
EPFL

 Microscopie électronique: introduction

Qui, quoi?

Enseignants

Marco Cantoni	34816
Aïcha Hessler-Wyser	34830

Assistants

Lucie Navratilova, SEM:	35427
Barbora Bartova, SEM:	34827
Julien Hurni, SEM:	37903
Hilal Can, SEM:	37633
Rita Therisod, TEM:	34484
David Reyes, TEM:	36188
Mostafa Othman, SEM:	54315

Organisation

icha Hessler-Wys

Au programme

3h de cours le jeudi de 10h15 à 13h00 2h de travaux pratiques le vendredi matin (MX)

En pratique

Jeudi: cours en classe

Vendredi: travaux pratiques de 4h

Selon le programme: soit 2x TP (SEM), soit 2 démos en ligne et 4h de TP (TEM), répartition en 6 groupes, 2 groupes par semaine.

Groupes de TP et résumés

- Délégué MX:
 - Organiser max 6 groupes de X personnes pour les travaux pratiques
 - Organiser groupes de deux pour faire un résumé chaque semaine
 - Préparer le planning de passage aux examens oraux

EPFL

Planning actuel

date	cours 1	cours 2	cours 3	TP	responsable
12.09.	24 1. Intro	2. Interaction	2. Interaction		AHW
13.09.	24				
19.09.	24 3. composants	3. optique	3. detecteurs		AHW
20.09.	24				
26.09.	24 4. SEM	4. SEM	4.SEM		AHW
27.09.	24			g1	g2
03.10.	24 5. SEM avancé	6. FIB	6. FIB		MC
04.10.	24			g3	g4
	24 7. EDX	7. EDX	8. ESEM		AHW
11.10.				g5	g6
	24 9. Diffraction	9. Diffraction	9. Diffraction		MC
18.10.				g2	g1
	24 Vacances				
	24 Vacances				
	24 10. Traitement d'Images	10. Traitement d'Images	10. Traitement d'Images		MC
01.11.	24			g4	g3
07.11.	24 11. Préparation d'échantillons	11. Préparation d'échantillons	test SEM/questions		Streaming/AHW
08.11.	24			g6	g5
14.11.	24 12. TEM	12. TEM	12. TEM		AHW
15.11.	24		10h-12h	zoom	zoom
21.11.	24 13. STEM/EDX	13. STEM/EDX			AHW
22.11.	24			g1	g2
28.11.	24 14. Traitement d'Images 2	14. Traitement d'Images 2	14. Traitement d'Images 2		MC
29.11.	24			g3	g4
05.12.	24 15. HRTEM	15. HRTEM	16. EBSD		MC
06.12.	24			g5	g6
12.12.	24 17. Traitemen d'images TP	17. Traitemen d'images TP	17. Traitemen d'images TP		MC
13.12.	24		10h-12h	zoom STEM/EDS	zoom STEM/EDS
19.12.	24 18. Microscopie in situ	19. Tomo	test TEM/questions		AHW/MC
20.12.2	24			Réserve	

Ressources

Notes de cours

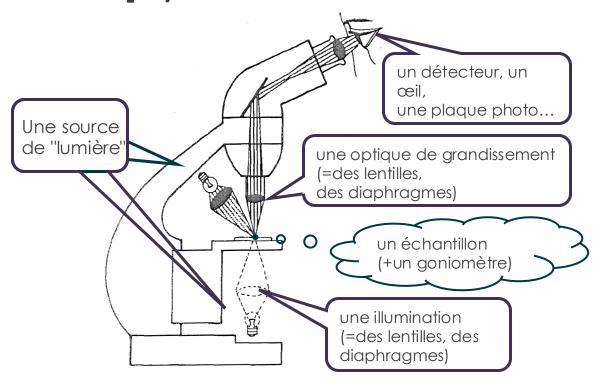
Copie des fichiers ppt disponibles sur Moodle (le mercredi soir)

et

 Résumés faits par vos soins, à envoyer au plus tard deux semaines après le cours pour qu'ils soient validés par les enseignants

