CERAMIC AND COLLOIDAL PROCESSING - EXERCISES

Prof. Paul Bowen Dr. Andrea Testino 2021

Exercises 6

1. What are the main methods of classifying a powder?

What are their advantages and disadvantages (limitations)?

How to classify a powder with sizes between

5000 to $50~\mu m$

50 to 5 μm

<10 µm

<100nm

- 2. What type of machine would you use to reduce the size of particle to the following dimensions:
- to mm
- alumina $<100 \mu m$
- alumina <1 µm
- 3. What are the differences between wet milling and dry milling?
- 4. Could you describe a milling circuit?
- 5. Table 1 below shows the results of pure sand size reduction by a ball mill:

x (μm)	R (1h) %	R (5 h)	R (10 h)	R (15 h)	R (20 h)
2	97.5	92	81	75	78
3	96.5	88	75	68	75
4	95.5	83	72	61	73
5	95	81	69	55	70
10	92	70	44	35	60
20	88	55	18	27	50
30	81	45	7	10	40
40	77	30	3	0	0
50	72	20	0	0	0
100	60	1	0	0	0
200	20	0	0	0	0

R(h) = cumulative value of the amount of powder retained on the sieves (greater than cumulative distribution, e.g. Rosin-Rammler type distribution) for each of the sieves (h = hours of milling)

- How long does it take to reach the milling limit?
- Why is there a milling limit?
- How can we modify the milling limit?