Exo. 9a

- 1. Télécharger les fichiers poutre-lf.inp et poutre-lg.inp depuis moodle
- 2. Inclure la gravité (10 N/kg) selon –ey
- 3. Inclure un second step qui simule la décharge (remise de la pression à 0.)
- 4. Remplir le tableau ci-dessous en réalisant les 4 calculs avec et sans NLGEOM
- 5. Visualiser les contraintes, les déplacements et les déformations à l'issue de la décharge (abaqus viewer)

	poutre-lf	poutre-qf	poutre-lf	poutre-qf
nlgeom	no	no	yes	yes
flèche en mm (3 chiffres derrière la virgule)				
flèche en µm après décharge				
Max de Von Mises (MPa)				

Exos 9a corrigé

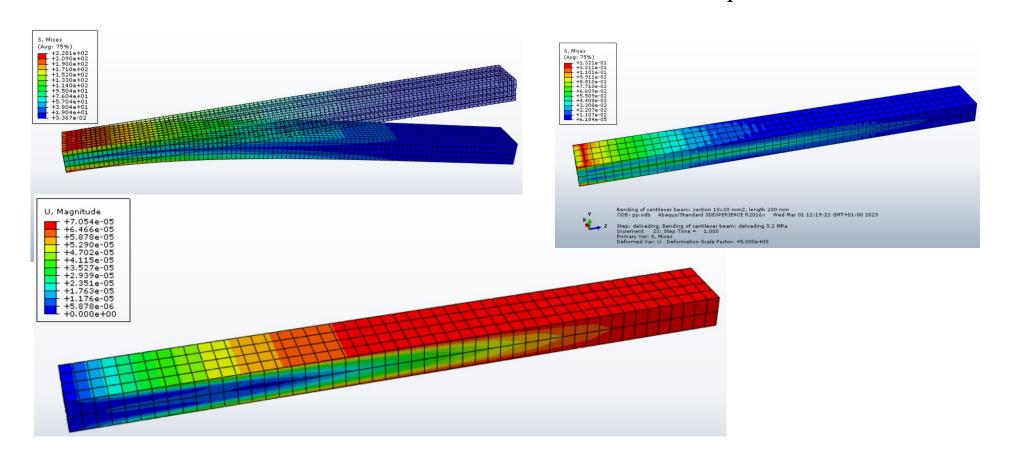
- Remplir le tableau ci-dessous en réalisant les 4 calculs:

	poutre-lf	poutre-qf	poutre-lf	poutre-qf
nlgeom	no	no	yes	yes
flèche en mm (3 chiffres derrière la virgule)	- 6.376	-6.351	-6.371	-6.346
flèche en µm après décharge	-0,00075	quasi 0.	quasi 0.	quasi 0.
Max de Von Mises (MPa)	228.1	233.2	228.2	233.5

Poutre-If sans Nlgeom: 2 iterations

1	1	1	0	1	1 1.6	1.00	1.000	-6.38
2	1	1	0	1	1 2.6	1.00	1.000	-1.23e-010

Poutre-If avec Nlgeom: 8 iterations


STEP	INC A	TT	SEVERE	EQUIL	TOTAL	TOTAL	STEP	INC OF	DOF IF
			DISCON	ITERS	ITERS	TIME/	TIME/LPF	TIME/LPF	MONITOR RIKS
			ITERS			FREQ			
1	1	1	0	3	3	1.00	1.00	1.000	-6.37
2	1	1	0	5	5	2.00	1.00	1.000	-5.18e-005

Exo 9a: corrigé

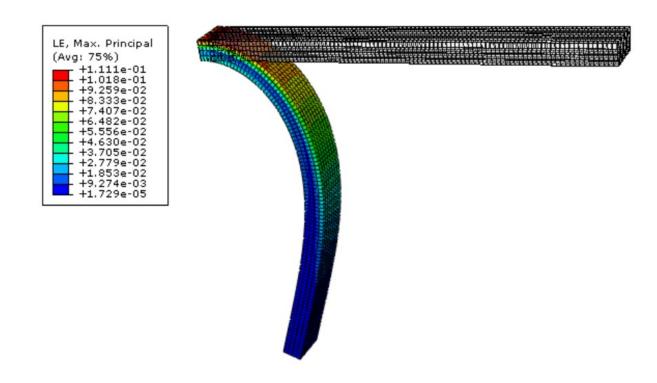
Et visualiser les contraintes, les déplacements et les déformations à l'issue de la décharge (abaqus viewer):

Les contraintes ne reviennent pas exactement à zéro (ca. 0.1 MPa), ni les déplacements Mais restent très proches de 0.

Les distorsions sont de l'ordre de 7.e-5 mm soit 70 nm donc quasi-nulles.