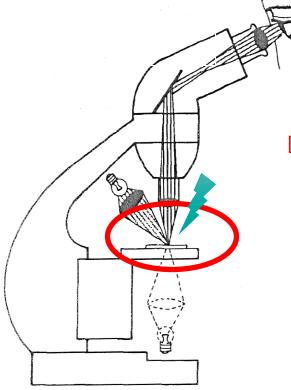
Notices de TP

- A télécharger sur Moodle avant les séances
- Rapports de TP à envoyer par e-mail une semaine après le TP, directement aux assistants mais avec copie aux enseignants


En cas de problèmes...

marco.cantoni@epfl.ch, aicha.hessler@epfl.ch

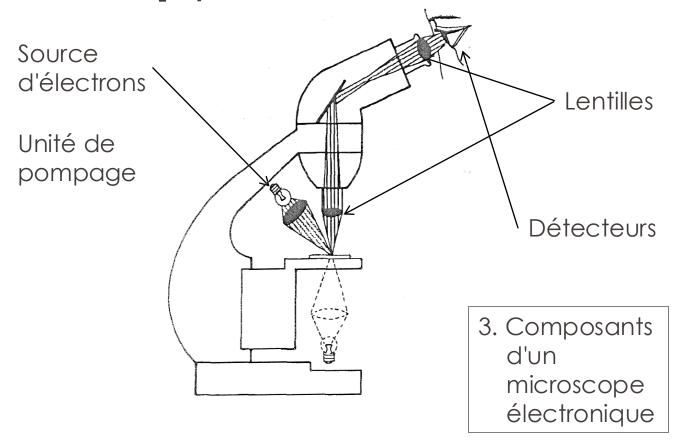
Examen


- X janvier 2025
- Examen oral, 20 minutes par personne, 20 minutes de préparation (si pas de changement en raison de la situation sanitaire)
- Pas de notes de cours
- Un formulaire 1 page A4 autorisé recto
- Oral = $\frac{3}{4}$ de la note, TP = $\frac{1}{4}$ de la note
- Vos résumés seront à mis à disposition

Un microscope, c'est...

1. Introduction

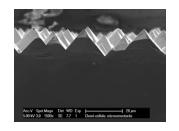
Un microscope, c'est...

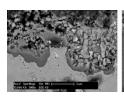

Différent signaux Différents détecteurs

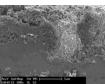
=

Différentes informations!

2. Interaction rayonnement-matière


Un microscope, c'est...

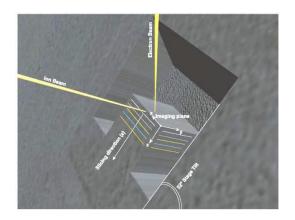

Un microscope, ça sert à...


Contraste topographique

Contraste en Z

4. SEM

Un microscope, ça sert à...


BSE detection in-chamber ET-detector in-column SE "InLens" SE-detector Signal A = ESB Aperture Size = 120.0 µm

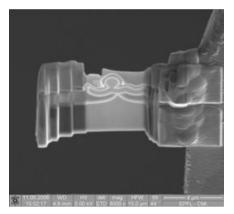
BSE-detector

in-column, "energy-selective" EsB

Différents détecteurs, différentes informations

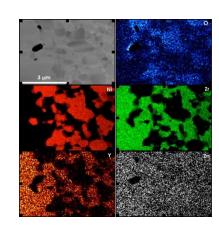
5. SEM avancé

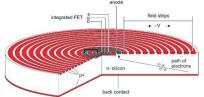
Déposition de matière


Imagerie ionique

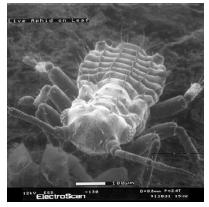
Nano-usinage

Reconstruction3D


Préparation d'échantillons TEM


Un microscope, ça sert à...

