COURS DE DEFORMATION
MSE-310
LABORATOIRE DE MÉTALLURGIE THERMOMÉCANIQUE
PROF. ROLAND LOGÉ

Déformation – Série 3

1. Contraintes résiduelles

Une couche fine d'émail est appliquée sur une pièce en céramique. L'application de l'émail est effectuée à haute température, 600°C, ce qui permet à l'émail de se répartir de manière homogène sur la surface de la pièce en céramique. Durant le refroidissement, l'émail se solidifie à 500°C. L'émail et la céramique possédant des coefficients de dilatation différents (4.0 10⁻⁶ C⁻¹ pour l'émail et 5.5 10⁻⁶ C⁻¹ pour la céramique), des contraintes internes naissent lors du refroidissement de l'émail.

- 1.1 En connaissant le module élastique de l'émail E=70GPa et son coefficient de Poisson v=0.3, calculer les contraintes dans l'émail lorsqu'il est refroidi jusqu'à une température de 20°C. Négliger les déformations élastiques dans la céramique.
- 1.2 A quel type de contraintes est soumis l'émail lors du refroidissement ?

2. Anisotropie élastique du zinc

Une maille hexagonale de zinc est soumise à une pression hydrostatique p.

- 2.1 Donner une expression de la variation du rapport cristallographie c/a en fonction de la variation de pression p.
- 2.2 Que vaudrait la variation du rapport cristallographique c/a en fonction de la variation de pression si le zinc avait un comportement isotrope ?

3. Anisotropie élastique

- 3.1 Calculez les modules de Young selon la direction [110] pour le tungstène et le fer alpha.
- 3.2 Qu'en déduisez-vous au niveau du degré d'anisotropie de ces deux matériaux?
- 3.3 Dans la littérature, on trouve une valeur unique pour le module de Young du fer: E=200GPa. Pourquoi l'anisotropie est-elle ainsi ignorée? Dans quels cas pratiques ne peut-elle pas être ignorée?

4. Modèles parallèle et série des milieux hétérogènes

Soit un composite comprenant les phases α et β dont les fractions volumiques sont connues.

- 4.1 Calculer l'expression du module effectif E^C du composite en utilisant les modèles série et parallèle.
- 4.2 En admettant que la phase α est plus dure que la phase β , esquisser la courbe de E^C en fonction de la fraction volumique de la phase α , pour les deux configurations.
- 4.3 Si la distribution spatiale des deux phases est différente des modèles série ou parallèle, indiquer les valeurs possibles de E^C.

5. Isotropie élastique

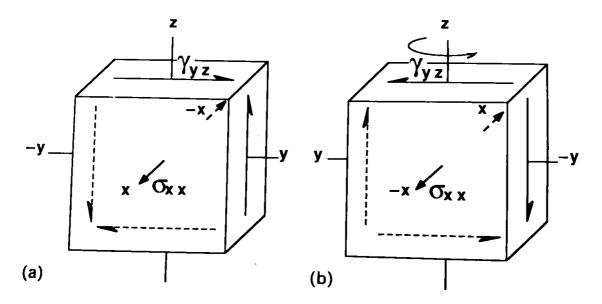
5.1 A partir de la relation d'isotropie établie sur les S_{ij}, monter la relation suivante :

$$G = \frac{E}{2(1+\nu)}$$

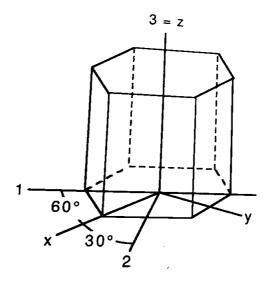
5.2 Monter à partir des relations en λ et μ que la relation d'isotropie sur les C_{ij} est satisfaite.

6. Opération de symétrie sur un tenseur de rigidité élastique

- 1. La maille orthorhombique a un axe de symétrie d'ordre 2 : le cristal est superposable pour chaque rotation de 180° autour de cet axe.
- 1.1 On applique une contrainte positive σ_{xx} en traction à une maille orthorhombique. La Figure 1 représente la maille et son symétrique par la rotation de 180° autour de 1'axe z. Donner la relation de comportement entre cette contrainte σ_{xx} et la déformation γ_{yz} ?
- 1.2 Déterminer le signe de la déformation en cisaillement γ_{zy} induite dans les deux cas. Qu'en déduisez-vous sur la valeur de cette constante de rigidité?
- 1.3 En déduire la forme de la matrice de rigidité pour une symétrie orthorhombique.



- 2. La maille hexagonale possède un axe de symétrie d'ordre 6 : le cristal est superposable pour chaque rotation de 60° autour de cet axe.
- 2.1 Considérer un système de coordonnée orthogonal xyz et un autre système de coordonnées 123 tourné de 60° autour de l'axe z (représenté ci-dessous). Exprimer σ_x dans le système 123.



- 2.2 La matrice de rigidité d'un système orthorhombique pour la loi de comportement reste applicable. Substituer dans l'expression de σ_{χ} les contraintes 123 par les déformations induites par la loi d'élasticité.
- 2.3 En exprimant les déformations 123 dans la base xyz et en les substituant dans l'expression trouvée précédemment prouver que $c_{11}=c_{12},\ c_{23}=c_{14}$ et $c_{66}=(c_{11}-c_{12})/2$.