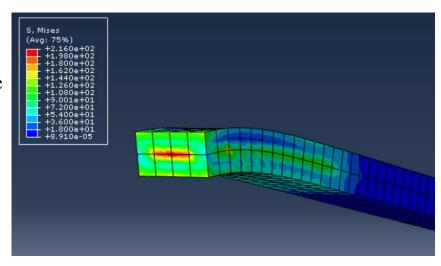
Exos 10a: chargement élastoplastique de la poutre encastrée

Dans les fichiers poutre-lf.inp et poutre-qg.inp (moodle),


- mettre la pression à 200 kPa (la flèche élastique théorique vaut alors 6.40 mm)
- activer nlgeom et ignorer la gravité
- inclure un second step qui simule la décharge (remise de la pression à 0.)
- inclure la loi plastique de l'aluminium (100, 110, 120 et 200 MPa à 0.0, 0.01, 0.02 et 0.1 de déformation plastique respectivement)
- remplir le tableau ci-dessous en réalisant les 4 calculs (les flèches sont lues dans le .dat et les contraintes et déformations à l'issue de la décharge sont obtenues à l'aide de abaqus viewer)

	poutre-lf-plast	poutre-qg-plast
nlgeom	yes	yes
flèche max en mm (3 chiffres derrière la virgule)		
flèche finale en mm (3 chiffres derrière la virgule)		
Valeur max de Von Mises après décharge (MPa)		
Valeur max de Peeq après décharge (-)		

Corrigé exos 10a: chargement élastoplastique de la poutre encastrée

les flèches sont lues dans le .dat et les contraintes et déformations à l'issue de la décharge sont obtenues à l'aide de abaqus viewer.

Les éléments quadratiques donnent des valeurs bp plus fortes de Peeq et Von Mises: il conviendrait d'affiner la zone encastrée pour éviter les fortes valeurs de Mises au centre de la section encastrée (cf image de droite).

NB: les fichiers sont nommées poutre-lf-plast.inp et poutreqg-plast.inp

	poutre-lf-plast	poutre-qg-plast
nlgeom	yes	yes
flèche max en mm (3 chiffres derrière la virgule)	-59.28	-62.135
flèche finale en mm (3 chiffres derrière la virgule)	-53.26	-56.164
Valeur max de Von Mises après décharge (MPa)	134.3	216.5
Valeur max de Peeq après décharge (-)	6.326 %	8.423 %

Exos 10b: chargement élastoplastique avec dépendance en temps

Dans le fichier poutre-lf.inp depuis moodle,

- imposer un déplacement (et non une pression) sur N100 (la face opposée à l'encastrement) de -10 mm selon y en 100, 1000 et 10000 secondes à l'aide de

*boundary N100,2,2,-10.

- utiliser amp=ramp, activer NLGEOM et ignorer la gravité
- inclure un second step de 1 seconde qui simule la décharge en retirant le déplacement imposé de 10 mm à l'aide de:
- *boundary,op=new N0,encastre
- inclure la loi plastique de l'aluminium dépendante de la vitesse de déformation:

*** stress, plastic strain
100.,0.0
110.,0.01

*plastic

*plastic, rate =
$$1.e-4$$

Exos 10b: chargement élastoplastique avec dépendance en temps

- Nommer le fichier poutre-lf-rate.inp
- remplir le tableau ci-dessous en réalisant les 3 calculs (les flèches sont lues dans le .dat et les contraintes et déformations à l'issue de la décharge sont obtenues à l'aide de abaqus viewer)
- Pourquoi la flèche après décharge varie-t-elle d'un cas à l'autre ?

	poutre-lf-rate	poutre-lf-rate	poutre-lf-rate
Temps de charge (1 ^{er} step)	100 sec	1000 sec	10000 sec
flèche finale après décharge en mm			
Mises max en charge en MPa			
Mises max après décharge (MPa)			
Valeur max de Peeq après décharge (-)			

Corrigé Exos 10b: chargement élastoplastique avec dépendance en temps

- remplir le tableau ci-dessous en réalisant les 3 calculs (les flèches sont lues dans le .dat et les contraintes et déformations à l'issue de la décharge sont obtenues à l'aide de abaqus viewer)
- Pourquoi la flèche après décharge varie-t-elle d'un cas à l'autre ?