Sention 3


Détection de RX

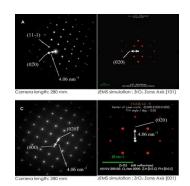
Analyse chimique

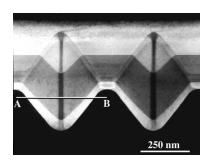
Carte chimique

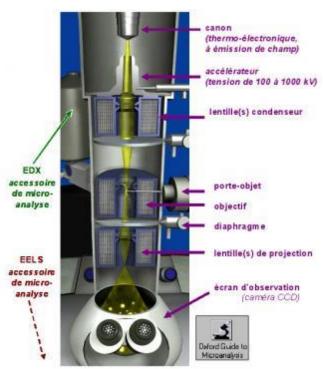
Microscopie é lectronique: Introduction

7. EDS/EDX

Pression partielle

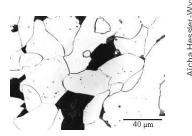

Echantillons hydratés ou non conducteurs

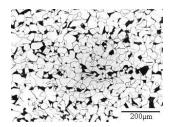


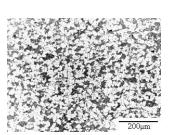

8. ESEM

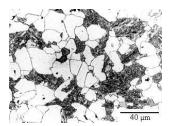
icha Hessler-Wyse

Un microscope, ça sert à...

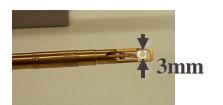

Diffraction électronique

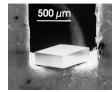

9. Diffraction


Un microscope, ça sert à...

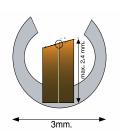

Faire des image. Oui, mais... ensuite il faut:

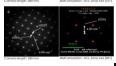
- savoir les interpréter
- savoir les analyser
- en extraire des données quantitatives

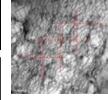


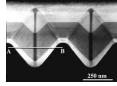

10, 14, 17. Analyse microstructurale

Un microscope, ça sert à...





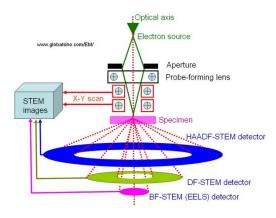

11. Préparation d'échantillons


à...

TEM conventionnel

Diffraction électronique

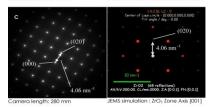
BF, DF

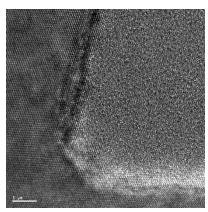

12. Intro TEM, BF/DF

A B SiO₂
Ge

Electrons diffusés

Contraste en Z

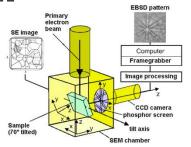

Contraste en t

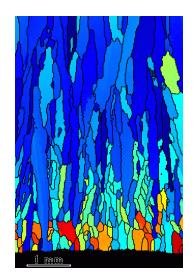


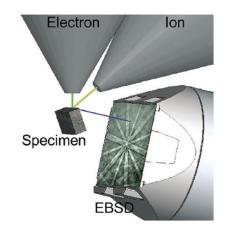
13. STEM

à...

(020) 4.06 nm⁻¹


Contraste de phase

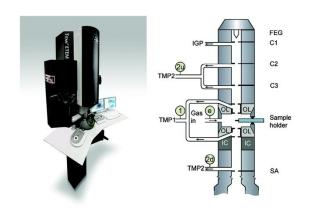

Imagerie des colonnes atomique


Haute résolution: Résolution atomique!

15. HRTEM

à...

Electrons rétrodiffusé + diffractés

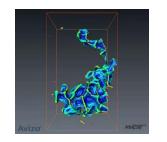

Cartes d'orientation

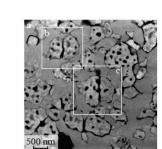
16. EBSD

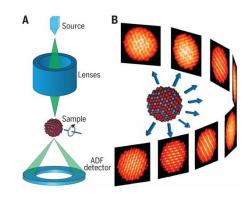
Un microscope, ça sert à...