Exo. 9b

1. mettre la pression à 10 MPa et lancer le calcul poutre-lf avec nlgeom=yes. Pourquoi ne peut-on plus comparer avec la flèche analytique ?

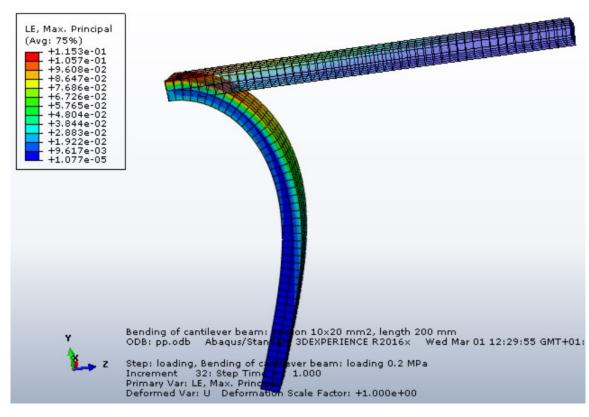

$$\delta_{\text{th\'eorique}} = -320 \text{ mm pour p} = 10 \text{ MPa}.$$

- 2. construire le modèle quadratique basé sur le maillage fin (poutre-lf.inp) et le nommer poutre-qg.inp
- 3. calculer la flèche avec ce modèle (sans gravité) et comparer avec la valeur théorique.
- 4. Adapter le modèle quadratique en considérant le plan de symétrie x = 10 mm et calculer la flèche. Nommer poutre-qf.inp le fichier input.

Exo. 9b- corrigé

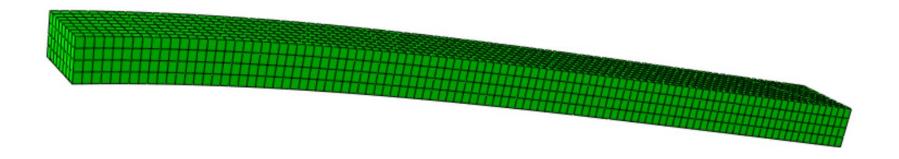
1. mettre la pression à 10 MPa et lancer le calcul poutre-lf avec nlgeom=yes. Pourquoi ne peut-on plus comparer avec la flèche analytique ?

On quitte les petites déformations (la flèche théorique est fausse). Flèche donnée par abaqus = -162.4 mm



Exos 9b corrigé

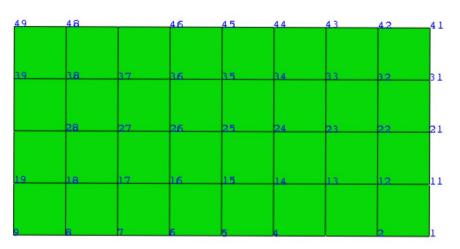
- Mettre la pression à 10 MPa et lancer le calcul poutre-lf avec nlgeom=yes. Abaqus arrive à faire le calcul MAIS les déformations (logarithmiques, LE) sont de l'ordre de 11.5 %, **on quitte les petites déformations** et la flèche théorique (320 mm) devient fausse (Abaqus donne une flèche de 164 mm et une flèche après décharge de 1.89 mm!).


NB: le calcul sans **NLGEOM**

converge mais est totalement faux (Abaqus utilise la matrice de rigidité de départ sans prendre en compte sa déformation et donne une flèche de 320 mm...)

Corrigé- exo. 9b

Adapter le modèle quadratique en considérant le plan de symétrie x = 10 mm et calculer la flèche. Nommer poutre-qf.inp le fichier input.



Bending of cantilever beam: verification of elastic distorsion

ODB: ff.odb Abaqus/Standard 3DEXPERIENCE R2016x Mon Dec 12 20:37:34 GMT+01:00 2022

Step: loading 0.1 MPa, loading 0.1 MPa Increment 1: Step Time = 1.000

Bending of cantilever beam: verification of elastic distorsion

ODB: ff.odb Abaqus/Standard 3DEXPERIENCE R2016x Mon Dec 12 20:37:34 GMT+01:00 2022

Step: loading0.1MPa, loading 0.1 MPa Increment 1: Step Time = 1.000

Corrigé- exo. 9b

Adapter le modèle quadratique en considérant le plan de symétrie x = 10 mm et calculer la flèche. Nommer poutre-qf.inp le fichier input.

Le plan x = 10 mm est plan de symétrie (géométrie et charges) mais aussi le plan x = 0 mm !

```
***** quadratique elements with plane of symmetry
***** x = 0 est plan de symmetrie: node set = nx
*node
9,10,
                               S, Mises
41,0.,10.
                               (Avg: 75%)
49,10,10.
*nset,nset=nx,generate
1,10001,100
11,10011,100
21,10021,100
31,10031,100
41,10041,100
*boundary
**** fixed nodes
n0,1,3,0.
**** symmetry plane
nx, xsymm
```