydrogen
atom we obtain:

εc − εd =
m∗

d

m

1

ϵ2
(Ry) (1)

and
rd =

m

m∗
d

ϵ (Bohr) (2)

where εc is the energy at the conduction band minimum, εd is the energy of the donor level,
rd the radius of the ground-state Bohr orbit of the donor, and m is the free-electron mass.
The static dielectric constant of germanium is ϵ ≈ 16 and m∗

d can be approximated with mc

(mc = 0.22m).

1. Estimate the binding energy of an arsenic substitutional impurity and compare it with the
band gap of pure germanium (Eg = 0.67eV ).

1For a detailed discussion of the physics of homogeneous and inhomogeneous semiconductors we make reference
to the classic book by Ashcroft and Mermin, Solid State Physics, 1976.
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2. Estimate the radius of the ground-state orbit an compare it with the germanium lattice
constant (a ≈ 5.7Å).

Exercise 2: P-doped silicon

Consider silicon doped with phosphorous at room temperature. Answer the following questions.

A) In this case is it a n-doped or p-doped semiconductor?

B) Compute the electrical conductivity σ when the concentration of P impurities is Nd =
1016 cm−3 (assume the extrinsic regime). Compare the obtained conductivity with the
conductivity in the intrinsic regime.

Hint: In Si the effective mass at the bottom of the conduction band is mc/m = 0.3 and the
effective mass at the top of valence band is mv/m = 0.55. The band gap in Si is 1.12 eV.
Remember also that silicon has six equivalent conduction band minima inside the Brillouin
zone. You can find the values of carrier mobilities in the table shown in the slides of week
13.

Exercise 3: non-degeneracy condition in doped silicon

In the case of the n-type doping (i.e. the semiconductor has a predominance of negatively
charged carriers (electrons)) the chemical potential is (see lectures):

µn−type(T ) = µi(T ) + kBT ln

(
ND

ni(T )

)
, (3)

where µi(T ) is the chemical potential in the intrinsic case (see lectures), ND is the density of
donors, and ni(T ) is the density of carriers in the conduction bands in the intrinsic case

ni(T ) = Nc(T ) e
−(εc−µi(T ))/kBT . (4)

Here εc is the energy at the bottom of the conduction band, and Nc(T ) is the density of available
states in the conduction bands. By substituting the expression for ni(T ) from Eq. (4) into Eq. (3)
we obtain that the chemical potential for the n-type doped semiconductors is given by

µn−type(T ) = εc + kBT ln

(
ND

Nc(T )

)
. (5)

In the case of p-type doping (i.e. the semiconductor has a predominance of positively charged
carriers (holes)) it can be similarly shown that the chemical potential reads:

µp−type(T ) = εv − kBT ln

(
NA

Pv(T )

)
, (6)

where εv is the energy at the top of the valence band, NA is the density of acceptors, and Pv(T )
is the density of available states in the valence bands.

Consider a silicon semiconductor in the extrinsic case, namely the n-type doped case and p-
type doped case, at room temperature (T = 300 K). Using Eqs. (5) and (6), and using the
expressions for Nc(T ) and Pv(T ) from lectures, determine the maximum doping concentrations
of donors (Nmax

D =?) and acceptors (Nmax
A =?) that preserve the non-degeneracy condition (i.e.

µn−type ≤ εc − 3kBT for the n-type doping; µp−type ≥ εv + 3kBT for the p-type doping).
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Hint: Use the values of the effective masses for Si from the Exercise 2.

Exercise 4: p-n junction

Consider a p-n junction of GaAs. An example can be a diode in which a p-type material is made
of GaAs doped by Be, and a n-type material is made of GaAs doped by Si.

Determine the built-in voltage at T = 300 K in the case when the density of donors (i.e.
of Si) is Nd = 1015 cm−3 and the density of acceptors (i.e. of Be) is Na = 1016 cm−3.

Hint: In GaAs, the effective masses are mc/m = 0.063 and mv/m = 0.51, and the band gap
energy is Eg = 1.43 eV.
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