T = 300°C t = 0 min 0.2 μm

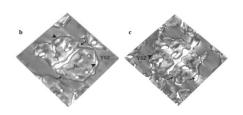
Réduction d'une anode de pile à combustible dans un TEM environnemental

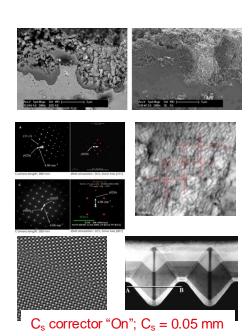


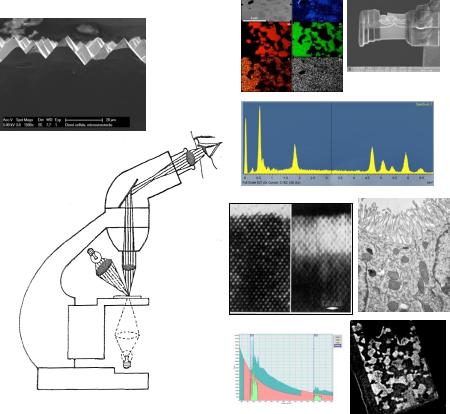

Chauffage Atmosphère Traction


18. In situ

EPFL

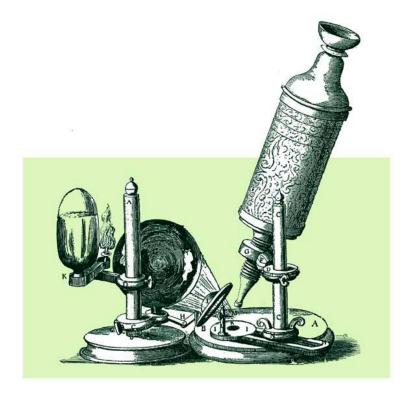

Un microscope, ça sert à...




Recontruction 3D

19. Tomographie

Un microscope, ça sert à...



Bibliographie

SEM

- L. Reimer, Scanning electron microscopy, (1998)
- J.I. **Goldstein**, Scanning electron microscopy and X-ray microanalysis, 2017 TFM
- D.B. **Williams** and C.B. **Carter**, *Transmission electron microscopy*, 2016 Analyse microstructurale
 - P. **Grande**, D. Hetzner and K. Kurzydlowski, *Practical Guide for Image Analysis*, ISBN: 0-87170-688-1
 - H. E. Exner, H.P. Hougardy, Einführung in die Quantitative Gefügeanalyse, ISBN: 3-88355-108-2

Un peu d'histoire

croscopie é lectropique. Introduc

1665

2021

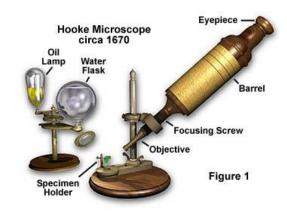
Un peu d'histoire: optique

Microscopie optique

Antiquité: premières tailles de lentilles convexes

XII-XIII^{ème} siècles: **pouvoir grossissant** des lentilles convexes, loupes, lunettes

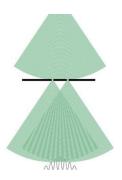
1590 Janssen, premier microscope composé


1609 Galilei: occhiolino

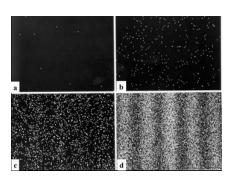
1665 Hooke: première image de la cellule

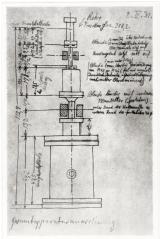
1801 Young: nature ondulatoire de la lumière

1872 (~) Abbe: limite du pouvoir de résolution liée à la longueur d'onde du rayonnement utilisé



EPFL


Un peu d'histoire: des électrons?


Microscopie électronique

- 1923 De Broglie: notion de longueur d'onde associée à des particules, confirmation par expérience de Young
- 1927 Busch: loi de la focalisation pour les champs magnétiques Davisson, Germer, Thomson: diffraction électronique
- **1931 Ruska**, Knoll, Premières images par microscopie électronique

Aicha Hessler-Wys

Un peu d'histoire: des électrons?