Plus la vitesse de charge est élevée (10 mm en 100, 1000 ou 10000 sec), plus le matériau est «résistant» à la déformation plastique (rate dependant plasticity), moins il se déforme plastiquement et la flèche finale après décharge s'en trouve réduite.

	poutre-lf-rate poutre-lf-rate		poutre-lf-rate	
time	100 sec	1000 sec	10000 sec	
Vitesse de charge en mm/s	0.1 0.01		0.001	
flèche finale après décharge en mm	-3.73	-4,04	-4.08	
Mises max en charge en MPa	139.5	137.7	136.4	
Mises max après décharge (MPa)	115.1	114.5	113.4	
Peeq max après décharge (-)	0.4035 %	0.5174 %	0.537 %	

Exos 10c: chargement élastoplastique d'une poutre encastrée en cuivre

Télécharger le fichier poutre-lf.inp (moodle) et le renommer poutre-lf-cook.inp

- mettre la pression à 250 kPa sur un temps de 1 s, activer nlgeom et ignorer la gravité
- inclure un second step qui simule la décharge (remise de la pression à 0.)
- inclure la loi Johnson Cook du cuivre OFHC (densité 8.94, E = 110 GPa, poisson = 0.32)
- calculer la flèche max en mm (3 chiffres derrière la virgule) puis après décharge
- calculer la valeur de PEEQ en charge puis après décharge.
- et visualiser les contraintes, les déplacements et les déformations à l'issue de la décharge (abaqus viewer)

Table 2. Summary of strength and fracture constants

		OFHC COPPER	ARMCO IRON	4340 Steel
STRENGTH CONSTANTS FOR $\sigma - [A + B e^{D}][1 + C \ln e^{0}][1]$	- 1.• w]			
A	(MPa)	90	175	792
В	(MPa)	292	380	510
ħ		0.31	0.32	0, 26
С		0.025	0.060	0.014
m		1.09	0. 55	1, 03

Corrigé exos 10c: chargement élastoplastique d'une poutre encastrée en cuivre

calculer la flèche max :- 29.02 mm

puis après décharge: -23.75 mm

calculer la valeur de PEEQ en charge : 3.04 %

puis après décharge: 3.04 % (on remarque que la plastification se fait lors de la charge et reste

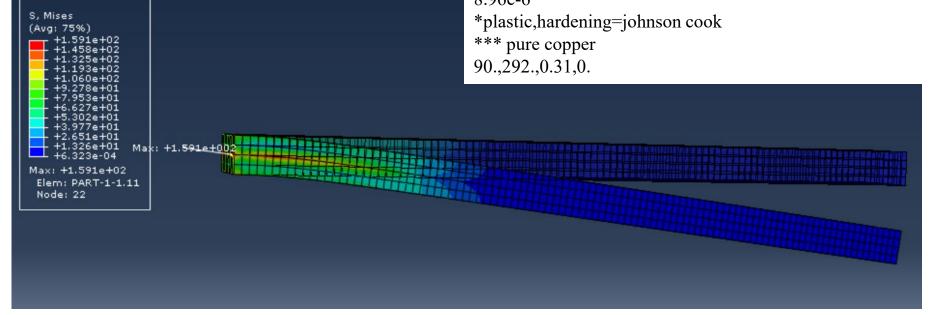
constante lors de la décharge).

valeur de Mises en charge: 199.9 MPa

puis après décharge: 159.10 MPa

*SOLID SECTION, ELSET=eall, MATERIAL=copper

*MATERIAL,NAME=copper


*elastic

110.e3,0.32

*density

**** en kg/mm3

8.96e-6

