## CERAMIC AND COLLOIDAL PROCESSING - EXERCISES

Prof. Paul Bowen Dr. Andrea Testino 2021

## Exercises 8

- 1. What are the different steps to follow for suspending a powder in a liquid?
- 2. Calculate the surface charge density  $\sigma$  of a surface immersed in an electrolyte solution, knowing its surface potential and the composition of the solution.

## Examples:

- a)  $\Phi o = -75.0 \text{ [mV]}$ ; 0.15 [M] aqueous solution in NaCl, T = 25 ° C ( $\epsilon_r = 78.5 \text{ [-]}$ ).
- b)  $\Phi o = -35.0 \text{ [mV]}$ ; 0.010 [M] aqueous solution in NaCl, T = 75 ° C ( $\varepsilon_r = 78.5 \text{ [-]}$ ).

Note: Watch out for units! It is recommended to convert all numeric data in the international system of units before performing calculations.

3 Knowing the temperature (T = 25  $^{\circ}$  C), calculate the Debye length 1 /  $\kappa$  in aqueous solutions containing various concentrations of electrolytes.

## Examples:

- a) Pure water at  $T = 25 \,^{\circ} C$ ,  $([H +] = [OH -] = 10^{-7} M)$ .
- b) 0.010 [M] aqueous solution in NaCl.
- c) 0.010 [M] aqueous solution in Na<sub>2</sub>SO<sub>4</sub>.
- d) 0.010 [M] aqueous solution in Al<sub>2</sub> (SO<sub>4</sub>) 3.
- 4. How is the electrical double layer formed at a charged surface in an electrolyte?
- 5. What is the sign of the zeta potential on the surfaces of SiO<sub>2</sub>, ZrO<sub>2</sub>, TiO<sub>2</sub>, Al<sub>2</sub>O<sub>3</sub>, ZnO<sub>2</sub> and MgO powders in water at pH 7.5.
- 6. What is the isoelectric point (iep)?