1936 Scherzer: principales aberrations des lentilles électroniques inévitables

1938 Von Ardenne: premier microscope électronique à balayage à microsonde

1939 Siemens: premiers microscopes électroniques commerciaux (TEM)

1948 Gabor: invention de l'holographie

1951 Castaing: premier micro-analyseur à RX

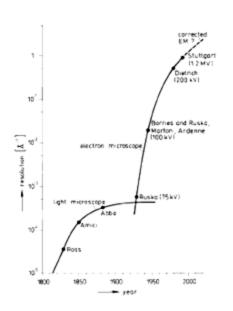
1960 XX: premier microscope MV, course la résolution

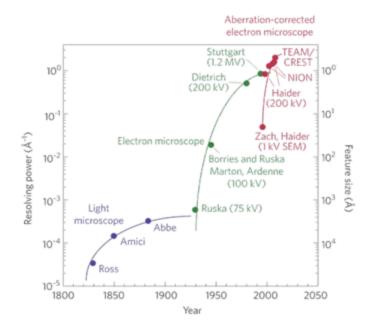
1965 Crewe: premier microscope électronique à balayage commercial

1982 Binnig et Rohrer: microscope à effet tunnel

1986 Ruska, Binnig et Rohrer: Prix Nobel de Physique

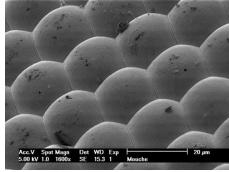
1990 Rose: propose le correcteur de Cs

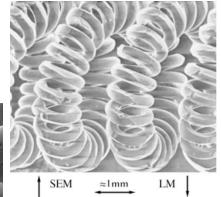

1995 Haider: première réalisation du correcteur de Cs


Microscopie é lectronique: Introducti

Un peu d'histoire: résolution

Evolution de la résolution avec les technologies

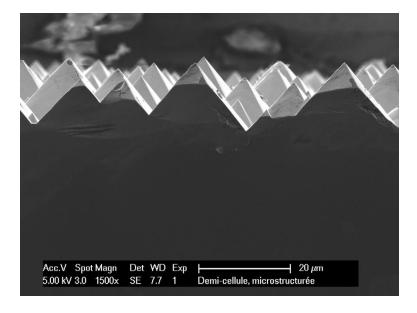

H. Rose, 1994


D. A. Muller, Nat. Mat. 8, 263-270 (2009)

Pourquoi la microscopie électronique?



Profondeur de champ

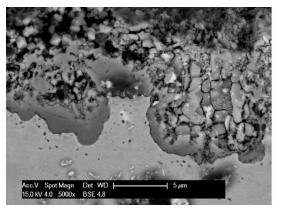


Œil de mouche

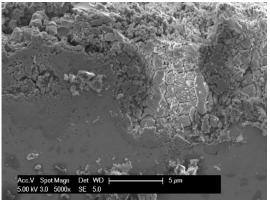
Filament de spot, P. Buffat

Pourquoi la microscopie électronique?

Topographie

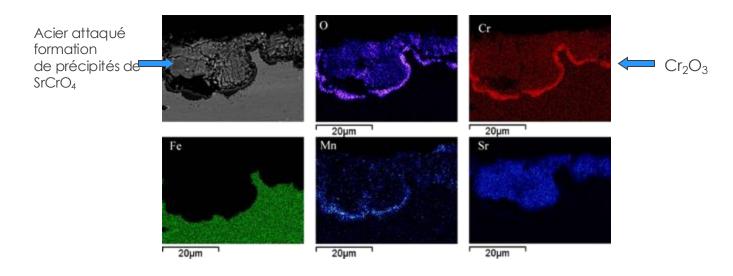


Cellules solaires en couches minces déposées sur Si microstructuré, G. Pasche



Pourquoi la microscopie électronique?

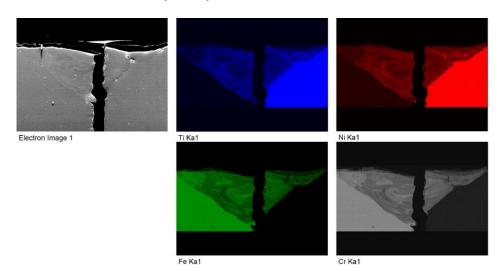
Contraste en Z


Détecteur d'électrons secondaires

Interconnects en aciers utilisés dans des piles à combustible après usage

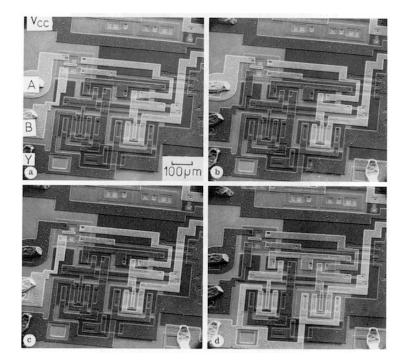
Pourquoi la microscopie électronique?

Contraste chimique par EDS



Interconnects en aciers utilisés dans des piles à combustible après usage

Pourquoi la microscopie électronique?

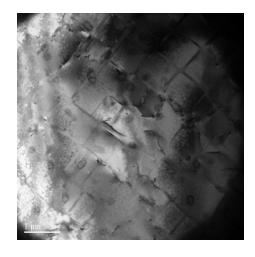

Contraste chimique par EDS

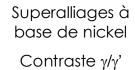
Trace laser à la jonction d'un acier et d'un alliage NiTi, J. Vannod

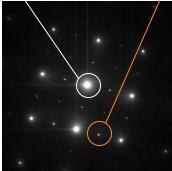
EPFL

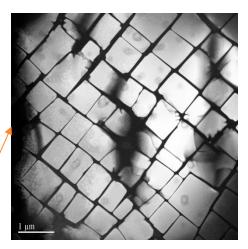
Pourquoi la microscopie électronique?

Contrast en tension, potentiel de surface, à faible énergie

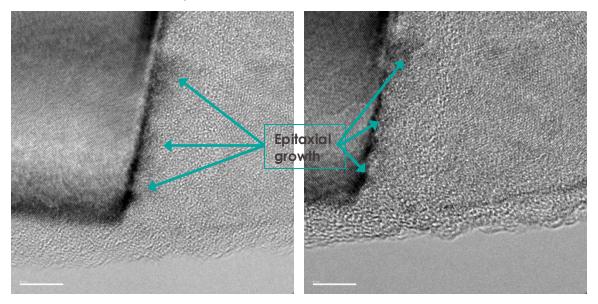

TABLE I. Truth Table for NAND Gate


Condition	Inputs		Output	
	A	B	Y	
a	0	0	1	
b	0	1	1	
c	1	0	1	
d	1	1	0	


(from Golstein et al, Practical SEM (1975))


Pourquoi la microscopie électronique?

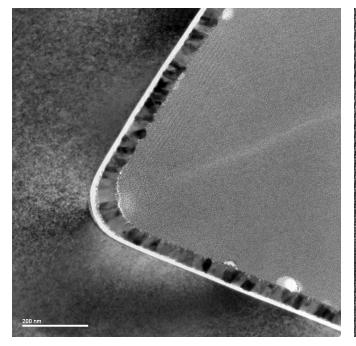
Contraste de diffraction: champ clair, champ sombre

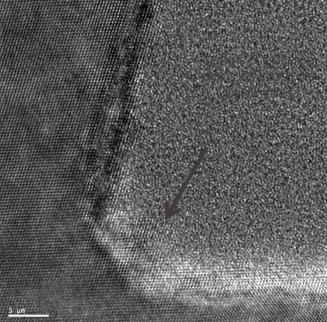


Pourquoi la microscopie électronique?

Contraste de phase: haute résolution

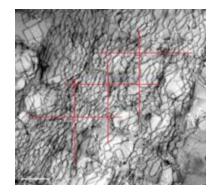
Cellule solaire: hétérojoncion, couches minces sur substrat Si

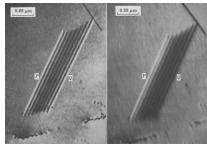



Interface Si c/Si a/Si μ c, 510'000x, focussed

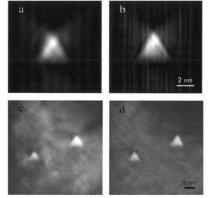
Interface Si c/Si a/Si µc, 510'000x, underfocussed

Pourquoi la microscopie électronique?


Champ clair et haute résolution

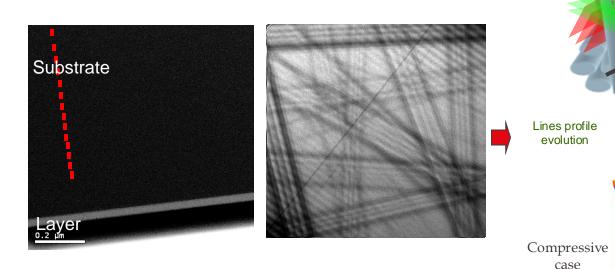


Pourquoi la microscopie électronique?


Analyse de défauts cristallin

Réseau de dislocations

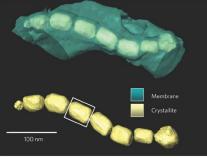
Tétraèdres de fautes

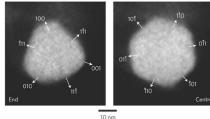

Fautes d'empilement

Carter et Williams

R. Schäublin

Pourquoi la microscopie électronique?


Diffraction convergente: mesure de contraintes



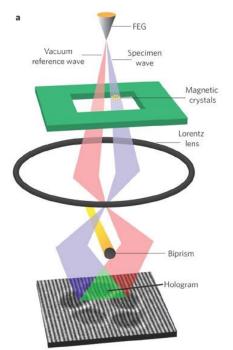
Couche Si_{0.5}Ge_{0.5} sur substrat Si, F. Houdelier

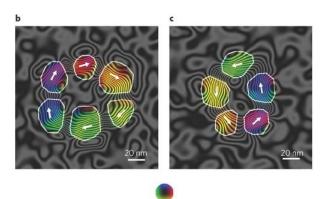
Pourquoi la microscopie électronique?

Structure 3D du virus de la grippe (taille env. 120 nm)

Reconstruction 3D d'une bactérie magnétotactique: magnétite à l'intérieur de la membrane d'une bactérie.

Harris A, et al. Influenza virus pleiomorphy characterized by cryo electron tomography. PNAS 2006;103(50):19123-19127.

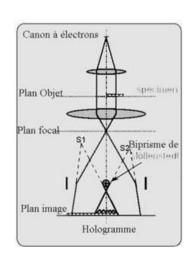

Paul A. Midgley & Rafal E. Dunin-Borkowski Nature Materials **8**, 271 - 280 (2009)

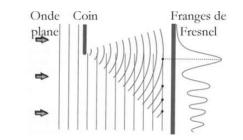

Microscopie électronique: Introduction

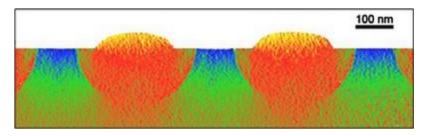
Aïcha Hessler-Wyser

Pourquoi la microscopie électronique?

Holographie électronique: champs magnétiques

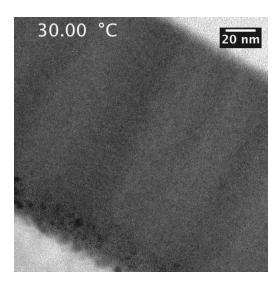


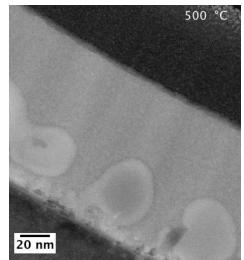

Hologramme off-axis, montrant la projection de la densité de flux magnétique à l'intérieur et autour de nanocristaux de Co.


Paul A. Midgley & Rafal E. Dunin-Borkowski Nature Materials **8**, 271 - 280 (2009)

Pourquoi la microscopie électronique?

Holographie électronique: mesure de contraintes




Observation des déformations dans un cristal grâce l'holographie électronique. Les zones bleues correspondent à des régions de compression d'environ 2 % et les zones rouges à des régions de tension de 2 %, tiré de *Nature*, juin 2008

Pourquoi la microscopie électronique?

Microscopie in situ: suivi en live d'un événement subi par l'échantillon

Exemple: TCO sur verre pendant chauffage et refroidissement

Objectifs du cours et des TP

Aicha Hessler-Wy

- Comprendre le fonctionnement d'un SEM, d'un TEM, d'un OM (ou LM)
- Comprendre la formation du contraste d'une image
- Savoir extraire l'information d'une image
- Savoir quantifier la microstructure
- Savoir choisir la bonne technique pour l'information souhaitée
- Autres??

